American Mineralogist, Volume 101, pages 2443-2451, 2016

SPECIAL COLLECTION: APATITE: A COMMON MINERAL, UNCOMMONLY VERSATILE Quantification of ${\rm CO}_2$ concentration in apatite

KATHRYN CLARK¹, YOUXUE ZHANG^{1,*}, AND FABIAN U. NAAB²

¹Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan 48109, U.S.A. ²Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109, U.S.A.

ABSTRACT

We have calibrated the infrared (IR) method for determining CO_2 concentrations in apatite with absolute concentrations obtained through nuclear reaction analysis (NRA). IR data were obtained on double-polished apatite wafers using polarized transmission IR spectroscopy. Due to the various sites and orientations of CO_{2}^{-} in apatite, the IR spectra are complicated and do not have the same shape in different apatite samples. Hence, simple peak heights are not used to characterize CO₂ concentrations in apatite. The total absorbance (A_{total}) was derived using the integrated area under the curves in a given polarized spectral region. Then A_{total} is calculated as $A_{\text{E/c}} + 2A_{\text{E1c}}$. The calibration has been carried out for two wavenumber regions, one with high sensitivity and the other applicable to apatite with high CO₂ concentrations. The first calibration is for the fundamental asymmetric CO_2^2 stretching at wavenumbers of 1600-1300 cm⁻¹, and the CO₂ concentration in parts per million can be obtained as $(0.0756 \pm 0.0036) A_{\text{total}}/d$ where d is sample thickness in centimeters. The fundamental stretching bands are strong and hence sensitive for measuring low CO₂ concentrations in apatite, down to parts per million level. The second calibration is for the CO_{2}^{-} bands at wavenumbers of 2650–2350 cm⁻¹, and the CO_2 concentration in parts per million is $(9.3 \pm 0.6) A_{\text{total}}/d$ where d is sample thickness in centimeters. These bands are weak and hence are useful for measuring high CO₂ concentrations in apatite without preparation of super-thin wafers. The anisotropy is significant. The difference between $A_{\rm Elf}$ and $A_{\rm Elf}$ can reach a factor of 2.73. Hence, for high accuracy, it is best to use polarized IR to determine CO_2 concentrations in apatite. For rough estimation, unpolarized IR spectra may be used by estimating A_{total} = $3A_{unpol}$, where A_{unpol} is the integrated absorbance from unpolarized spectra.

Keywords: Carbonate in apatite, IR spectroscopy, nuclear reaction analysis, NRA