American Mineralogist, Volume 100, pages 2242-2245, 2015

High-pressure compressibility and phase stability of Mn-dolomite (kutnohorite) SARAH E.M. PALAICH^{1,*}, ROBERT A. HEFFERN¹, ANKE WATENPHUL¹, JASON KNIGHT² AND ABBY KAVNER¹

¹Department of Earth, Planetary and Space Sciences, University of California, Los Angeles, California 90095, U.S.A. ²Advanced Light Source, Lawrence Berkeley Laboratory, Berkeley, California 94720, U.S.A.

ABSTRACT

We measured the bulk modulus and phase stability of a natural Mn-dolomite, kutnohorite, to 19 GPa. At room temperature, kutnohorite is stable in the rhombohedral dolomite phase up to 19 GPa, with an isothermal bulk modulus of 85(6) GPa (K' = 4). The compressibility of kutnohorite is found to match well with both single and double carbonate trends with respect to bulk modulus and unit-cell volume. The thermoelastic properties measured in this study show that the Mn dolomite end-member fits well with the systematic of all the rhombohedral carbonates, both calcite (single carbonate) and dolomite (double carbonate) type.

Keywords: Carbonate, high-pressure, X-ray diffraction, dolomite, compressibility