Rare and Unusual Minerals from the Petaca Pegmatite District of New Mexico

Michael N. Spilde, Brian L. Salem, Steve Dubyk and William P. Moats

November 12, 2011

Why Study the Petaca District?

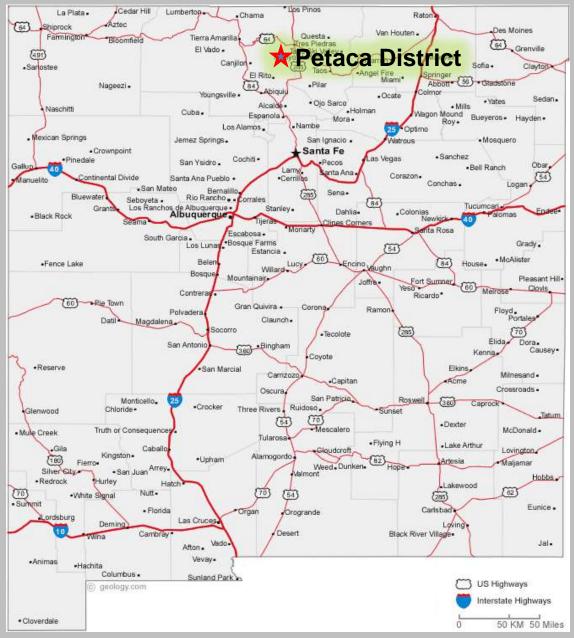
- Pegmatites host rare and unusual minerals containing rare earth elements (REE), U, and Th as essential constituents.
- District has not been studied in detail since the 1950s.
- REE content of the pegmatites not studied since 1988.
- Confirm minerals previously reported from the district. Emphasis on rare (Y,REE,Th,U)(Nb,Ta,Ti) oxides.
- Identify new minerals for the district.

Method of Study

- Locate suspect samples of rare minerals often using radiation detectors.
- Samples mounted in epoxy and polished for electron microprobe analysis.
- Samples analyzed using JEOL 8200 Superprobe at UNM Institute of Meteoritics.
- (Y,REE,Th,U)(Ta,Nb,Ti) oxides classified via principle component analysis (three-group statistical model).

Locating Rare Minerals Using Radiation Detection Equipment

Locating Rare Minerals Using Radiation Detection Equipment


Mining History of the Petaca Pegmatites

- Earliest workings (17th century) at Cribbenville may represent the first recovery of sheet mica in the U.S.A.
- Granitic pegmatites mined for sheet and scrap mica chiefly from 1870-1960s.
- 250,000 pounds of sheet and punch mica produced.
- 9,300 pounds of beryl; 12,000 pounds of Nb-Ta minerals (chiefly columbite-tantalite).
- Recent interest as a resource for REE-bearing minerals.

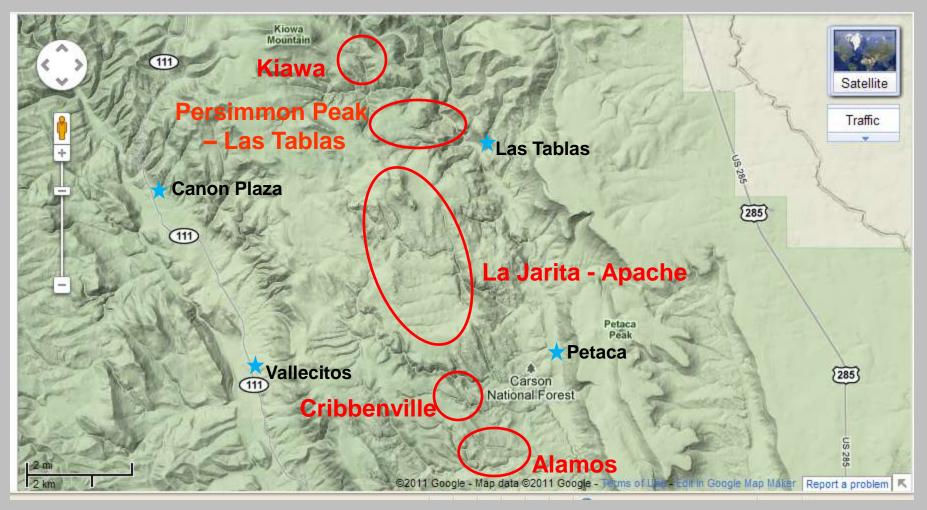
District Location and Geography

- Rugged, forested country within the Carson National Forest in Rio Arriba County.
- District extends from Kiawa Mountain on the north, southward to the village of La Madera.
- Elevations range from 6,400 to 8,400 ft.
- Accessed from unpaved roads between La Madera, Petaca, and Vallecitos.
- District encompasses approximately 60 square miles.

