## Iron-titanium oxyhydroxides as water carriers in the Earth's deep mantle

## YU NISHIHARA<sup>1,\*,†</sup> AND KYOKO N. MATSUKAGE<sup>2,†</sup>

<sup>1</sup>Geodynamics Research Center, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan <sup>2</sup>Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan

## ABSTRACT

We experimentally explored phase relations in the system FeOOH-TiO<sub>2</sub> at pressures of 16 GPa and temperatures of 1000–1600 °C, which corresponds to conditions of the Earth's mantle transition zone. Analyses of the recovered samples revealed that, in the studied conditions, there are two stable iron-titanium oxyhydroxide phases whose estimated composition is expressed by  $(FeH)_{1-x}Ti_xO_2$ . One is the Fe-rich solid solution (x < 0.23) with  $\varepsilon$ -FeOOH type crystal structure (orthorhombic,  $P2_1nm$ ), and the other is the more Ti-rich solid solution (x > 0.35) with  $\alpha$ -PbO<sub>2</sub> type structure (orthorhombic, Pbcn). The  $\varepsilon$ -FeOOH phase is stable up to ~1100 °C irrespective of chemical composition, whereas the  $\alpha$ -PbO<sub>2</sub> type phase is stable up to 1500 °C for a composition of x = 0.5 and at least to 1600 °C for x = 0.75, and thus the  $\alpha$ -PbO<sub>2</sub> type phase is stable at average mantle temperature in the Earth's mantle transition zone. Iron-titanium-rich phases found previously in basalt + H<sub>2</sub>O system are estimated to be the  $\varepsilon$ -FeOOH and  $\alpha$ -PbO<sub>2</sub> type phases where the phase with iron-rich composition found at relatively low temperature (<1100 °C) is  $\varepsilon$ -FeOOH phase and the phase with titanium-rich composition is  $\alpha$ -PbO<sub>2</sub> type phase. The  $\alpha$ -PbO<sub>2</sub> type and  $\varepsilon$ -FeOOH phases may be stable in the subducted basaltic crust at pressures in the mantle transition zone under water-rich conditions.

Keywords: Mantle transition zone, water, titanium, hydrous mineral, basaltic crust