SPINELS RENAISSANCE—PAST, PRESENT, AND FUTURE

The elasticity of MgAl₂O₄-MnAl₂O₄ spinels by Brillouin scattering and an empirical approach for bulk modulus prediction[†]

ENRICO BRUSCHINI^{1,*}, SERGIO SPEZIALE², GIOVANNI B. ANDREOZZI¹, FERDINANDO BOSI^{1,3} AND ULF HÅLENIUS³

¹Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro, 5, I-00185 Rome, Italy ²Helmholtz Centre Potsdam–GFZ German Research Center for Geosciences GFZ, Telegrafenberg, 14473 Potsdam, Germany ³Department of Geosciences, Swedish Museum of Natural History, Box 50007, SE-10405 Stockholm, Sweden

ABSTRACT

The elastic constants C_{ij} of a set of synthetic single crystals belonging to the join MgAl₂O₄–MnAl₂O₄ (spinel sensu stricto–galaxite) were determined by Brillouin spectroscopy at ambient conditions. The C_{11} component tends to remain constant for Mg-rich compositions ($X_{Mn} < 0.5$) and decreases in Mn-rich compositions, whereas C_{12} increases and C_{44} decreases almost linearly from MgAl₂O₄ to MnAl₂O₄. The bulk modulus K_S is weakly dependent upon Mg-Mn substitution within experimental uncertainties, whereas the shear modulus *G* decreases with increasing Mn²⁺ content. For MnAl₂O₄, $C_{11} = 271.3(1.3)$ GPa, $C_{12} = 164.8(1.3)$ GPa, $C_{44} = 124.9(5)$ GPa, $K_S = 200(1)$ GPa, and G = 88.7(5) GPa.

Based on the "polyhedral approach," we developed a model that describes the crystal bulk moduli of the MgAl₂O₄–MnAl₂O₄ spinels in terms of their cation distribution and the polyhedral bulk moduli of the different cations. We refined a set of values for the effective polyhedral bulk modulus of Mg, Mn²⁺, and Al in tetrahedral (T) and octahedral (M) sites, which span from 153 to 270 GPa ranking as follows: $K_{Mn}^{M} < K_{Mg}^{M} < K_{Mn}^{M} < K_{Al}^{M} < K_{Al}^{M}$.

Crystal bulk modulus was perfectly reproduced within 0.1% for all Mn^{2+} -bearing samples. We also found a high linear correlation between the effective polyhedral bulk modulus and the ionic potential, IP, of the coordinating cations: K/(GPa) = 20(2) IP + 108(10) (where *i* indicates the cation and *j* the polyhedral site). We tested this simple correlation by calculating the specific effective polyhedral bulk modulus for several spinel compositions. The success of our simple correlation in modeling the bulk modulus of spinels outside the MgAl₂O₄–MnAl₂O₄ system is encouraging, and suggests that the relationships between chemical composition, cation distribution and elastic properties in spinel-structured minerals and materials can indeed be expressed by relatively simple models.

Keywords: Spinels, galaxite, elasticity, Brillouin scattering, cation distribution, crystal chemistry