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INTRODUCTION

A need for numerical simulations

Power generation plays an important role in global warming (Audoly et al. 2018) and although 
the use of nuclear power in the energetic mix can be seen as sustainable (Brook et al. 2014; 
Knapp and Pevec 2018), nuclear energy is debated in many countries (Meserve 2004; Cici 
et al. 2012). Over 50 years of nuclear energy and the use of radioactive material in nuclear 
research and in industrial, medical and other applications have left a legacy of different kinds of 
nuclear waste awaiting final disposal worldwide. To ensure very long-term isolation to protect 
the environment and ensure the safety of the future generations (Linsley and Fattah 1994; 
Hummel and Schneider 2005), geological disposal facilities (‘repositories’) are considered 
to be the most suitable solution. When the activity in waste is relatively low and half-lives 
are less than about 30 a, i.e. for intermediate- and low-level waste, near-surface disposal is 
often considered to be adequate. For waste with a higher activity and/or longer life, i.e. for 
high-level long-lived waste (HLLW), the concept of geological disposal of radioactive waste 
emerged in the late 1950s (Hess 1957; De Marsily et al. 1977; Apted and Ahn 2010; Chapman 
and Hooper 2012). Since then, many international research and development programs have 
been launched to study deep argillaceous formations, granitic rocks and salt formations as 
potential host rocks for radioactive waste disposal (Landais and Aranyossy 2011)(Fig. 1). 
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Based on their outcomes, there is a broad technical consensus that geologic disposal will 
meet the safety requirement to minimize safety and environmental impacts, now and far into 
the future (Grambow and Bretesché 2014), meaning a hundred thousand to million years 
into the future. Demonstrating safety over time comparable to geological timescales relies 
on a rigorous, complex and iterative scientific approach referred to as “long-term behavior 
science” that is based upon three pillars: experiments, modeling, and natural/archaeological 
analogs (Poinssot and Gin 2012; Dillmann et al. 2014; Alexander et al. 2015; Martin et al. 
2016). Today, numerical models are ubiquitous tools that can be used either for long-term 
predictive evaluation of solute transport or design optimization of nuclear waste geologic 
repositories (Tsang et al. 1994; Johnson et al. 2017). They are also used to make predictive 
multi-physical assessments within a timeframe and space scale larger than experiments can 
cover (Bredehoeft 2003; Bildstein and Claret 2015). These numerical simulations require 
integrating, in a consistent framework, an increasing amount of scientific knowledge (Geckeis 
and Rabung 2008) acquired for each of the individual components of such repositories. This 
implies considering couplings of different non-linear processes, applied to a wide range of 
materials with contrasting properties as a function of time and space in ever-larger systems. 
Reactive transport modeling (Yeh and Tripathi 1989) has established itself as a powerful, 
versatile and essential tool for tackling the complexity of the multi-space and temporal-scale 
issues engineers and scientists face. This includes describing the evolution of the components 
constituting the so-called “multiple-barrier system” between the waste matrix and the 
biosphere (Apted and Ahn 2010; Chapman and Hooper 2012). Predicting how (i) the waste 
matrices (e.g., glass, bitumen, cement), (ii) waste overpacks (e.g., metal canisters, concrete), 
(iii) engineered barriers such as bentonite (Sellin and Leupin 2013), (iv) and natural geological 
barriers will evolve with time in response to physical and chemical perturbations is of prime 
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Figure 1. Schematic view of repository concepts/disposal cells in clay host rock a) without concrete 
(modified from Andra 2005), b) with concrete Supercontainer (modified from Ondraf/Niras 2009), 
and c) in granitic host-rock (modified from SKB 2006).
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importance for performance and safety evaluations of the repository concepts. This chapter 
summarizes recent improvements and discusses future challenges in the application of reactive 
transport to deep geological nuclear waste disposal focusing on disposal in clay formations.

A need to consider coupled processes

The long-term safety of geological disposal is based on the multi-barrier concept consisting 
of a combination of natural (host rocks) and engineered (waste form, package, backfi ll and 
seal materials) barriers that will have mutual interactions during the lifetime of the repository. 
Predicting the effects of these interactions entails understanding, evaluating and prioritizing the 
pertinent thermal, hydraulic, mechanical, chemical and radiological (THMCR) processes (Fig. 2). 

Thermal effects arise principally from heat generated by waste that is both dissipated in the 
over-packs and the geological medium, and evacuated by air ventilation (Benet et al. 2014a).The 
hydraulic stage and gas-related effects are a combination of repository resaturation and of gas 
generation. (e.g., H2 production by anaerobic corrosion of metals or through water radiolysis). 
The hydraulic transient is also impacted upon by the ventilation systems used during the 
operation period to ensure adequate gallery aeration for the workers and for the infrastructure. 
It will create heat and vapor exchanges with walls and storage packages, pressure variations and 
evaporation, and sometimes vapor condensation (Benet et al. 2014b). Mechanical effects can 
be induced during construction and excavation of underground drifts that will cause both tunnel 
convergence (Lisjak et al. 2015) and damage to the rock in the vicinity of the opening, with 
the formation of an associated excavated disturbed zone (EDZ) (Armand et al. 2014). There 
are also numerous chemical effects as foreign materials like borosilicate glasses (Poinssot et 
al. 2010; Gin et al. 2015), metallic canisters (King and Shoesmith 2010), and concrete (Alonso 
et al. 2010) that are introduced into the repository will induce chemical gradients across the 
repository components (Nagra 2002; Andra 2005, 2009). Because of these chemical gradients, 
perturbations such as pH and redox changes may alter the performance of the barriers over time 

Glass/SF assembly dissolution 

Reducing conditionsOxidizing conditions

years

Figure 2. Phenomenological evolution of the repository in high-level long-lived waste (HLLW) and intermediate-
level long-lived waste (ILLW) quarters showing timescale of THMC processes (modifi ed from Andra 2005).
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(Bildstein and Claret 2015). Last but not least, radiological effects also exist in association with 
the radiological inventory of waste independently from the technological solution, retreatment 
or direct disposal of irradiated fuels (Odorowski et al. 2017) or after reprocessing (Gong et al. 
1999; Berner et al. 2013). Moreover, an additional challenge arises because all of the THMC 
phenomena described above are coupled. The coupling of physical and chemical phenomena 
can be either weak or strong and may vary in time and space scales. As an illustration, excavation 
induces a mechanical rock effect producing an EDZ. The change in rock microstructure in the 
EDZ compared to pristine rock might impact radionuclide (RN) transport parameters if this 
damage zone acts as a preferential pathway for fluid flow and RN transport. However, issues 
are more complicated as the EDZ can heal and seal itself depending on hydraulic conditions 
(Thatcher et al. 2016). Another example of a coupled process is the evolution of redox conditions, 
a key parameter for RN solubility (Duro et al. 2014) which can be modified in connection with 
hydraulic and mechanical process. The oxidation event that will also occur in the repository 
near field (Matray et al. 2007; Craen et al. 2008; Vinsot et al. 2013; De Windt et al. 2014; 
Vinsot et al. 2014) as result of excavation and ventilation will change redox conditions. These 
conditions could also been modified if radiological effects are considered. The radiolysis effects 
of water under alpha irradiation simultaneously producing oxidizing species (e.g., hydrogen 
peroxide), and reducing species like hydrogen might play a role when competing with redox 
active species from the ambient environment (Odorowski et al. 2017). Many other examples 
of features and processes and their relevance in performance assessment and safety cases are 
given by (Bernier et al. 2017), including microbiological effects. These combined processes 
may be detrimental or favorable to the overall performance of a repository system over time. 
Since the combinations will occur on time-scales that are not accessible to experimentation, 
we must develop modeling approaches that can help to predict how barriers will evolve in 
time and space (Claret et al. 2018b). Reactive transport modeling is probably one of the most 
efficient techniques used to account for and quantify the complexity of coupling processes over 
a long period of time. Many codes exist (see Steefel et al. 2015b for a recent review) and to our 
knowledge, none of them are able to integrate all coupled THMCR effects. However, since the 
34th volume of Reviews in Mineralogy (dedicated to reactive transport in porous media) was 
published about 20 years ago, numerical codes have continuously improved and are capable of 
representing more and more complex situations. Active topics of research dealing with RTM 
include the development of pore scale and hybrid, or multiple continua, models to capture the 
scale dependence of coupled reactive transport processes (Steefel et al. 2005). In this chapter, 
most of the reviewed studies that are described are based on continuum models (Lichtner 1996), 
although other kinds of approaches will be addressed at the end.

