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AbstrAct

Elastic geothermobarometry is a method of determining metamorphic conditions from the excess 
pressures exhibited by mineral inclusions trapped inside host minerals. An exact solution to the 
problem of combining non-linear Equations of State (EoS) with the elastic relaxation problem for 
elastically isotropic spherical host-inclusion systems without any approximations of linear elasticity is 
presented. The solution is encoded into a Windows GUI program EosFit-Pinc. The program performs 
host-inclusion calculations for spherical inclusions in elastically isotropic systems with full P-V-T EoS 
for both phases, with a wide variety of EoS types. The EoS values of any minerals can be loaded into 
the program for calculations. EosFit-Pinc calculates the isomeke of possible entrapment conditions 
from the pressure of an inclusion measured when the host is at any external pressure and temperature 
(including room conditions), and it can calculate final inclusion pressures from known entrapment 
conditions. It also calculates isomekes and isochors of the two phases.
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introduction

The determination of the remnant pressures in inclusions, 
as measured by X-ray diffractometry, birefringence analysis, or 
Raman spectroscopy, provides an alternative and complementary 
method to conventional geothermobarometry by using elasticity 
theory. A remnant pressure in an inclusion is developed because 
the inclusion and the host have different thermal expansions and 
compressibilities, and therefore the inclusion does not expand in 
response to P and T as would a free crystal. Instead it is restricted 
by the host mineral, and this confinement can result in inclusions 
exhibiting over-pressures, or under-pressures, when the host is 
studied at room conditions. By measuring the remnant pressure 
the possible temperatures and pressures of entrapment can be 
calculated by using the elastic properties of the host and inclu-
sion minerals. This basic concept has been known for a long 
time (Rosenfeld and Chase 1961). Difficulties arise because 
the classic solutions for the stress distribution in host-inclusion 
systems (e.g., Goodier 1933; Eshelby 1957) are derived for linear 
elasticity, which assumes that the stresses and strains are small, 
and that the elastic properties do not change with pressure or 
temperature. However, minerals are subject to large changes in 
pressure and temperature from formation to room conditions, 
so their elastic properties are not constant but are described by 
non-linear Equations of State (EoS).

Several approaches have been used to apply the classic 
host-inclusion elastic solutions to mineral systems. All of them 
assume that the two minerals are elastically isotropic, and that 
the inclusion is spherical and isolated from the host surface and 
any other inclusions or defects in the host mineral. The simplest 

approach has been to ignore the variation of the elastic properties 
of minerals with pressure and temperature (e.g., Zhang 1998). 
This leads to errors in inclusion pressures, especially when they 
are calculated for prograde metamorphic conditions following 
entrapment (e.g., Angel et al. 2014b). A second approach has been 
to calculate the evolution of the inclusion pressure in a series of 
small steps from entrapment conditions by adjusting the elastic 
properties of the host and inclusion at each step according to 
either a full or approximate EoS, and then using the linear solu-
tion at each step to calculate mechanical equilibrium (Gillet et 
al. 1984; van der Molen and van Roermund 1986; d’Arco and 
Wendt 1994). A third approach is to consider the “thermodynamic 
pressure”, Pthermo, in the inclusion when it is constrained to have 
the same volume change as the host crystal from entrapment Ptrap 
and Ttrap to the final external Pend and Tend (Fig. 1). Pthermo is differ-
ent from the final external pressure on the host, and this drives 
a further mutual elastic relaxation that reduces the difference 
between the inclusion pressure and Pend. This relaxation must 
be calculated in a second step. The advantages of this approach 
are that the calculation of Pthermo can be exact by using appropri-
ate non-linear EoS, and the only linear elasticity approximation 
is in the relaxation term. However, the correct solution for the 
pressure in the spherical inclusion requires that the relaxation 
is evaluated during isothermal decompression from a state of 
uniform stress (Goodier 1933), and not along any P-T path as 
often incorrectly assumed (e.g., Guiraud and Powell 2006). The 
first step is therefore to consider a temperature change from Ttrap 
to Tend and to calculate the change in external pressure required 
to induce an equal pressure change in the inclusion (Fig. 1). This 
thermodynamic path is an isomeke of the host and inclusion 
phases (Rosenfeld and Chase 1961; Adams et al. 1975). The 
pressure, Pfoot, on the entrapment isomeke at Tend can be deter-