Location of the Petaca District

View of Petaca Looking West

View Looking East from Globe Mine, Alamos Group



Pegmatite Groups

Petaca pegmatites occur in 5 major geographical groups -- from north to south:

- Kiawa
- Persimmon Peak-Las Tablas
- La Jarita-Apache
- Cribbenville
- Alamos
- A few mined pegmatites are outliers.

Location of the Petaca District Pegmatite Groups

Petaca Pegmatites

- Intrude Precambrian metasedimentary and metavolcanic rocks of Vadito Group.
- Emplaced approximately 1,400 MA.
- Form dikes, sills, pods and irregular bodies.
- Pegmatites crop out for 75 to 1,430 ft in length, average width 30 to 35 ft.
- Rare element type.
- Precambrian host rocks locally covered by Cenozoic volcanic and volcaniclastic rocks.

Rare Element Pegmatites

Contain sufficient concentrations of rare elements to form mineral species that contain rare elements as essential constituents.

For example: (Li), Be, Bi, Nb, Ta, REE (such as Ce, La, Yb) in Monazite, Euxenite, Polycrase, Bismutite, and Beryl.

Composition of Petaca Pegmatites

- Granitic pegmatites composed chiefly of quartz, microcline (perthite), albite, and muscovite.
- Common accessory minerals: spessartine, fluorite, columbite-tantalite, monazite-(Ce), beryl, ilmenite and bismutite.
- (Y,REE,U,Th) (Nb,Ta,Ti) oxides, such as euxenite and polycrase, are rare.

Structure of Petaca Pegmatites

- Internally zoned:
 - Border Zone
 - Wall zone
 - One or more Intermediate Zones
 - Core
- Zones characterized by mineralogy, texture, or both.
- Replacement bodies and late-stage fracture fillings of albite and quartz are common.

Pegmatite Zones From Jahns, Mica Deposits of the Petaca District, NMBMMR Bulletin 25, 1946

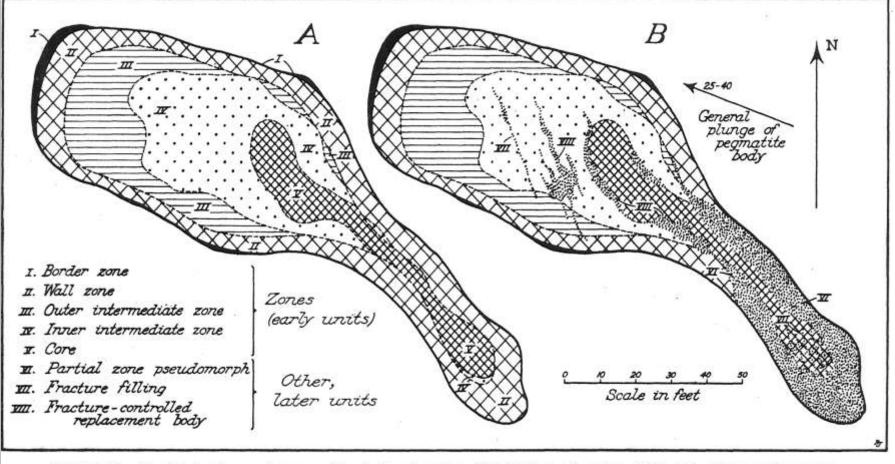


FIGURE 3. Idealized plans of pegmatite body showing distribution of zones (A) and other units superimposed on zones (B).