REACTIVE TRANSPORT MODELING

Governing equations

The reactive transport constitutive equations rely on the description of the porous medium 
of interest (e.g., one of the component of the multi-barrier system) at the continuum scale, with 
respect to its macroscopically measurable properties such as permeability, dispersivity and 
diffusability (Steefel et al. 2014, 2015b). In this framework, a generic equation for advective/
dispersive transport in the liquid phase coupled to bio-geochemical reactions can be written:
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where f is the porosity (m3
void·m−3

medium), SL is the liquid saturation (unitless), Øi (mol·m−3
water) 

is the total concentration term that integrates the distribution between primary species (with 

concentration Ci) and secondary species (
j
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� ), Di
* �is the diffusion coefficient for species i 

in the porous media (m2·s−1), q is the volumetric (or Darcy flux) of water (m3
water·m−2

medium·s−1), 
and Rr, Rm, Rs, and Rl are the aqueous phase, mineral, surface, and gas reactions (mol·m3

medium·s−1) 
respectively. vji is the number of moles of component i in one mole of secondary species j. vik with 
k = r, m or l is the number of moles of component i in one mole of phase k.

These equations can be expanded to consider (i) transport in phases other than the liquid (e.g., 
gases), (ii) a dispersion term, or (iii) the Nernst–Planck Equation, instead of Fick’s Equation, 
to model diffusional transport. A comprehensive description of these equations can be found 
in Steefel et al. (2015b). Recently, the significance of the parameters in Equations (1) and (2), 
their relationship in case of mutual dependence (e.g., diffusion and saturation permeability 
and saturation) and the way they can be approximated using different empirical or based on 
theory laws have been reviewed (Claret et al. 2018b). Therefore, it will not be detailed again 
here. Equation (1) also highlights the fact that a porosity has to be defined for the considered 
materials. However, some of them (e.g., steel and other metals, glass) are not porous materials, 
and, unfortunately, reactive transport models are, by definition and according to Equation (1), 
not suited to include non-porous media (Bildstein et al. 2007; Claret et al. 2018b). To unravel 
this problem, the volume clearance that exists at the interface between the canister or the glass 
and the surrounding material, also known as the “technological gap”, is often included in the 
numerical cells that represent these materials.

The critical need for thermodynamic databases

Inherently, to model reactivity and couple it with transport, geochemical databases are 
needed. To illustrate this point, let us consider the transport of contaminants in a repository 
and its relationship with geochemistry. Speciation of the considered element will be a key 
parameter controlling the species distribution among the different phases and their solubility 
limits. While the solute species can diffuse with the porewater through the barriers, their 
precipitation represents an appreciable retardation mechanism (Wanner 2007). Speciation 
also controls sorption processes that can induce retardation mechanism for transport (Grenthe 
1991; Grambow 2008). Nonetheless, it is not only a question of speciation. Transport is 
also governed by porosity change, and this is why thermodynamic databases should also 
account for minerals that constitute the barriers and secondary minerals that are able to 
precipitate when different barriers are in contact. In the field of nuclear energy, database 
comprehensiveness and consistency are key issues that have been initiated by Nuclear Energy 
Agencies and later prioritized at the national level (see Ragoussi and Costa 2019 for a review). 
In addition, the pivotal importance of databases for RTM calculation has recently been the 
focus of a special issue of Applied Geochemistry (Kulik et al. 2015). Within the framework of 
national radioactive waste disposal projects, database development has focused on consistent 
data for actinides, lanthanides, and chemotoxics, among other potential contaminants. When 
modeling disposal conditions, there is also a need to describe the evolution of the materials 
constituting the barriers. This research effort combines new thermodynamic data acquisition, 
especially for clay minerals (Gailhanou et al. 2007, 2009, 2012, 2013, 2017; Blanc et al. 
2015a) and cement phases (Roosz et al. 2018), critical data selection for repository materials 
such as cement phases (Blanc et al. 2010; Walker et al. 2016; Lothenbach et al. 2019) and 
how to evaluate their capacity to describe interactions between materials (Blanc et al. 2015a). 
In addition, kinetic databases with kinetic rate parameters are being built (Marty et al. 2015a), 
as well as a sorption database (Brendler et al. 2003). An important constraint for kinetic rate 
parameters is consistency with the associated thermodynamic database for stoichiometry and 
solubility values, so that we can calculate how rates depend on saturation states.
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Modeling materials and reactive interfaces

Studies on deep geological storage show that most of the physical and chemical reactivity will 
be concentrated close to the interface between the different materials. A first challenge therefore 
consists of predicting the extent of the alteration and the distance at which the perturbations will 
progress into the barriers and, in case of failure, into the waste matrices. Another challenge is to 
predict the evolution of the material properties in these barriers resulting from their alteration, 
and to assess the impact on the overall performance and safety of the system.

A non-exhaustive list of interfaces is given in Table 1 with a description of their occurrence 
in different disposal concepts including clay formations (e.g., in Belgium, France, Spain, and 
Switzerland) and crystalline host rocks (note that bentonite is used as a barrier between the 
containers and granite in this case, e.g., in Canada, Spain, and Switzerland). Another degree 
of complexity is added in HLLW repository concepts from Sweden and Finland where the 
use of copper containers is envisaged, as well as in France where a bentonitic cement may be 
emplaced at the extrados of the steel liner to avoid early corrosion in acidic conditions. 

Concerning waste matrices, only the specific behavior of vitrified waste (glass) will be 
detailed in this chapter. For the alteration of spent fuel (SF), the authors refer the reader to the 
recent review of these aspects by (Ewing 2015). Waste matrices for ILLW per se are not detailed 
in this chapter, but most of the conclusions will be applicable to cementitious and metallic waste 
types. For bituminous and organic waste, the authors refer the reader to the modeling work of 
Sercombe et al. (2006), von Schenck and Källström (2014), and De Windt et al. (2015).

The direct interaction of materials with groundwater is not treated specifically in this 
chapter, even though the authors acknowledge that many interesting studies related to waste 
disposal in fractured hard rocks, where this issue is particularly relevant, have been conducted. In 
the disposal concepts that rely upon a chemical buffer of high pH (mainly ILLW), the issue of the 
interaction of groundwater with cement/concrete has been addressed (see (Wilson et al. 2018) 
for a recent review). RTM studies of cement-groundwater interactions have been reported with 
results concerning pH evolution, and chemical and mechanical degradation of concrete barriers 
(Höglund 2001, 2013; Bamforth et al. 2012; Cronstrand 2014; Wilson et al. 2018). In HLW 
disposal concepts, the bentonite buffer surrounding waste packages will evolve with time due to 
progressive reaction with saturating ambient groundwater, including ion exchange, dissolution-
precipitation of accessory (gypsum, halite quartz, calcite) and clay minerals potentially affecting 
properties such as the hydraulic conductivity and the swelling pressure. RTM studies regarding 
these aspects have evolved from simple exchange models to more complex 1- and 2-D problem 
setup, including the effect of advection in a fracture intersecting the disposal cell (e.g., Arcos et 
al. 2003, 2008; Sena et al. 2010; Benbow et al. 2019).

Perturbations from atmospheric O2 and CO2 during the construction and ventilation stages 
of the repository life constitute a particular type of interface, a physical contact with air, where 
the aggressive agent is a gaseous component instead of interstitial water and minerals. 

The modeling of the behavior of each type of material and the relevant interfaces 
(Table 1) will be detailed in this chapter with a particular emphasis on the evolution of the 
RTM approaches and achievements over the past two decades. 

MATERIALS IN PHYSICAL CONTACT WITH AIR

This “interface” is characterized by the direct physical contact between materials and air 
containing reactive gases (essentially O2 and CO2). In this situation, porous media are generally 
partially saturated with water and therefore fast diffusional transport of gas (four orders of 
magnitude faster than in water) can possibly occur into the pore network. The water saturation 
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conditions will change with time resulting from the resaturation process with water coming 
from the surrounding host-rock and invading the tunnels, shafts, and wells. Resaturation will 
be initially impeded by ventilation during the operation phase and then by the generation of 
gas that may accumulate in the disposal cells (mainly H2) after closure. These two stages will 
produce very different geochemical environments, with contrasting reactivity, during which 
oxic vs. anoxic redox conditions will prevail. Long timespans with oxic conditions are to 
be avoided to limit the corrosion rate and to make sure reduced conditions are settled when 
radionuclides are released (because their oxidized forms tend to be more mobile). Calculating 
the duration of this stage is therefore important, but it is not thought to be very long once the 
disposal cell is closed (tens to thousands of years) due to the numerous oxygen consuming 
reactions that will occur in the vicinity of the disposal cell such as iron corrosion, dissolution 
of reducing mineral, and microbial respiration (see following sections). 

