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abStract

The synthesis of 10 Å phase via the reaction of talc plus water at 8 GPa and 500 °C was studied by 
in situ Raman spectroscopy using a diamond-anvil cell. The initial fast (2 h) incorporation of interlayer 
H2O molecules into the talc structure is traced by gradual growth of new OH stretching bands at 3592 
and 3621 cm–1 and the shift of several framework bands. Further monitoring at HP-HT conditions over 
7 h reveals gradual weakening of the 3592 cm–1 band, which can probably be related to the onset of 
the formation of “long-run” 10 Å phase through the appearance of silanol groups following the model 
proposed by Pawley et al. (2010), influencing the interlayer hydrogen bonding.
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introduction

The Earth’s mantle is considered to be an important H2O res-
ervoir in the global water cycle where water can be stored either 
in hydrous phases or as defects in nominally anhydrous phases 
(Jacobsen and van der Lee 2006; Kovacs et al. 2012). However, 
the mechanism of water transport from outer geospheres to the 
mantle is still debated. In cold subduction zones hydrous phases 
avoid dehydration and carry water to mantle depths. The serpen-
tinized peridotite layer that lies just below the igneous oceanic 
crust constitutes an H2O reservoir in the subducted lithosphere 
comparative in mass to the oceanic crust (Schmidt and Poli 
2014). Although serpentine dehydrates at moderate temperatures 
(500–700 °C), it can be a precursor for dense hydrous magnesium 
silicates (DHMS) that are stable at mantle conditions. There are 
three main scenarios for water behavior in serpentinized peridotite 
depending on the position of the subduction geotherm (Fig. 1).

(1) During “hot” subduction, the release of water from the slab 
basement is controlled by serpentine and then chlorite breakdown 
into anhydrous phases and hydrous fluid. These processes lead to 
the formation of the lower part of so-called double seismic zones 
(Dorbath et al. 2008).

(2) During “cold” subduction a direct transformation of
serpentine into phase A, Mg7Si2O8(OH)6 (Ringwood and Major 
1967), is possible with almost no water fluid production (Schmidt 
and Poli 2014). The retained water can then be transferred even 
to the lower mantle via the sequence of DHMS phase A → phase 
E → superhydrous phase B → phase D(G) (Ohtani et al. 2004).

(3) As the “normal” subduction geotherm lies above the inter-
section of serpentine and phase A stability curves (Fig. 1), during 
“normal” subduction serpentine decomposes before phase A 

can be formed. However, experimental studies have shown that 
the so-called 10-angstrom phase (TAP, 10 Å phase), nominally 
Mg3Si4O10(OH)2∙xH2O, can exist in the low-temperature “dehy-
dration gap” between the serpentine and phase A stability curves 
(Fig. 1). The corresponding succession of hydrous phases ser-
pentine → 10 Å phase → phase A, where 10 Å phase acts as an 
intermediate water carrier, can retain about 25% of the initially 
subducted H2O of the serpentinized peridotite even during “nor-
mal” subduction (Schmidt and Poli 2014).

The stability field of 10 Å phase is poorly understood. The 
position of the 10 Å phase dehydration curve, however, is par-
ticularly important because it limits the range of subduction 
geotherms where H2O can be retained in a slab via serpentine → 
10 Å phase → phase A transformations. According to equilibrium 
experiments of Pawley et al. (2011), the dehydration reaction 10 
Å phase → enstatite + coesite + H2O occurs at 690 °C at pres-
sures below 7.5 GPa. In several studies 10 Å phase was obtained 
at higher temperatures of 700–750 °C (Yamamoto and Akimoto 
1977; Pawley and Wood 1995; Dvir et al. 2011), see Figure 1. 
The latter studies, however, were synthesis experiments and can 
therefore not be considered as equilibrium. Most significantly, 
nanoinclusions of 10 Å phase have been found in mantle olivine 
(Khisina and Wirth 2008), which strongly supports the possibility 
of its occurrence in nature.

The structure of 10 Å phase is very similar to that of trioc-
tahedral mica with 2:1 tetrahedral-octahedral layers parallel to 
(001), the interlayer space being occupied by H2O molecules 
(Comodi 2005). The H2O stoichiometry of 10 Å phase is not well 
constrained and varies, according to different estimations, from 
0.6 to 2 H2O molecules per formula unit (Sclar and Carrison 1966; 
Yamamoto and Akimoto 1977; Bauer and Sclar 1981; Wunder and 
Schreyer 1992). However, recent structural and thermodynamic 
studies (Comodi 2005; Pawley et al. 2010, 2011) suggest 1 H2O 
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