RH buffer salt	Reported equilibrium RH (%) at different T					
	0 °C	5 °C	20 °C	25 °C	50 °C	55 °C
LiCl	11.23 ± 0.54	11.26 ± 0.47	11.31 ± 0.31	11.30 ± 0.27	11.10 ± 0.22	11.03 ± 0.23
MgCl ₂	33.66 ± 0.33	33.60 ± 0.28	33.07 ± 0.18	32.78 ± 0.16	30.54 ± 0.14	29.93 ± 0.16
$K_2(CO_3)_2$	43.13 ± 0.66	43.13 ± 0.50	43.16 ± 0.33	43.16 ± 0.39	n/a	n/a
$Mg(NO_3)_2$	60.35 ± 0.55	58.86 ± 0.43	54.38 ± 0.28	52.89 ± 0.22	45.44 ± 0.60	n/a
NH ₄ NO ₃	n/a	n/a	66.9*	62.7*	48.1*	n/a
NaNO ₃	n/a	78.57 ± 0.52	75.36 ± 0.35	74.25 ± 0.32	69.04 ± 0.42	68.15 ± 0.49
NaCl	75.51 ± 0.34	75.65 ± 0.27	75.47 ±0.14	75.29 ± 0.12	74.43 ± 0.19	74.41 ± 0.24
KCl	88.61 ± 0.53	87.67 ± 0.45	85.11 ± 0.29	84.34 ± 0.26	81.20 ± 0.31	80.70 ± 0.35
	RH measured in th	nis study (±1.5% err	cor)			
LiCl	11.4 at	1.5 °C	11.4 at	23.5 °C	11.3 at	51.0 °C
MgCl ₂	34.0 at	1.7 °C	33.7 at	22.8 °C	31.1 at	51.5 °C
$K_2(CO_3)_2$	43.3 at	1.6 °C	42.9 at	24.3 °C	42.4 at	52.1 °C
$Mg(NO_3)_2$	57.4 at	1.7 °C	53.0 at	22.4 °C	45.9 at	51.8 °C
NH ₄ NO ₃	73.0 at	1.9 °C	61.7 at	23.8 °C	46.8 at	51.4 °C
NaNO ₃	n/	/a	n	/a	69.0 at	51.0 °C
NaCl	74.9 at	2.0 °C	74.3 at	22.8 °C	73.9 at	51.8 °C
KCl	n	/a	84.0 at	23.0 °C	n	/a
Drierite ^{\$}	0.0 at	1.0 °C	0.0 at 2	22.1 °C	0.0 at 5	50.9 °C

Table S1. Humidity buffers used in this study

* data were adapted from (Adams and Merz, 1929); others were from (Greenspan, 1977) ^{\$} drierite is essentially CaSO₄, with CoCl₂ as a moisture indicator.

Adams, J.R., and Merz, A.R. (1929) Hygroscopicity of fertilizer materials and mixtures. Industrial and Engineering Chemistry, 21, 305-307.

Greenspan, L. (1977) Humidity Fixed-Points of Binary Saturated Aqueous-Solutions. Journal of Research of the National Bureau of Standards Section a-Physics and Chemistry, 81(1), 89-96.

T(°C)	RH and time	Phase change
40	50%, 2 hrs; 40%, 2 hrs; 30%, 2 hrs;	Starting: Paracoquimbite
	20%, 2 hrs; 10%, 2 hrs; 4%, 7 hrs	No change
60	50%, 2 hrs; 40%, 2 hrs; 30%, 2 hrs;	No change
	20%, 2 hrs; 10%, 2 hrs; 4%, 2 hrs	
80	50%, 2 hrs; 40%, 2 hrs; 30%, 2 hrs;	Paracoquimbite decreased slightly
	20%, 2 hrs; 10%, 2 hrs; 3%, 2 hrs	$Fe_2(SO_4)_3 \cdot 5H_2O$ formed at 30% RH
		(Fig. 3.3)
80	3%, 2 hrs; 10%, 2 hrs;	Paracoquimbite decreased slightly
		$Fe_2(SO_4)_3 \cdot 5H_2O$ growth halted
80	20%, 2 hrs	$Fe_2(SO_4)_3 \cdot 5H_2O$ decreased slightly
		$Fe_2(SO_4)_3 \cdot 5H_2O$ continued to
		increase (Fig. 3.4)
80	30%, 2 hrs; 40%, 2 hrs; 50%, 2 hrs;	Paracoquimbite decreased
	60%, 2 hrs	Fe ₂ (SO ₄) ₃ · 5H ₂ O increased
80	70%, 2 hrs; 80%, 2 hrs; 70%, 3 hrs;	Paracoquimbite decreased slowly
	80%, 5 hrs	Fe ₂ (SO ₄) ₃ · 5H ₂ O increased slowly
80	70%, 6 hrs	Paracoquimbite diminished
		$Fe_2(SO_4)_3 \cdot 5H_2O$ remained (Fig. 3.4)
60	$80\% \rightarrow 10\%$, 10% RH change per	No change
	step, 3 hrs stay at each step	
60	4%, 3 hrs	No change
60	70%, 4 hrs; 75%, 7 hrs; 80%, 3 hrs	No change