Material interface HLLW in clay 
formation

HLLW in crystalline 
formation

ILLW in clay 
formation

Clay–atmospheric O2 Construction phase 
(disposal cell)

Bentonite handling and 
emplacement

Construction phase 
(disposal cell)

Concrete–atmospheric 
CO2

Construction and 
ventilation phase (wells, 
tunnel) 

Construction and 
ventilation phase 
(tunnel)

Construction and 
ventilation phase (wells, 
tunnel, disposal cell, 
container)

Iron–clay Corrosion phase 
(metallic structure 
components, container)

Corrosion in bentonite 
after failure of copper 
container

—

SF–clay SF alteration after 
failure of container

SF alteration in 
bentonite after failure 
of copper container

—

Glass–iron Matrix alteration after 
water intrusion

— —

Glass–(iron)–clay Matrix alteration after 
container corrosion

Matrix alteration after 
container corrosion

—

Iron–concrete Metallic structure 
corrosion (tunnel) and 
overpack corrosion in 
supercontainer (Belgian 
concept)

—

Container and metallic 
structure corrosion

Concrete–clay Repository lifetime 
(wells, tunnel, disposal 
cell) and supercontainer 
in Belgian concept

—

Repository lifetime 
(wells, tunnel, disposal 
cell, container)

Glass–concrete–(clay) Matrix alteration after 
container corrosion in 
Belgian supercontainer 
concept

— —

Bituminous, 
cementitious, metallic 
waste–concrete–(clay)

— —
Matrix alteration after 
container corrosion

Table 1. Types of material interfaces in different repository concepts (SF, bituminous, and 
cementitious waste are not detailed here).
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The duration of the resaturation stage is difficult to predict because it strongly depends on 
the relative importance of the two counteracting processes (Marschall et al. 2005). It has been 
studied by conducting numerical simulations at disposal cell scale where the focus was to predict 
the transport and fate of hydrogen. The resaturation time calculated in the near field for different 
repository concepts varies in a very broad range from hundreds to hundreds of thousand years. 
It was found to be strongly linked to the diffusivity of dissolved hydrogen and the H2 production 
rate in the HLLW cells (Xu et al. 2008; Poller et al. 2011; Senger et al. 2011; Enssle et al. 2014; 
Brommundt et al. 2014; Sedighi et al. 2015) and was even longer in the ILLW cells where the 
degradation of waste matrices is also susceptible to produce H2 (Talandier et al. 2006; Poller et 
al. 2011; Avis et al. 2013). Note that flow and reactive transport in unsaturated conditions have 
also been extensively studied and modeled, though in a very different geological context and 
repository concept, in the framework of the Yucca Mountain project (USA); in this concept, the 
HLLW repository was envisaged in a fractured volcanic tuff formation at a depth approximately 
300  m above the water table (e.g., Glassley et al. 2003; Spycher et al. 2003).

Corrosion of carbon steel components in oxic conditions 

In repository conditions, metallic iron is not thermodynamically stable in the presence of 
water, and the corrosion of metallic iron occurs both in oxic (operation phase) and reduced 
conditions (post-closure period). In the first case, corrosion leads to the release of ferric iron 
and hydroxide in solution (Reaction 3), whereas in the second case corrosion produces aqueous 
ferrous iron, hydrogen and hydroxide (Reaction 4). 

4 6 3 4 12Fe s H O O aq Fe OH2 2
3+� �� � � �� � � (3)

This reaction leads either to a pH increase with an increase in redox potential or to a pH 
increase with a decrease in redox potential. While anoxic corrosion is often taken into account 
in RTM studies (see dedicated section below), oxic corrosion is seldom tackled, despite a 
much higher corrosion rate (Féron et al. 2008; Johnson and King 2008) and the development of 
more aggressive mechanisms such as pitting or crevice corrosion (Barnichon et al. 2018). This 
phenomenon is also observed in experiments with sequential aerobic–anaerobic conditions 
(Sherar et al. 2011; El Hajj et al. 2013).

There are few modeling studies dealing with corrosion during the oxic phase in the 
context of a disposal cell. The first attempts were dedicated to the assessment of the evolution 
of O2 and H2 content during the ventilation period using a 2D domain containing the container-
EDZ-argillites system (Hoch and Wendling 2011). They used a TH(C) model where the only 
reaction is iron corrosion, and the model uses a water saturation-dependent formulation for 
the corrosion rate in oxic (consuming O2) and anoxic (producing H2) conditions. The results 
showed that oxygen diffusing from the tunnel is rapidly consumed by corrosion (with a rate 
~100 µm/y) and the propagation front was limited to ~10 m (in a 40 m disposal cell). With the 
production of H2 on the other side (corrosion rate of 10 µm/y), the mole fraction increased to 
0.3 at the end of the cell, but the fraction of both gases reached only ~0.1 where they mixed. 

In their study, De Windt et al. (2014) added the kinetics of pyrite oxidative dissolution 
as an oxygen consuming reaction. They first checked the robustness of their RTM approach 
to reproduce an in situ experiment conducted in a borehole in the Tournemire URL (France). 
The predicted mineralogical evolution (goethite/magnetite) qualitatively matched the in situ 
experiment. Applying the model to the repository scale, they show that the gas diffusion 
coefficient in the partially saturated zones plays a major role in the location of the oxidizing/
reducing front inside the engineered barriers with oxic corrosion of steel on one side and anoxic 
steel corrosion accompanied by hydrogen production on the other side. A similar study was 
performed by (Bond et al. 2013), matching the sulfate concentration from pyrite dissolution in 
an in situ experiment in the Mont-Terri underground research laboratory (Switzerland).
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Recent studies tend to integrate more phenomenological models to determine the corrosion 
rate in oxic and anoxic conditions. The oxic corrosion model takes into account the thickness of 
the water film on the iron surface, and the diffusion of O2 in a goethite/lepidocrocite layer as the 
rate-limiting step (Hoerlé et al. 2004). The onset of corrosion happens when a critical amount of 
water condenses on the iron surface. The results of calculations at the disposal cell scale show 
in particular that corrosion concentrates in locations where the relative humidity is highest, 
especially where water “leaks” from fractures, with corrosion rates up to 200 µm/y locally. 

Oxic transient: impact on claystone

Argillaceous rocks react with meteoric carbon dioxide (CO2) and oxygen (O2) from the 
atmosphere and nested chemical reaction fronts form in the subsurface in response to acid–
base and redox reactions (Brantley et al. 2013). In a geological repository, similar phenomena 
will occur in the anaerobic host rock during construction (excavation, drilling operations) and 
operations (gallery ventilation). Under these conditions, the prevailing reducing conditions 
will be perturbed and redox-sensitive minerals (e.g., Fe-bearing minerals) will react. The 
expected chemical changes have been recently reviewed (Bildstein and Claret 2015) and 
the main weathering effects to be expected are recalled here. In claystone, oxidation mainly 
affects pyrite, which is ubiquitously found in the mineral assemblage. As it oxidizes with 
exposure to oxygen and water, pyrite releases sulfate and protons. The overall reaction under 
oxic conditions is expressed as:

FeS + 0.5 H O + 3.75 O aq Fe + 2 SO + H2 2 2
3+

4
+� �� �2 (4)

While the release of ferric ions causes the precipitation of iron (oxy)hydroxides, carbonates 
will play a major role in the buffering of proton release concomitantly affecting the population 
of the clay exchanger. At the laboratory scale, flow-through oxidation experiments conducted 
on COx tailings can be reproduced using RTM studies (Claret et al. 2018a). Recently an in situ 
experiment (OXITRAN) has been set up in the Tournemire underground research laboratory 
in which the time evolution of oxygen partial pressure in a measurement chamber isolated 
from the atmosphere has been recorded (Barnichon et al. 2018). Although pyrite is present and 
can buffer an oxygen plume while CO2 is produced (Vinsot et al. 2017), oxygen was never 
completely depleted in the test chambers. The key controlling parameters are the thickness of 
the Excavated Disturbed Zone and the ratio between the effective diffusion coefficient and the 
oxygen consumption first-order effective rate. In contrast, the ‘Full-Scale Emplacement’ (FE) 
experiment that was initiated at the Mont Terri rock laboratory aims to simulate, as realistically 
as possible, the construction, waste emplacement, backfilling and early post-closure evolution of 
a spent fuel/vitrified high-level waste disposal tunnel according to the Swiss repository concept. 
First results indicate rapid oxygen consumption at locations not affected by O2 inflow from the 
access tunnel (Müller et al. 2018). In addition to oxygen diffusion, drilling is also associated 
with desaturation and water evaporation, leading to increased salt concentration in the pore water 
(Zheng et al. 2008; Lerouge et al. 2013). A multiphase flow and reactive transport model of a 
ventilation experiment performed on Opalinus Clay indicates that changes in the clay mineral 
porosity caused by oxidation and the associated mineral dissolution/precipitation may seem 
weak (Zheng et al. 2008). The pore water seeping into the drifts and the gallery (e.g., after 
closure of the repository) will however interact with the oxidation products and the salts inherited 
by water evaporation. This more saline water will interact first with the repository materials.