Zoned Pegmatite, Cribbenville Group

Pegmatite Textures

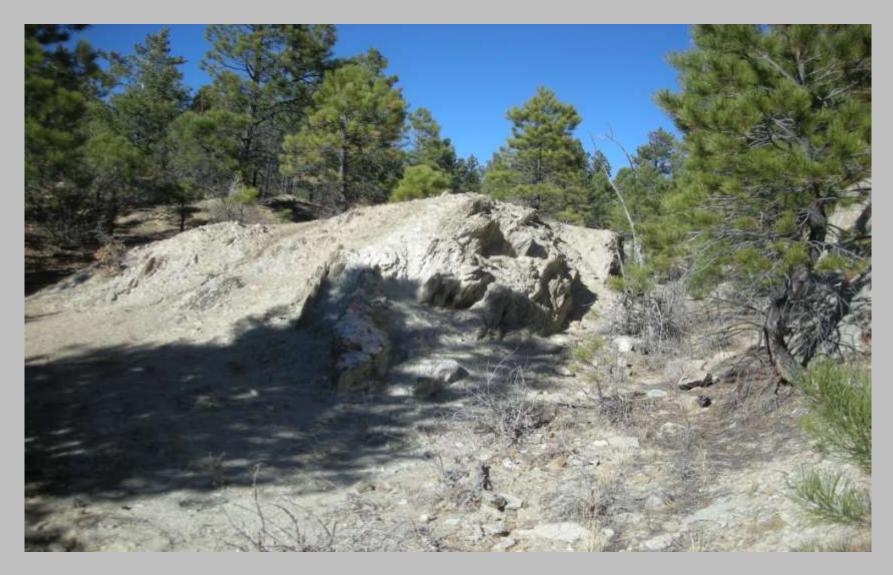
- Complex assemblage of fine to coarse or even giant crystals of minerals.
- Larger crystals usually found near central region (inner zones) of pegmatites.
- Crystals range from anhedral to euhedral in form.

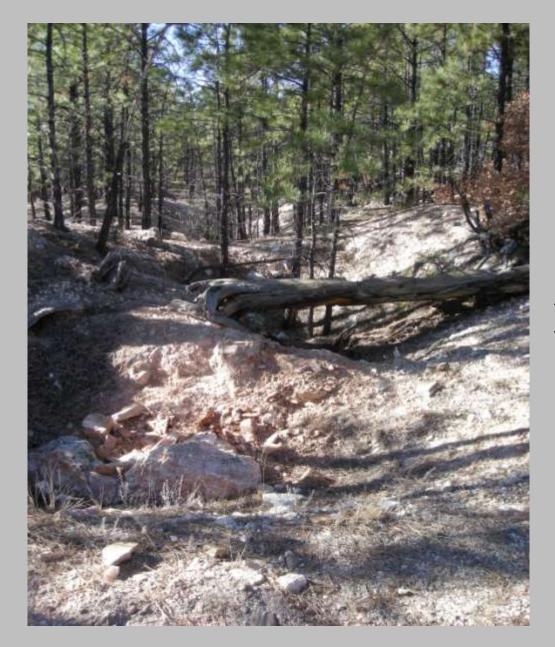
Large Muscovite Crystals, Keystone-Western Mine, La Jarita-Apache Group

Large Muscovite Crystals, Sandoval Mine, La Jarita-Apache Group

Large Microcline Crystals in Quartz, Mica Lode Mine, La Jarita-Apache Group

Anhedral Fluorite Mass Cut by Albite Veinlets, Globe Mine, Alamos Group


Mine Workings


Usually small open pits or trenches, some have collapsed shallow shafts.

Some larger mines have large open cuts and open underground workings (for example, the Coats, Cribbenville, and Globe mines).

However, many are difficult to find due to small size and vegetation overgrowth.

