American Mineralogist, Volume 100, pages 1762–1777, 2015

SPECIAL COLLECTION: PERSPECTIVES ON ORIGINS AND EVOLUTION OF CRUSTAL MAGMAS

Field and model constraints on silicic melt segregation by compaction/hindered settling: The role of water and its effect on latent heat release[†]

CIN-TY A. LEE^{1,*}, DOUGLAS M. MORTON², MICHAEL J. FARNER¹ AND PRANABENDU MOITRA¹

¹Department of Earth Science, MS-126, Rice University, 6100 Main Street, Houston, Texas 77005, U.S.A. ²Department of Earth Sciences and United States Geological Survey, 900 University Avenue, University of California, Riverside, California 92521, U.S.A.

ABSTRACT

To investigate how large volumes of silicic melts segregate to form granitic plutons, we conducted a case study of a zoned pluton, in which SiO₂ increases from intermediate (69 wt%) to highly silicic compositions (74 wt%) toward the contact with metasedimentary wallrock in the outer 25 m of the pluton. All other major, minor, and trace elements vary systematically with SiO₂ and indicate that outward increasing SiO₂ is due to a decrease in mafic elements and minerals. Whole-rock oxygen isotopes and elemental variation diagrams do not support mixing with wallrock as an explanation for the Si-rich boundary layer. Instead, mafic enclaves, which are common in the pluton, also decrease in abundance in the outer 25 m of the pluton, suggesting a mechanical origin for the Si-rich boundary layer. The coupling of mechanical and geochemical boundary layers, combined with geochemical modeling, indicate that the silica-rich, enclave-poor boundary layer formed by hindered settling or compaction of a crystal-rich (crystal fractions >60%) magmatic mush. Segregation of melts at high crystal fraction is known to be a slow process. However, petrography and Zr-based thermometry indicate that the residual Si-rich liquids were water-saturated. Water decreases melt viscosity, which helps expulsion, but equally importantly, water also delays much of the latent heat release to late in the thermal and crystallization history of a cooling magma. We show that the higher the water content, the longer the time interval over which a magma chamber resides at the stage when water-saturated, high-silica liquids form, allowing sufficient time for exfiltration of silicic liquids before the magma body freezes.

Keywords: Granite, rhyolite, batholith, pluton, cumulate, compaction, settling, xenolith