Atmospheric concrete carbonation 

This interface is relevant for concrete waste packages and cell structures (in most ILLW 
and the Belgian HLLW concepts) and for concrete components found in parts of other HLLW 
repositories (tunnels). Studies concerning this interface have benefited from the work that has 
been conducted for the atmospheric carbonation of buildings and civil engineering structures 
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(see Ashraf 2016, for a review). In the carbonation process, the main chemical reaction is the 
acid attack caused by CO2 dissolving in water and triggering the dissolution of portlandite and 
the initial calcium-silicate-hydrate (C-S-H) phases to form calcium carbonate minerals (calcite, 
aragonite, vaterite) (Reaction 5), and new C-S-H phases with progressively decreasing Ca/Si 
ratio (amorphous silica being the ultimate alteration product, Reaction 6). Sulfate-bearing 
minerals are also affected by carbonation with the initial ettringite dissolving to form basanite 
(CaSO4·0.5H2O) or gypsum (CaSO4·H2O), depending on the relative humidity.

Ca OH +CO aq CaCO +H O
2 2 3 2� � � �� (5)

CaO (SiO ) H O CO aq

CaCO SiO H O+ H

2 2 2

3 2 2 2

� � � � � � ��
� � � �� �

x y z
x

x y t x t z OO
(6)

The models taking into account the coupling of CO2 diffusion in the gas phase with the drying 
process are of particular interest for atmospheric carbonation at the disposal cell scale. During the 
ventilation period, air will be forced into the tunnels at a constant, low relative humidity (~40%) 
at a temperature close to 25 °C (or may be slightly heated, up to 40 °C, in preliminary concepts 
from Andra 2005). The drying process is mainly controlled by water flow out of the concrete, the 
driving force being water evaporation at the surface. It can be described via full multiphase RT 
models or alternatively with Richards’ Equation (depending on the concrete properties). 

Most of the experiments conducted up to 2005 focused on carbonation “kinetics,” looking 
for the location of the carbonation front (identifying the pH front at ~9 with the phenolphthalein 
test) without providing quantitative mineralogical information. These experiments were modeled 
with simplified chemical models (e.g., Bary and Sellier 2004; Burkan Isgor and Razaqpur 2004). 
Only recently have experimental studies looked more closely at mineralogical changes, starting 
with portlandite and calcite, then adding aragonite and vaterite (Drouet 2010; Drouet et al. 2018), 
and ettringite, gypsum, and basanite (Auroy et al. 2018). The first modeling work actually using 
RTM was proposed by (Bary and Mügler 2006) with the objective of matching the portlandite 
and calcite profiles observed in experiments. They used a full multiphase flow code and 
developed a shrinking core model for the dissolution of portlandite and precipitation of calcite 
with a diffusion-limited rate. They also took into account the changes in porosity and the effect 
on permeability (through Kozeny–Carman relationship). The model only solves for the mass 
conservation of water, calcium and carbonate without full chemical treatment. Modeling results 
reproduce the observed carbonation front and a decrease in porosity for a series of experiments 
for three cement types at three different liquid saturations (0.65, 0.80, and 0.95). This model was 
then extended to account for the complete chemistry by Leterrier and Bary (2011), but was only 
calibrated on the carbonation front for the same experiment. A similar modeling approach was 
used by (Park 2008), although without the shrinking core model. 

RTM studies of concrete carbonation at the disposal cell scale are scarce, especially those 
covering typical ventilation times (~100 years) and coupling carbonation with concrete drying 
(Trotignon et al. 2011; Thouvenot et al. 2013). In these two studies, the geometries of the waste 
package and the tunnel structure were simplified and handled as a 1D problem. The evolution 
of the complete mineralogy of concrete is investigated (see dedicated section below) and the 
problem is treated with full multiphase flow and transport using TOUGHREACT. It includes the 
feedback of porosity and phase saturation on diffusion using the Millington-Quirk relationship 
(with specific parameters for concrete) and a slipping factor to account for the larger gas-
intrinsic permeability compared to water (Thiery et al. 2007; Zhang et al. 2015). Results show 
that the carbonation of concrete develops over 1 to 10 cm/100 years depending on the concrete 
properties and that, in the carbonated zone, the primary minerals dissolve all the way to the 
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“ultimate” secondary minerals (calcite, amorphous silica, gypsum, gibbsite, ferric hydroxide), 
with no intermediate minerals (e.g., C-S-H). In contrast with previous results, porosity changes 
in these simulations are not significant (a few percent at most). It is noteworthy that these results 
are sensitive to the way the atmospheric cell in contact with concrete is implemented in codes as 
it has a direct impact on the flux of gaseous CO2 entering into concrete: size of the cell, diffusive 
properties in the gas and the aqueous phase. 

The modeling results do not integrate some of the features observed in experiments. For 
instance, C-S-H carbonation may overrun CH carbonation (Groves et al. 1990), which is not 
predicted in numerical simulations. Some portlandite also remains, even after a long time in 
some experiments (Drouet 2010; Auroy et al. 2018; Drouet et al. 2018). Further tests with the 
shrinking core model may succeed in reproducing these observations. In combination with 
this phenomenon, the decrease of reactivity when liquid saturation is below 0.3–0.4 has been 
observed (Thiery 2005; Thiery et al. 2013) and implemented by Thouvenot et al. (2013) but to 
calibrate such a function in codes requires more data.

Another noteworthy feature of this type of simulation is that the computing time can be quite 
long. For instance, due to the lack of an implicit scheme for the coupling of transport in the gas 
phase and RT in the aqueous phase in TOUGHREACT, the CPU time can be one to several months 
for 100 years of physical time (Trotignon et al. 2011; Thouvenot et al. 2013). Note that a recent 
development proposes an interesting “look-up table approach” for the two-phase reactive transport, 
which could partly help solve the simulation CPU time (Huang et al. 2018).

Finally, some important effects of carbonation on the properties of concrete that have been 
largely observed are not actually taken into account in modeling (Czarnecki and Woyciechowski 
2015; Ashraf 2016; Savija and Lukovic 2016): changes in porosity, transport properties, micro- 
and macro-mechanical properties, shrinkage and cracking. Experimental data has been recently 
acquired on changes in water retention properties and permeability (Auroy et al. 2013, 2015, 
2018). The impact of carbonation is not the same for the different types of concrete (Auroy et al. 
2015), which would also constitute an interesting challenge for RTM.

THE IRON–CLAY INTERFACE

The iron–clay interface is studied in almost all countries where deep geological disposal 
of HLLW is envisaged. Significant amounts of metallic components (drift liner, structure, and 
containers) are used to ensure mechanical resistance of the waste package and to retard contact 
of waste matrices with water during the initial thermal stage, whereas clay barriers are used to 
retard RN migration. Although a variety of metallic alloys are envisaged in repositories (King 
and Shoesmith 2010; King 2014), the corrosion of these components in anoxic conditions is often 
simplified in the modeling studies into iron corrosion and takes place according to Reaction (7). 

Fe s +2H O Fe + 2OH +H aq2
2+

2� � � � �� (7)

First modeling studies at the scale of the disposal cell 

The first modeling studies concerning this interface attempted to implement the 
knowledge acquired in experiments on iron–clay interactions in deep geological conditions 
initially conducted in batch systems with powdered materials starting in the late 1990’s (see 
Bildstein and Claret 2015 for a recent review). These experiments focused on understanding 
the processes, identifying the corrosion products (magnetite, siderite) and the secondary 
minerals resulting from the alteration of clay minerals (Fe-serpentine, and zeolites and Fe-
chlorite at higher temperature), and quantifying the corrosion rate (in the order of 1 µm/year). 
The calculations presented in the study of Montes-H et al. (2005) were performed at the scale 
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of the bentonite barrier perturbed by a source of iron on one side and in situ groundwater on 
the other side; mineral dissolution used the kinetics law, precipitation occurred at equilibrium, 
looking in particular at the montmorillonite-to-chlorite conversion. 

Modeling studies then turned to a geometry closer to that of a disposal cell by including 
the iron canister into the calculation domain, adding a full kinetics approach, and focusing on 
porosity change and feedback on diffusional properties (Bildstein et al. 2006). The authors 
obtained the first result on porosity clogging after 5 000 years at the interface with bentonite 
and 15,000 years in the iron grid cell at the interface with the Callovo–Oxfordian claystone. 

Both studies showed converging results in terms of pH increase, Eh decrease, and 
mineralogical evolution, although the presence of iron in the calculation domain produced 
stronger changes in the second study: pH from an initial circum-neutral value to ~10.5 and Eh 
from an initial −200 mV down to −800 mV during corrosion.

First modeling attempts to fit batch experiment results

Because significant uncertainties in the parameters used in the previous studies were 
highlighted (surface area, kinetics, evolution of the corrosion rate), the first experimental study 
to include modeling results came early with the objective of calibrating these parameters, 
at least partly, by matching the mineral paragenesis and the chemical indicators (pH, 
Eh, iron aqueous concentration) observed in the experiments. De Combarieu et al. (2007) 
used a mean corrosion rate (1.4 µm/year) measured in his batch experiments at 90 °C using 
powdered materials and iron foils. Modeling results matched the experimental data (pH = 10.5, 
Eh = −700 mV, precipitation of magnetite, Fe-serpentine, and Fe-silicate) using reactive surface 
areas calculated based on the particle size for primary minerals and the local equilibrium 
assumption for secondary minerals. 