Navajo Mine, La Jarita-Apache Group

North Star Mine, La Jarita-Apache Group

Werner Mine, La Jarita-Apache Group

Carmelita Mine, Alamos Group

Hoyt Mine, Persimmon Peak-Las Tablas Group

Minerals of Special Interest

Rare minerals usually found in albite-rich pegmatite or fracture fillings in smoky quartz

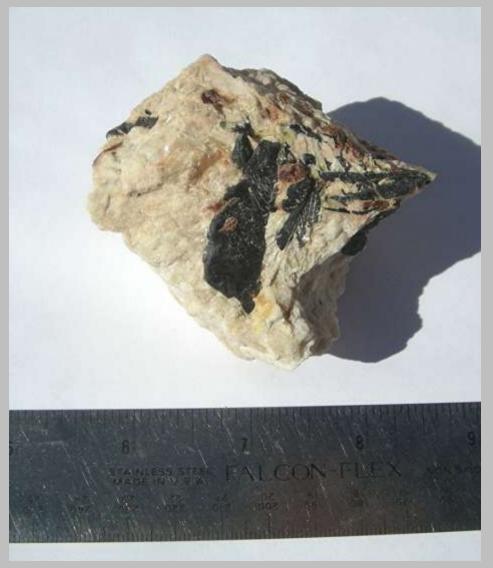
- (Y,REE,U,Th)(Nb,Ta,Ti) Oxides
- Monazite-(Ce): (Ce,La,Nd,Th)PO₄
- Columbite-Tantalite: (Fe,Mn)(Nb,Ta)₂O₆
- Beryl: Be₃Al₂Si₆O₁₈
- Bismutite: Bi₂O₂(CO₃)
- Amazonite (K-feldspar): (K,Na)(AlSi₃O₈)

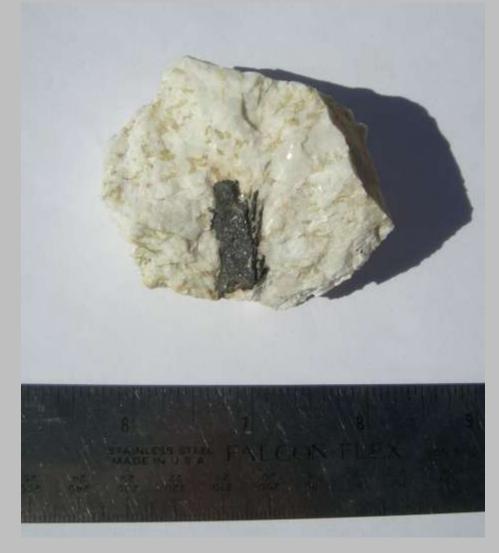
Beryl from Various Petaca Mines

Microcline (Variety Amazonite), Mica Lode Mine, La Jarita-Apache Group

Monazite-(Ce), Coats Mine, La Jarita-Apache Group

Monazite-(Ce), Persimmon Peak-Las Tablas Group


Monazite-(Ce), Persimmon Peak-Las Tablas Group


Monazite-(Ce), Persimmon Peak-Las Tablas Group

Columbite-Tantalite (Feather Type) Associated with Monazite-(Ce), Coats Mine, La Jarita-Apache Group

Columbite-Tantalite (Feather Type), Globe Mine, Alamos Group

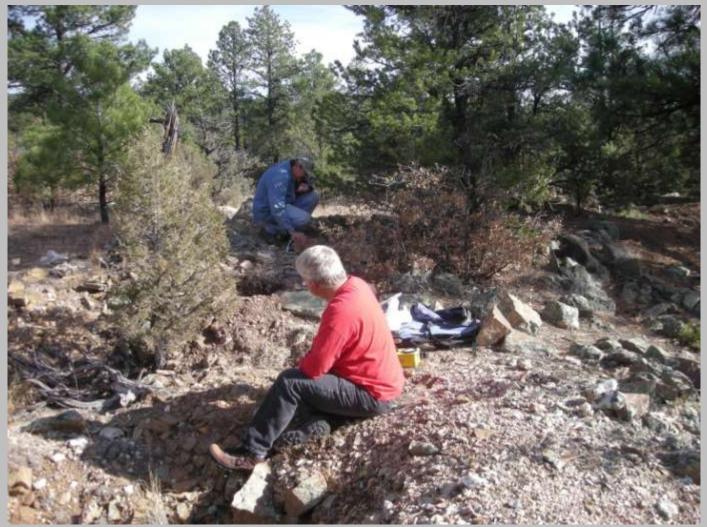
Columbite-Tantalite, Carmelita Mine, Alamos Group

