Chlorine-hydroxyl diffusion in pargasitic amphibole

WEN SU^{1,*}, DON R. BAKER², LUPING PU³, LIPING BAI², XIN LIU¹ AND CEDRICK O'SHAUGHNESSY²

¹State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China ²Earth and Planetary Sciences, GEOTOP-UQAM-McGill Research Centre, McGill University, 3450 rue University, Montreal, Quebec H3A OE8, Canada ³Guilin University of Technology, Guilin 541004, China

ABSTRACT

Chlorine-hydroxyl diffusion was measured in pargasitic amphibole from Yunnan province, China at 1.0 GPa, 625 to 800 °C. Experiments were performed by immersing unoriented crystals in waterbearing NaCl in a piston cylinder for durations from 100 to 454 h. Diffusion profiles were on the order of greater than tens of micrometers in length, and electron microprobe analysis allow us to extract semi-quantitative diffusivities from these experiments. The preliminary diffusion coefficients for chlorine in amphibole in the water-bearing experiments are 2.6×10^{-16} m²/s at 625 °C, 4.9×10^{-16} m²/s at 650 °C, 7.6×10^{-16} m²/s at 700 °C, 1.8×10^{-15} m²/s at 750 °C, 2.8×10^{-15} m²/s at 800 °C. For temperatures between 625 and 800 °C, the Arrhenius relation for chlorine-hydroxyl diffusion has an activation energy of 106.6 ± 7.8 kJ/K mol and a D_0 of 4.53 (+7.3, -2.8) $\times 10^{-10}$ m²/s. Our measurements need to better investigate this possibility.

Keywords: Diffusion, chlorine-hydroxyl, pargasitic amphibole, crystal-chemistry, high temperature and pressure