In a study looking at the diffusion of iron in bentonite, Hunter et al. (2007) were the first to 
introduce ion exchange and surface complexation in the modeling approach, using the corrosion 
rate measured in their experiments at 30 °C. Simple 1D calculations were performed to model 
the profile of iron measured into the bentonite; matching the amount of iron required making 
assumptions on the diffusion coefficient, surface complexation and magnetite precipitation. 

Finally, Pena et al. (2008) introduced the first attempt to model a variable corrosion rate 
using a semi-analytical approach, hypothesizing that corrosion is controlled by diffusion through 
a growing magnetite film. The authors were able to match the data reported for corrosion in 
bentonite in batch experiments by (Smart et al. 2006) on a time scale of 0.5 year using a solid 
phase diffusion coefficient of 10−20 m2/s for the Fe2+ and 10−19 m2/s for H2, H2O, and OH− species. 

A decade of RTM evolution of simulations at the scale of the disposal cell 

Later, a long series of modeling studies came back to the scale of the disposal cell; see review 
in Claret et al. (2018a) for a detailed description of the modeling set-up of the different studies. 

While the previous studies focused on corrosion rate and mineral paragenesis, the subsequent 
studies at the disposal cell put the focus on full ion exchange and surface complexation with 
proton and Fe2+ (Samper et al. 2008; Wersin et al. 2008). While a 1D grid is used by Wersin et 
al. (2008) for the iron-bentonite system, the first 2D-axisymetric calculations are proposed by 
Samper et al. (2008) with an application to the iron–bentonite–granite system. Note that in both 
studies, the mineralogical system is simplified (no reactivity for clay minerals) and a constant 
corrosion rate is used in both cases, the emphasis being put on the role of sorption. The results 
show the importance of the surface protonation of bentonite, which reduces the pH increase 
during corrosion (from 11 to 9 in the bentonite), and a decrease of porosity in bentonite. The mass 
balance of iron shows that the precipitation of magnetite, and to a lesser extent siderite, accounts 
for most of the iron immobilization (iron sorbed on complexation surface is anecdotal). Note that 
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Samper et al. (2008) introduced an interesting “progressive”, cell-by-cell, corrosion process. 
This is also the first study to perform a thorough sensitivity analysis of uncertain parameters 
(corrosion rate, protonation sites, and surface complexation vs. exchange of Fe2+). 

In a series of simulations with a constant corrosion rate, Savage et al. (2010) tried to tackle 
the tricky issue of the long-term evolution of the Fe-minerals in the mineralogical assemblage 
in the iron-bentonite system by using evidence for mineral parageneses from analogous natural 
systems. They allowed for faster minerals to precipitate initially and other more stable minerals 
to take over through nucleation and Oswald ripening, based on the early work of (Steefel and 
Vancappellen 1990). This is the only work where the authors were able to describe a magnetite 
→ cronstedtite → berthierine → chlorite mineralogical sequence at the iron–clay interface over 
a period of 1 My (according to experimental results reviewed by Mosser-Ruck et al. 2010).

It was only a couple of years after the first attempt to develop a model corrosion rate 
depending on the chemical environment by Peña et al. (2008), that non-constant iron corrosion 
rates were introduced in large-scale calculations, and to date only Wilson et al. (2015) have 
implemented a corrosion rate controlled by diffusion. In most other cases, a simpler model 
was adopted, in the form of a “standard” rate law, i.e. with a term considering the departure 
from equilibrium considering reaction (3). This assumption results in a progressive decrease 
of the corrosion rate, usually by an order of magnitude over a period of 100 000 years (Marty 
et al. 2010; Lu et al. 2011; Ngo et al. 2014). Note that a decrease of the corrosion rate is also 
achieved, to some extent, by considering that the reactive surface area depends on the amount 
of iron and on porosity (Bildstein et al. 2006; Savage et al. 2010; Wersin and Birgersson 
2014). Interestingly, in most of these studies (except Lu et al. 2011 and Wilson et al. 2015), 
ion exchange and surface complexation were not included in the calculations. This choice 
was motivated either by the fact that the focus was put on other processes (mineralogical 
changes, effect of transport), or because explicit surface reactions were considered to create 
mass by double-counting the counter ions when the mineral-bearing surface sites dissolves 
away in significant amounts (see sensitivity analysis in (Bildstein et al. 2012). This problem 
was recently treated by creating specific thermodynamic data for surface-bearing minerals 
to reconcile ion exchange and dissolution/precipitation processes (Benbow et al. 2019). 
However, note that very few data exist for surface reactions at temperature higher than 25 °C, 
which undermines the robustness of the interpretation. 

Non-isothermal calculations were introduced into simulations quite recently by imposing 
a variable temperature field calculated by a TH code (Bildstein et al. 2012) or using a full 
THC modeling tool (Samper et al. 2016; Mon et al. 2017). This additional feature usually 
tends to stiffen the calculations, because RT processes and temperature are not implicitly 
coupled and temperature changes affect both the reactive processes (creating a thermodynamic 
disequilibrium and modifying kinetics) and transport. 

Table 2 provides a synoptic view of the results of these studies and shows that the most 
abundant corrosion product predicted by the models in the long term is magnetite, sometimes 
with Fe-carbonates (siderite), and Fe-silicates (greenalite), sometimes incorporating Al 
(berthierine, cronstedtite). Primary minerals in clay are often destabilized in favor of Fe-
phyllosilicates or zeolites if they are allowed to precipitate. Numerical studies often differ 
on the precise nature of the secondary minerals. The transformation of clay minerals into 
Fe-chlorite, and the timing, very much depend on whether (i) it is included as a secondary 
mineral, in which case it is the most stable phase and precipitates from the beginning of the 
simulation (e.g., Marty et al. 2010, or (ii) it results from a ripening process, taking the place 
of a precursor mineral in Savage et al. 2010). One of the most sensitive parameter remains 
the corrosion rate. The extent of the perturbation is always predicted to be limited to a few 
centimeters, up to 20 centimeters into the clay barrier.
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Concerning porosity clogging, a major assumption was made in some simulations: because 
the phenomenology is not known when porosity vanishes, porosity update was disabled in order to 
reach the end of the corrosion stage (~50,000 years) (Bildstein et al. 2012). A complete inhibition 
of the corrosion process has never been observed in experiments, even if a dense corrosion product 
layer is often identified. In addition, the ubiquity of magnetite in simulation results as the dominant 

Table 2. Recent RTM studies at the disposal scale with salient results.

Interfaces
Maximal 
perturbation 
extent

Main corrosion products
Main secondary 
minerals

Ref.

Iron–bentonite 
(100 °C)

(not explicit) (not explicit) Chlorite [1]

Iron–claystone

Iron–bentonite 
(50 °C)

5 cm 

5 cm 

Magnetite, cronstedtite 
clogging after 16,000 y 
clogging after 5,000 y 

Chamosite, 
Fe-smectite, 
scolecite, 
Ca-zeolite

[2]

Iron–bentonite 
(100 °C)

7 cm Magnetite Fe2+ exchange only [3]

Iron–bentonite 
(100 °C)

few cm Magnetite Cronstedtite, 
berthierine

[4]

Iron–bentonite 
(100 °C)

15 cm Magnetite
clogging after 100,000 y

Fe-chlorite, 
Fe-saponite

[5]

Iron–bentonite 
(T not explicit)

(not explicit) Magnetite → croenstedtite 
→ berthierine → chlorite

Berthierine, 
cronstedtite

[6]

Iron–bentonite 
(25 °C)

(not explicit) Magnetite Siderite [7]

Iron–claystone
(variable T) 

20 cm Magnetite
(Ca-siderite, greenalite) 

Vermiculite, 
saponite, 
pyrrhotite

[8]

Iron–claystone
Iron–bentonite
(100 °C)

15 cm
10 cm

Magnetite Greenalite, 
Fe-saponite, 
Fe-chlorite, 
bethierine 

[9]

Iron–bentonite 
(25 °C)

2 cm Test cases with only 
Fe3(OH)7, Fe(OH)2, 
goethite or magnetite

Na-phillipsite, 
chabazite, 
berthierine

[10]

Iron–bentonite 
(70 °C)

2 cm (not explicit) Berthierine, 
greenalite, 
Fe-saponite

[11]

Iron–bentonite
(variable T)

up to 14 cm Magnetite Fe-phyllosilicates, 
zeolites

[12]

Iron–bentonite 
(variable T)

1 cm Magnetite Brucite, 
gypsum

[13]

References
[1] Montes-H et al. 2005 [2] Bildstein et al. 2006 [3] Samper et al. 2008 [4] Wersin et al. 2008 [5] Marty et al. 2010 [6] Sav-
age et al. 2010 [7] Lu et al. 2011 [8] Bildstein et al. 2012 [9] Ngo et al. 2014 [10] Wersin and Birgersson 2014 [11] Wilson et 
al. 2015 [12] Samper et al. 2016 [13] Mon et al. 2017.
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corrosion product in the long term is questioned by many experimental results and archeological 
analogs. These issues, along with recent experimental work (Martin et al. 2008; Bourdelle et al. 
2014, 2017), motivated the modelers to come back to modeling experimental results.