Large Crystal of Columbite-Tantalite, Cribbenville Group

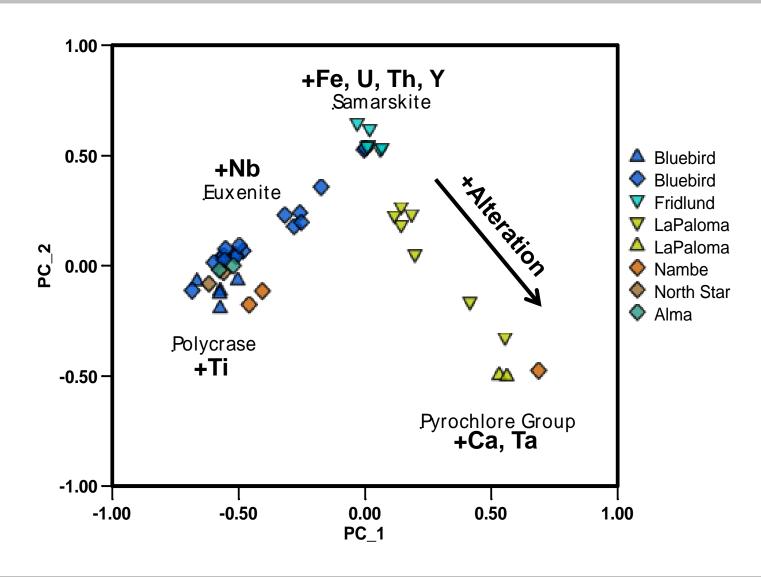
Another Large Columbite -Tantalite Crystal

Bismutite, Globe Mine, Alamos Group

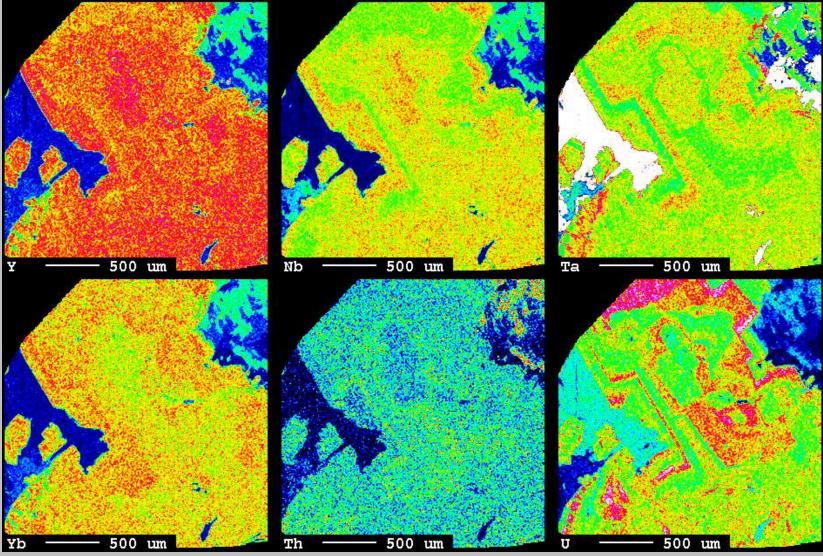
Bismutite Occurrence, Globe Mine, Alamos Group


Polycrase-(Y) (?) from Various Petaca Mines

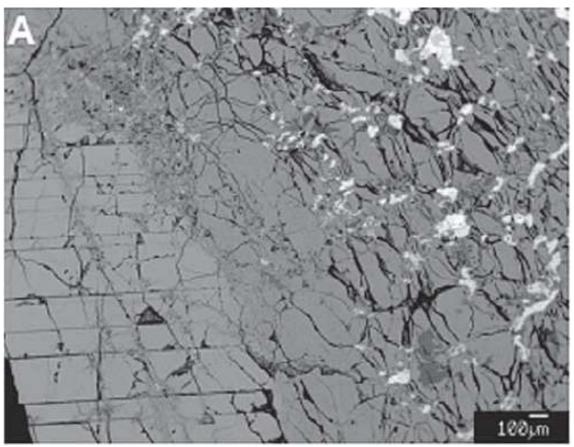
Polycrase-(Y), Bluebird Mine, La Jarita-Apache Group


