Phase transitions between high- and low-temperature orthopyroxene in the Mg₂Si₂O₆-Fe₂Si₂O₆ system

SHUGO OHI^{1,2,*} AND AKIRA MIYAKE²

¹Faculty of Education, Shiga University, Otsu 520-0862, Japan ²Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan

ABSTRACT

We observed isosymmetric phase transitions of orthopyroxene in the Mg₂Si₂O₆-Fe₂Si₂O₆ system during high-temperature in situ X-ray powder diffraction experiments with a multiple-detector system and a high-temperature strip heater chamber in an atmosphere of Ar plus 1% H₂. The transition temperatures we determined for natural orthopyroxenes were 1113–1147, 1120–1139, and around 1200 °C for Fs₁₀, Fs₁₄, and Fs₃₇, respectively, and those for synthetic orthopyroxenes were 1048–1075, 961–1048, and 1037–1148 °C for Fs₂₀, Fs₃₀, and Fs₄₆, respectively. Our experiments showed that the transition from low- to high-temperature orthopyroxene in the Mg₂Si₂O₆-Fe₂Si₂O₆ system occurred at about 1000–1200 °C. We concluded that the stability field of low-temperature orthopyroxene was below 1000 °C and that of high-temperature orthopyroxene was above 1200 °C.

Keywords: Orthopyroxene, X-ray powder diffraction, isosymmetric phase transition, enstatite-ferrosilite system