A recent return to modeling experimental results

Two of the most recent modeling studies revisited interactions at the experimental scale 
to refine the understanding and modeling of this interface. In the first work, Ngo et al. (2015) 
modeled iron-COx claystone interaction results obtained from the batch experiment with 
powdered material at 90 °C for 90 days (Bourdelle et al. 2014). Using a mean corrosion rate 
(determined from the experiment), standard and diffusion-controlled kinetics for mineral 
dissolution, and the local equilibrium assumption for precipitation, they were able to match 
the low pH (value ~7) and the evolution of aqueous species concentrations. They also 
matched the set of secondary minerals observed at the end the experiment: Ca-saponite, and 
greenalite. Interestingly, no magnetite was observed or simulated in these conditions. This 
particular feature, also observed by Bourdelle et al. (2017), was attributed to the high reactive 
surface area in the powdered system, producing a high precipitation rate for greenalite in 
the experiment (and matched by the modeling with equilibrium precipitation). Note that the 
simulation also predicted the transient precipitation of chukanovite, a Fe-hydroxyl-carbonate 
recently observed in experiments (Schlegel et al. 2010) and archeological analogs (Saheb et al. 
2012), which disappears after the corrosion stage to form Ca-saponite. 

In the second study, the modeling of iron corrosion in a Callovo–Oxfordian claystone 
block (machined from a core plug) at 90 °C for 2 years (Martin et al. 2008) was conducted by 
Bildstein et al. (2016). The objective was to reproduce the mineralogical paragenesis identified 
by (Schlegel et al. 2014) using the evolution of the corrosion rate measured in the experiment 
using electrochemical impedance spectroscopy (from 100 to 0.1 µm/year). The sequence of 
minerals observed from the contact with iron towards the claystone was as follows: magnetite, 
Fe-silicate, and Ca-siderite. This sequence could not be matched with the standard simulation 
setup (typical parameters for mineral dissolution and precipitation kinetics data, evolution of 
diffusion coefficient using Archie’s law). The sensitivity analysis performed on the kinetic 
parameters (quartz dissolution, precipitation) was unsuccessful in generating the correct 
sequence. It was particularly difficult to maintain magnetite at the iron surface as the corrosion 
rate decreased with time. The observed mineral paragenesis could only be reproduced by using 
a cell-by-cell corrosion process and by attributing very slow diffusional transport properties to 
pre-corroded cells (i.e. by using a large value for the cementation factor). This layer “isolated” 
the iron surface from the claystone, allowing specific chemical conditions to develop at this 
location favoring magnetite precipitation.

The RTM simulations of iron corrosion will evolve in the short future to integrate more 
phenomenological corrosion models that calculate the evolution of the corrosion rate as a 
function of the geochemical conditions. Such electrochemical corrosion models have already 
been developed (Bataillon et al. 2010; King et al. 2014) and have to be coupled to RTM codes. 
This approach will be useful to simulate and interpret the existing laboratory experiments and 
also in situ results obtained recently (Necib et al. 2016; Schlegel et al. 2016, 2018).

THE CLAY CONCRETE INTERFACE

A brief materials mineralogy overview and associated chemical gradient at the 
materials interface 

Before dealing with the interaction between clay and concrete, it might be interesting 
to recall briefly the mineralogy of these two materials. In a deep geological disposal, clay 
materials can be the clay-rock itself where clay minerals are the main constituents of these 
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rocks, but also the bentonites used for the construction of engineered barriers (Sellin and 
Leupin 2013). The mineralogy of clay-rocks is complex, meaning that its clay fraction not 
only contains pure clay mineral end-members, such as kaolinite, smectite and illite, but also 
mixed layer minerals (Claret et al. 2004). In addition, carbonate minerals with a range of 
chemical compositions and structures are present (see for example (Lerouge et al. 2013), 
and pyrite, along with organic matter and quartz (Gaucher et al. 2004a; Jenni et al. 2014; 
Zeelmaekers et al. 2015). Proportions of total phyllosilicates, carbonates, quartz, pyrite and 
organic matter can be found in the literature for various clay formations (e.g., Opalinus Clay, 
Boom Clay, Callovian-Oxfordian formation, and Boda Clay, in Altmann et al. (2012)) and can 
be very different from bentonites (e.g., Ufer et al. 2008; Savage and Cloet 2018). 

The mineralogical composition of cementitious materials is also complex. Concrete is a 
composite material made of a porous matrix (the hydrated binder) filled with water, into which 
are embedded filler materials such as quartz and calcite, which act as a granular skeleton. As 
the hydration reaction proceeds due to the cement–water interaction, the anhydrous phases, 
calcium silicates (C3S or C2S) and calcium aluminates (C3A and C4AF) are converted 
into hydrates such as portlandite, C-S-H (calcium silicate hydrate), ettringite, monosulfate 
or monocarbonate. This decreases the bulk porosity, since the molar volume of the hydrates 
is much larger than that of the anhydrous phases (Van Damme et al. 2013; Gaboreau et al. 
2017; Claret et al. 2018b). Concrete has a long history that began in the pre-Roman age, 
and its formulation, which was greatly improved at the beginning of nineteenth century with 
the invention of Portland cement, has recently become more and more sophisticated. Within 
the framework of nuclear waste disposal, such sophistication has been introduced with the 
development of low alkaline concrete (Codina et al. 2008). The idea behind this development 
was to improve concrete compatibility with the repository environment, yet it remains a 
high-strength concrete. On one hand, low alkaline concrete (often called “low pH” cement) 
has a lower alkali content than that of ordinary Portland-based cement material, which may 
reduce the pH gradient at the interface and therefore the changes in clay in contact with the 
concrete. On the other hand, it has a low-heat hydration temperature, which minimizes the 
microcracking that can have negative consequences on cement’s long-term durability. One 
must also keep in mind that whatever the formulation, the hydration of cement-based material 
is kinetically driven, and thus the composition of its pore water evolves with its curing time. 

While the measured pH in concrete is in the range 10.4 to 13.6 depending on time and 
formulation (Lothenbach and Wieland 2006; Luke and Lachowski 2008; García Calvo et al. 
2010; Lothenbach 2010; Bach et al. 2012; Lothenbach et al. 2012, 2014), the pH of pore water 
in clay materials is generally in the range of 7 to 9 (Bradbury and Baeyens 2003, 2009; Wersin 
2003; Bildstein and Claret 2015; Lerouge et al. 2018). Therefore, even for low-pH concrete 
material, the pH difference at the interface may be as much as two pH units. When the pH is 
above 13, the alkali (Na+, K+) concentrations in pore water are higher in cement material than 
in clay-rocks. The reverse is true for K+ when the cement material is made of low-pH cement. 
Still, in relation to the pH values, partial CO2 pressures are far lower in cement materials than in 
the pore water of clay-rocks, where partial pressures of CO2 that are higher than the atmospheric 
pressure (~10−3 to ~10−2 bars) are reported (Gailhanou et al. 2009; Lassin et al. 2016). Redox 
conditions are reducing in both claystone (Brendler et al. 2003) and in reinforced steel cement 
materials (Aréna et al. 2018). Nevertheless, in the latter, a strong Eh gradient exists from the steel 
surface outward to the bulk concrete. As described just above, a steep geochemical gradient exists 
at the clay–concrete interface. In the 90’s, early calculations based on mass balance assumptions 
only, and reported in Gaucher and Blanc (2006) and Savage et al. (2007), led to the conclusion 
that 0.2–1 m3 of bentonite are needed to buffer the chemical perturbation created by 1 m3 of 
concrete. If true, this conclusion would have been problematic for the storage concepts that rely 
on the properties of unaltered clay materials, and this explains why so much effort has been put 
in reactive transport modeling studies of both experiments that mimic clay–concrete interfaces 
and the long-term evolution of clay–concrete interfaces.
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Reactive transport modeling of laboratory and in situ scale experiments