Polycrase-(Y) Occurrence, Bluebird Mine, La Jarita-Apache Group

Suspect (Y,REE,U,Th)(Nb,Ta,Ti) Oxide, La Jarita-Apache Group



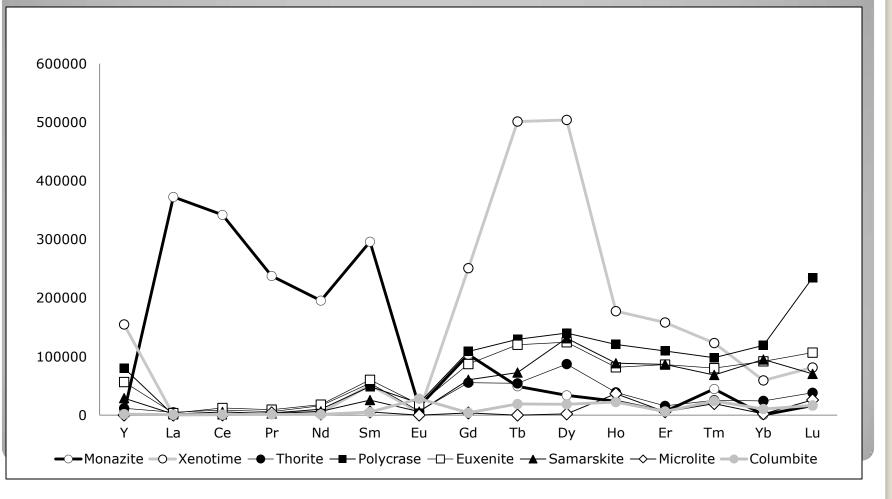
Plot of scores for Canonical Variables Using Three-Group Model of Principle Component Analysis



Complex Zoning within Polycrase-(Y) from the Bluebird Mine

Red – Orange – Yellow – Green – Blue: Highest to Lowest Concentration

Shattered Monazite due to Thorite Inclusions



(A) Thorite inclusions (white) in Coats monazite (medium gray). Compare cleavages in the unaltered monazite at the left with the shattered appearance in the inclusion-rich region on the right.

Radially Shattered Quartz due to Samarskite-(Y) (?) Crystal

Distribution of Chondrite-Normalized REE

New Minerals for Petaca and NM

- Polycrase-(Y) (cm-sized from Bluebird mine, new mineral for NM)
- Microlite (minute amounts as inclusions)
- Xenotime-(Y) (minute amounts as inclusions)
- Zircon (mm-sized crystals in a single specimen from La Paloma mine)
- Euxenite-(Y) (intergrown with Polycrase-(Y))
- Samarskite-(Y) (cm-sized)

Previously Reported (Y,REE,U,Th)(Nb,Ta,Ti) Oxides and Other Minerals and Current Status

- Euxenite confirmed as euxenite-(Y)
- Samarskite confirmed as samarskite-(Y)
- Thorite confirmed
- Gadolinite not confirmed
- Aeschynite not confirmed
- Fergusonite not confirmed

Conclusions Pegmatite Classification

Petaca Pegmatites are of the NYF-type (<u>N</u>iobium, <u>Y</u>ttrium and REE, and <u>F</u>luorine) because they contain:

- Y and Nb-bearing minerals
- Fluorite
- Amazonitic potassium-feldspar locally common

The study suggests that the pegmatites are associated with a nearby granitic pluton that is not exposed at the surface.

Conclusions

- New minerals for the District: Euxenite-(Y), Samarskite-(Y), Polycrase-(Y), Xenotime-(Y), Microlite, and Zircon.
- New mineral for New Mexico: Polycrase-(Y).
- Petaca pegmatites are NYF type.
- Investigation continues on (Y,REE,U,Th)(Nb,Ta,Ti) minerals.
- Samples from new locations await analysis.
- Bring attention to an overlooked rare element pegmatite field in New Mexico.

Acknowledgements

The authors thank:

- University of New Mexico, Institute of Meteoritics
- And thanks to Bessie –
 our reliable field vehicle

For More Information

Rare Earth Bearing-Minerals of the Petaca District, Rio Arriba County, New Mexico

Spilde et al, New Mexico Geological Society Guidebook, 62nd Field Conference, Geology of the Tusas Mountains – Ojo Caliente, 2011, p. 389 -398