Table S2. In situ RH-T experiment --- paracoquimbite -1

T(°C)	RH and time	Phase transformation
50	$80\% \rightarrow 10\%$, 10% RH change per	Starting: Paracoquimbite
	step, 2 hrs stay at each step	No change
50	5%, 2 hrs	No change
60	4%, 3 hrs	No change
70	3%, 3 hrs	No change
80	3%, 3 hrs	Paracoquimbite decreased
		(amorphization; Fig. 3.5)
80	10%, 3 hrs; 20%, 3 hrs	Paracoquimbite decreased
80	30%, 3 hrs; 40%, 3 hrs; 30%, 3 hrs	Paracoquimbite decreased
		$Fe_2(SO_4)_3 \cdot 5H_2O$ formed at 30% RH
80	20%, 3 hrs; 10%, 3 hrs; 1%, 3 hrs	Paracoquimbite decrease slightly
		$Fe_2(SO_4)_3 \cdot 5H_2O$ increase halted
60	$10\% \rightarrow 80\%$, 10% RH change per	No change
	step, 3 hrs stay at each step	
60	70%, 3 hrs; 60%, 3 hrs	No change
80	70%, 3 hrs; 80%, 3 hrs; 70%, 3 hrs	No change
80	60%, 3 hrs; 50%, 3 hrs; 40%, 7 hrs	Paracoquimbite decreased
		$Fe_2(SO_4)_3 \cdot 5H_2O$ increased

Table S3. In situ RH-T experiment --- paracoquimbite -2

T(°C)	RH and time	Phase change
50	30%, 2 hrs; 20%, 2 hrs; 10%, 2 hrs;	Paracoquimbite and rhomboclase
	1%, 4 hrs; 20%, 2 hrs; 30%, 2 hrs	No change
50	40%, 2 hrs; 50%, 2 hrs; 60%, 2 hrs;	Paracoquimbite remained no change
	70%, 3 hrs	Rhomboclase diminished at 60%
		(deliquescence)

Table S4. In situ RH-T experiment --- paracoquimbite and rhomboclase

T(°C)	RH and time	Phase change
30	10%, 2 hrs; 20%, 2 hrs; 30%, 2 hrs;	Paracoquimbite and kornelite
	40%, 2 hrs; 50%, 2 hrs; 60%, 2 hrs	No change
29	68%, 2 hrs; 70%, 4 hrs	Paracoquimbite remained no change
		Kornelite diminished at 70%
		(deliquescence)

Table S5. In situ RH-T experiment --- paracoquimbite and kornelite

T(°C)	RH and time	Phase change
26	60%, 2 hrs	Ferricopiapite and rhomboclase
		No change
26	65%, 2 hrs	Ferricopiapite remained no change
		Rhomboclase diminished
		(deliquescence) (Fig. 3.6)
26	70%, 2 hrs; 65%, 3 hrs; 60%, 3 hrs	Ferricopiapite remained no change
26	55%, 3 hrs	Ferricopiapite diminished
		Paracoquimbite formed
		(Fig. 3.7)
26	50%, 3 hrs; 45%, 3 hrs; 40%, 2 hrs;	No change, only paracoquimbite
	30%, 3 hrs	
26	60%, 1 hrs; 65%, 3 hrs; 70%, 3 hrs	No change
26	75%, 4 hrs; 80%, 3 hrs; 75%, 2 hrs;	No change
	70%, 2 hrs; 65%, 2 hrs	
28	80%, 2 hrs; 81%, 2 hrs	Paracoquimbite decreased slowly
		(deliquescence)
28	81%, 3 hrs; 84%, 2 hrs	Paracoquimbite decreased
26	75%, 3 hrs; 70%, 3 hrs	No change
26	65%, 3 hrs	Paracoquimbite increased
26	60%, 3 hrs; 55%, 3 hrs; 50%, 3 hrs	Paracoquimbite increased
50	30%, 2 hrs; 40%, 2 hrs; 50%, 2 hrs;	No change, still paracoquimbite
	60%, 2 hrs, 63%, 2 hrs	
50	70%, 6 hrs	Paracoquimbite decreased slowly
		(deliquescence)
50	75%, 6 hrs	Paracoquimbite diminished
50	70%, 2 hrs; 65%, 3 hrs	No change
50	60%, 4 hrs; 55%, 4 hrs; 50%, 4 hrs;	Ferricopiapite formed at 60% RH
	45%, 4 hrs; 40%, 20 hrs	Rhomboclase formed at 45% RH

Table S6. In situ RH-T experiment --- Ferricopiapite and rhomboclase -1

Figure S1. XRD patterns showing transformation of paracoquimbite-1 to $Fe_2(SO_4)_3 \cdot 5H_2O$ at 80 °C and RH 50% down to 3%. $Fe_2(SO_4)_3 \cdot 5H_2O$ (021) peak is observed at 30% RH (not easy to see here due to the plot scale). Several paracoquimbite peaks are marked with letter P and their Miller indices.

Figure S2. XRD patterns showing paracoquimbite transforming to $Fe_2(SO_4)_3 \cdot 5H_2O$ at 80 °C with increasing RH. $Fe_2(SO_4)_3 \cdot 5H_2O$ peaks are marked with their Miller indices. Paracoquimbite peaks are marked with letter P and the Miller indices. The pattern at the top was collected at 70% RH showing a complete transformation to $Fe_2(SO_4)_3 \cdot 5H_2O$.

Figure S3. XRD patterns showing the paracoquimbite-2 destabilized at 80 °C and 3% RH over 3 hours. Paracoquimbite peaks, marked with letter P and the indices, decrease in intensity from bottom to top. Due to preferred orientation effect induced by the sample preparation, reflections perpendicular to c axis is stronger than normal, e.g. P(006).

Figure S4. XRD patterns showing the deliquescence of rhomboclase and the retaining of ferricopiapite at 26 °C and 65% RH. Several peaks are marked with their Miller indices and the mineral name initial: R for rhomboclase; F for ferricopiapite.

Figure S5. XRD patterns showing the formation of paracoquimbite out of the wet ferricopiapite at 26 °C with deceasing RH. Some peaks are marked with their Miller indices and the mineral name initial: P for paracoquimbite; F for ferricopiapite.