Before their use for large-scale simulation and long-term evolution, reactive transport 
models and computer codes have to be tested against experimental data in order to test and 
improve their robustness. Experimental data can be obtained in the laboratory with experimental 
apparatus that mimic storage situations (e.g., column experiment), in situ to better reproduce 
field conditions (this is possible thanks to many underground research laboratories that are in 
operation) or gathering data from natural analogs for which hydrogeology and geochemical 
conditions reproduced phenomena that are expected in the repository. In Table 2, reactive 
transport studies that are compared against experimental data dealing with clay–concrete 
interaction are reported. The focus of our chapter is claystone, which is why experimental 
studies that deal with high-pH plume but in granite (e.g., (Soler 2003; Pfingsten et al. 2006; 
Soler and Mader 2007)) have not been reported here. In addition, when some geochemical 
modeling is made without coupling chemistry and transport (e.g., Lalan et al. 2016) these 
references are also not mentioned as the focus is on reactive transport. Among the thirteen 
references discussed in Table 2, three deal with column laboratory experiments (two focusing 
on the same experiment), four are in situ experiments and four focus on the same natural 
cement analog. The latter is the Maqarin natural analog in the north of Jordan (Khoury et al. 
1985; Alexander et al. 1992; Khoury et al. 1992; Chaou et al. 2017). In this area, hyperalkaline 
groundwater compositions are the product of low-temperature leaching of an assemblage of 
natural cement minerals produced as a result of high-temperature/low-pressure metamorphism 
of marls (i.e. clay biomicrites) and limestones. On the hydraulic downstream of the cement 
zone, alkaline groundwaters circulated through fractures within the biomicrite clay. On the 
edge of the fractures, calcite, kaolinite, silica, low amounts of illite, albite and organic matter 
dissolved. Within the fractures, different opening/clogging stages may have occurred, leading 
to a complex mineralogical pathway. Two of the modeled cement claystone interfaces were 
sampled during the Cement–Opalinus Clay Interaction (CI) Experiment at the Mont Terri 
rock laboratory (Jenni et al. 2017). This is a long-term passive diffusion-reaction experiment 
between contrasting materials of relevance to engineered barrier systems/near-field for deep 
disposal of radioactive waste in claystone (Opalinus Clay). The sampled interfaces have been 
(and are still) extensively characterized from the mineralogical and petrophysical point of 
view (Jenni et al. 2014, 2017; Dauzeres et al. 2016; Lerouge et al. 2017). The two other 
in situ interfaces were sampled in the Tournemire underground research laboratory. Again, 
these interfaces have been extensively investigated (Tinseau et al. 2006; Gaboreau et al. 2011; 
Bartier et al. 2013). In one of the column laboratory experiments, bentonite was exposed 
on one face to a solution that mimic cementitious pore water, while the opposite face was a 
homo-ionization solution. In the second, concrete and bentonite plugs were juxtaposed. For 
the column laboratory experiments, heat was applied either in isothermal conditions (60 °C 
or 90 °C) or by applying a thermal gradient. These are the only studies in where temperature 
plays a role. Except for (i) the hydration concrete-bentonite column test, where non-saturated 
conditions and thermal gradients imply the use of a THMC coupled model, (ii) the natural 
cement analog and one in situ experiment where fractures play a role, a diffusive regime was 
the main dominant transport process in all other experiments. The column experiments and 
in situ experiments were sized in the 10 cm range, whereas for the Maqarin natural analog 
site a ~100 m fracture was considered in simulation, but matrix diffusion perpendicular to 
the fracture was in the 10 cm range. In most of the publications described in Table 2, the 
thermodynamic data used come from existing databases that are either merged together (i.e. a 
clay-oriented database with a cement-oriented database) or completed with some missing data 
(e.g. zeolite, M-S-H). Depending on the reactive transport code used, the C-S-H representation 
is made either by considering a discrete calcium to silica ratio (e.g. 1.6, 1.2 and 0.8), or by 
considering a jennite-tobermorite solid solution. The latter approach was used for the studies 
that used GEM (Wagner et al. 2012; Kulik et al. 2013) for the reactive part. The main findings 



Table 2. Review of the experiments that mimic clay/concrete interaction and that have been 

modeled using reactive transport modeling.

Experiment Main conclusion Ref.

Mineral fluid 
interactions occurring 
at the Maqarin site in 
Jordan (natural cement 
analog)

In qualitative agreement with observations at the Maqarin site, 
the simulations predicted that ettringite with lesser amounts 
of hillebrandite and tobermorite are the dominant alteration 
products formed at the expense of the primary silicates in the 
rock matrix and fracture. Depending on the rate constant for 
secondary mineral precipitation reactions (either the same in both 
the rock matrix and fracture or one order of magnitude higher 
in the fracture compared to the rock matrix), the simulations 
suggested two possible scenarios for porosity reduction (either 
the matrix first or the fracture first).

[1]

Simulations indicated that the pore clogging caused by 
precipitation of ettringite and C-S-H minerals occurred after 
several hundred years at a distance of 5–10 mm from contact with 
the hyper-alkaline solution. Sensitivity analysis shows that clay 
minerals controlled the availability of Al, which is needed for 
ettringite and C–S–H phase precipitation. Therefore, temporal 
evolution of porosity changes was controled by clay dissolution.

[2]

Major secondary minerals (e.g., ettringite, C-S-H) were 
controlled by the dissolution of primary silicates. Extension of 
porosity reduction along the fracture and in the fracture-wall 
rock interface depended on assumptions regarding flow velocity 
and composition of the high-pH solution. 

[3]

RTM predicted that ettringite, thaumasite, jennite and tobermorite 
dominate the fracture filling materials. Alteration of the marl led 
to scolecite, ettringite, C-S-H and a small amount of sepiolite. If 
an armored layer was considered in the fracture, only calcite and 
jennite precipitate. Fracture sealing is complex.

[4]

For about 2 years, a 
cylindrical compacted 
bentonite column was 
in contact with a 0.6 
MgCl2 solution and 
either a young cement 
water (YCW, pH = 
12.4 at 60 °C) or an 
evolved cement water 
(ECW, pH = 11.5 at 
60 °C)

Major mass transfer and mineral transformation pathway 
(including the diffusion of alkaline cations through ion exchange 
reaction) experimentally observed were reproduced by RTM. 
For the most reactive system (YCW), partial dissolution of 
montmorillonite and precipitation of Mg-Silicate, hydrotalcite 
and brucite were predicted

[5]

In this case modeling was blind because it was done prior to the 
experiment. The model reproduced well the porosity decrease 
induced by secondary mineral precipitation as well as ion 
exchange. The kinetic dissolution model played an important 
role in the outcome of the simulations.

[6]

Two cylinders of 
bentonite and concrete 
were put into contact 
for 54 months in 
hermetic cells that 
allowed both heating 
up to 100 °C on the 
bottom (bentonite 
side) and water 
circulation on the top.

On-line measured temperature, relative humidity data, water 
content and porosity data were well reproduced by the THMC 
model. Except for ettringite and C-S-H phase, for which the 
predicted precipitation was smaller than experimental data, RTM 
captured the main trend of the mineralogical pathway. Increasing 
the specific surface area of ettringite improved the model. 

[7]



Experiment Main conclusion Ref.

A 15-year in situ 
claystone /Ordinary 
Portland Concrete 
(OPC) interface 
was sampled in 
the Tournemire 
Underground Research 
Laboratory

While profiles calculated at local equilibrium or using 
kinetics are very similar in concrete, kinetics really improved 
the representation of experimental data in the claystone. 
Mineralogical transformation simulated in the claystone matrix 
and in the fracture filling were quite comparable as observed 
on the field. C-S-H, ettringite and carbonates (predominance 
of metastable vaterite over calcite) were modeled at the OPC/
claystone interface, followed by a zone of clay-likes phases and 
calcite and a last zone with precipitation of calcite (going deeper 
in the fracture).

[8]

An eighteen-year 
in situ experiment 
putting CEM II and 
Toarcian claystone in 
contact at Tournemire 
Underground Research 
Laboratory was 
dismantled, analyzed 
and modeled.

RTM was used to test one hypothesis, namely the introduction 
of a sedimentary fluid into the macroporosity of the cement 
paste to explain the formation of part of these secondary phases. 
Simulations indicate that such transport could have occurred 
near the argillite/cement paste contact at a very early stage. 
After this stage, the transport was reversed and “cementitious” 
fluids flowed from the cement paste to the argillite. Experimental 
observations of C-S-H neoformation in the claystone, carbonate 
formations at the interface were well reproduced by simulation.

[9]

Five and 2.5-year in 
situ interaction of 
two different low-pH 
cements (ESDRED 
and LAC) with 
Opalinus Clay (OPA)

RTM corroborated calcite precipitation, C-S-H decalcification 
and M-S-H formation at the interface.

[10]

Five-year in situ 
interaction of Ordinary 
Portland Cement 
(OPC) with Opalinus 
Clay (OPA)

RTM reproduced well the decalcification of the cement at the 
interface, the Mg enrichment in OPA detached from the interface 
and the sulfur enrichment in the OPC detached from the interface.

[11]

Six-year interaction 
between a hardened 
Portland cement and 
water-conducting 
shear zone. In situ 
experiment conducted 
at the Grimsel Test 
Site in Switzerland

Two RTM models were used, one in 1D and one in 2D. They 
did not properly represent all the concentration evolutions as a 
function of time. However, the main parameters like pH and Ca 
were captured. Both models evidenced dissolution of the fault 
gouge minerals. The 2D model indicated an associated secondary 
mineral precipitation and a porosity reduction. Ettringite, C-A-
S-H, and hydrotalcite also precipitated. 

