The system Na₂CO₃-FeCO₃ at 6 GPa and its relation to the system Na₂CO₃-FeCO₃-MgCO₃

ANTON SHATSKIY^{1,2,*}, SERGEY V. RASHCHENKO^{1,2}, EIJI OHTANI^{1,3}, KONSTANTIN D. LITASOV^{1,2}, MIKHAIL V. KHLESTOV¹, YURI M. BORZDOV^{1,2}, IGOR N. KUPRIYANOV^{1,2}, IGOR S. SHARYGIN^{1,2} AND YURI N. PALYANOV^{1,2}

¹V.S. Sobolev Institute of Geology and Mineralogy, Russian Academy of Science, Siberian Branch, Koptyuga pr. 3, Novosibirsk 630090, Russia ²Novosibirsk State University, Novosibirsk 630090, Russia ³Department of Earth and Planetary Material Science, Tohoku University, Sendai 980-8578, Japan

ABSTRACT

The phase relations in the Na₂CO₃-(Fe_{0.87}Mn_{0.06}Mg_{0.07})CO₃ system have been studied in Kawai-type multi-anvil experiments using graphite capsules at 6.0 GPa and 900–1400 °C. Subsolidus assemblages comprise the stability fields of Na₂CO₃ + Na₂Fe(CO₃)₂ and Na₂Fe(CO₃)₂ + siderite with the transition boundary at $X(Na_2CO_3) = 50$ mol%. Intermediate Na₂Fe(CO₃)₂ compound has rhombohedral $R\overline{3}$ eitelite structure with cell parameters a = 4.9712(16), c = 16.569(4) Å, V = 354.61(22). The Na₂CO₃-Na₂Fe(CO₃)₂ eutectic is established at 1000 °C and 66 mol% Na₂CO₃. Na₂Fe(CO₃)₂ disappears between 1000 and 1100 °C via incongruent melting to siderite and a liquid containing about 55 mol% Na₂CO₃. Siderite remains a subliquidus phase at 1400 °C at $X(Na_2CO_3) \leq 30$ mol%.

The ternary Na₂CO₃-FeCO₃-MgCO₃ system can be built up from the corresponding binary systems: two systems with intermediate Na₂(Mg,Fe)(CO₃)₂ phase, which melts congruently at the Mg-rich side and incongruently at the Fe-rich side, and the (Mg,Fe)CO₃ system with complete solid solution. The phase relations suggest that the maximum contribution of FeCO₃ component into the lowering solidus temperatures of Na-bearing carbonated mantle domains could not exceed several tens of degrees Celsius.

Keywords: Natrite, siderite, eitelite, high-pressure experiment, carbonatite, phase relations, mantle, melting