[12]

In comparison to Chaparro et al. (2017), a 3D model was used 
here. Although some elements’ concentration as a function 
of time (like Mg) were poorly reproduced, RTM captured the 
essential features of the cement leaching (e.g., portlandite 
dissolution) and carbonate mineral precipitation. In addition, the 
model results highlighted uncertainties surrounding cement solid 
dissolution rates and rates of secondary mineral formation.

[13]
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have been modeled using reactive transport modeling.
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and conclusions of the various studies are given in Table 2; therefore, they will not be detailed 
in the text. However, general conclusions can be drawn. Although some discrepancies between 
models and experiments could appear because new or completed datasets become available 
after modeling (Chaou et al. 2017), reactive transport modeling shows a great capability 
for reproducing the experiments (e.g., mineralogical transformation pathway and clogging 
processes). It is also a very useful tool for performing sensitivity analyses of input parameters 
and testing hypotheses. One of the most critical parameters that has been described in reported 
studies deals with kinetics and reactive surface areas that can play a large role in sequential 
minerals’ appearance or disappearance, as well as the localization of porosity reduction.

 Reactive transport modeling of the long-term evolution of clay–concrete interfaces

As previously stated, reactive transport modeling is a powerful tool for describing and 
reproducing phenomena that occur at both the time and space experimental scale. However, these 
scales are at least four or five orders of magnitude lower than the one we have to deal with for the 
long-term evolution of clay–concrete interfaces with geometries that are relevant for the repository 
gallery scale. In that case, reactive transport models are used to bridge the scale and make predictions 
about long-term evolution. Our literature review (which might not be fully exhaustive) found about 
twenty reactive transport studies addressing these issues during the past two decades (Table 3). 
In these studies, anionic exclusion in clay and multi-components diffusion were not considered. 
The complexity of the phenomena that were modeled lay more in considering an exhaustive 
mineralogy and steep chemical gradients that are not always easy to handle from a numerical point 
of view, even for modern reactive transport codes. The number of reactive transport codes used was 
also considerable: PRECIP (Savage et al. 2002), GIMRT (Lichtner 1996), HYTEC (van der Lee 
et al. 2003), PHREEQC (Parkhurst and Appelo 1999),TOUGHREACT (Xu et al. 2004 ; Burnol 
et al. 2006), ALLIANCES (PHREEDC/MT3D, (Montarnal et al. 2007), CORE2D V4 (Samper 
et al. 2003), CRUNCH (Bildstein and Claret 2015), OpenGeoSys-GEM (Kolditz et al. 2012), 
ORCHESTRA (Meeussen 2003), MIN3P-THCm (Mayer et al. 2002). A detailed description 
of most of the above-mentioned codes and their history can be found in Steefel et al. (2015b). 
Many databases have also been used: EQ3/6 (Wolery 1983), CEMDATA2007 (Lothenbach and 
Wieland 2006; Lothenbach and Winnefeld 2006), Nagra/PSI database (Hummel et al. 2002), 
THERMOCHIMIE (Blanc et al. 2015a,b), THERMODDEM (Bartier et al. 2013). The geometries 
(1D or 2D Cartesian, 1D radial, 1D or 2D axisymmetric and 2D with cylindrical coordinates), 
the mesh size (usually in the cm range), the transport parameters, the way mineral dissolution or 
precipitation was accounted for (either at local equilibrium and/or in kinetics) have been recently 
reviewed (Claret et al. 2018b). Otherwise, in the case of the mass balance calculations reported 
earlier in this chapter, all reported studies are consistent with very limited spatial extension, in terms 
of mineral precipitation and dissolution, of cement perturbation in clay materials and vice versa. 
Not all the reported studies consider exactly the same starting mineralogical assemblages, the same 
secondary potential mineral phases, the same transport properties, or the same geometries (see 
(Table 3). This is inherent to the starting conceptualization, but also to the quality and completeness 
of the databases that have been improved with time, as well as the code capability. For example, 
in earlier calculations, cement material was not represented as a porous medium but rather as 
an alkaline plume imposed as a boundary condition on one side of the clay domain. Therefore, 
in order to evaluate the impact of different modeling assumptions among available studies, 
Marty et al. (2014) carried out calculations with a consistent set of data and input parameters 
arranged with increasing order of complexity (e.g., the considered geometry, the representation 
of porous media, the choice of secondary minerals phases). This standardized approach allowed 
for a proper comparison of numerical results and showed that modeled reaction pathways were 
mostly independent of the modeling assumptions for simulations carried out in the presence of 
water-saturated conditions. To compare the results of the various simulations after 100,000 years, 
concrete and clay degradation indicators were selected. In the concrete zone, the simulations were 
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compared by examining both the total portlandite-dissolution (accounting for both hydrolysis 
and carbonation) and (ii) the ettringite-precipitation (volumetric variations above twice the 
initial volume) front. The dolomite-dissolution front, the smectite-dissolution front (volumetric 
variations below half of the initial volume) and the pH plume in the clay barrier (pH > 9) were 
chosen to analyze clay-rock alterations. Dolomite is one of the most destabilized minerals in the 
claystone (Callovo–Oxfordian formation in this study) due to secondary phase formation (e.g., 
saponite) incorporating magnesium in their structural formulas, while montmorillonite (bearing 
hydroxyl groups) contributes to the buffer capacity. The criterion chosen for pH corresponds to a 
limit above which the dissolution rates of many aluminum silicate phases increase significantly. 
Regardless of the complexity of the simulation, after 100,000 years of interaction, not one of the 
above criteria indicates a perturbation higher than one meter. For the cases that account for full 
complexity, the perturbation extension is even 5 times lower. Still, in saturated conditions and 
besides the simulation conceptualization, the accuracy and numerical stability of the reactive 
transport codes have been successfully benchmarked (Blanc et al. 2015b). While simulations 
conducted in saturated conditions are numerous, simulations accounting for non-saturated and non-
isothermal conditions are rare, making their results more difficult to evaluate. In these simulations, 
the main uncertainty lies in the period necessary to reach complete saturation inside the concrete. 
Considering an initial saturation of 30 %, this period is estimated to be approximately 2,000 years 
(Burnol et al. 2006), but it may depend on the grid size resolution and on the power exponent of the 
Millington relationship that describes dependency of pore aqueous and gas diffusion coefficients 
as a function of saturation and porosity (Trotignon et al. 2011). From the mineralogical point 
of view, the transformation pathways in concrete were found to be similar to those simulated in 
saturated conditions (e.g., portlandite degradation, carbonation, Ca to Si ratio decrease in C-S-H), 
except for sulfate/carbonate salts being deposited where drying takes place. 

OTHER INTERFACES WITHOUT EXTENSIVE RTM STUDIES

The glass–(iron)–clay interface

This interface is studied in countries where the spent fuel is retreated, in total or in part, 
by removing and recycling uranium and plutonium, e.g., in Belgium, France, Germany, Japan, 
Russia, UK, and the USA (Gin et al. 2013). In this case, borosilicate glasses are developed as 
the waste matrix for HLLW. Note that preliminary studies have also been conducted for the use 
of glass for ILLW (e.g., in France, UK and the USA). This interface is complex, since iron may 
be present if steel corrosion is still going on when water enters the canister. Once corrosion is 
finished, corrosion products will be present and have an influence on glass alteration. RN can be 
considered as traces and are not thought to have a great impact on the glass alteration process.

Numerical studies of glass alteration at the space scale of the disposal cell (50 m) and 
the corresponding time scale (100,000 years) are scarce (Bildstein et al. 2007, 2012). In these 
simulations, glass alteration follows a very simple “operational” model in which the alteration 
proceeds in two stages, after a time lag corresponding to the time before canister failure (700 
years): a first initial phase where the alteration rate (r0) is high and a second stage where a residual, 
much lower, rate has been established (~r0 /10,000). The feedback between glass alteration and 
the chemical environment is indirectly taken into account by the duration of the initial stage, 
which stops when silica derived from the glass has saturated the “sorption” capacity of the system 
close to glass (essentially the corrosion products). In these simulations, iron corrosion starts at 
the beginning of the simulations so that from 700 to 45,000 years, when corrosion is completed, 
it proceeds simultaneously with glass alteration favoring the precipitation of Fe-silicates. 

The most noticeable evolution in the RTM approach to glass alteration in these two 
studies concerns the complexity of the geochemical and mineral system. Bildstein et al. (2007) 
took into account only four simple mineral phases as glass alteration products, including one 
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zeolite. The second paper (Bildstein et al. 2012) includes 26 secondary minerals, with 14 glass 
alteration products, some of them determined from experimental studies (including Fe-silicates 
and Fe-aluminosilicates)(Figure 3). An explicit limitation of the H2 partial pressure (hydrogen 
is considered to form a gas phase when pH2 reaches 60 bar) was also taken into account as well 
as the presence of an excavation damaged zone with degraded transport properties in contact 
with the canister. Finally, to approach realistic conditions, the thermal gradient evolutions 
determined from THM calculations were included in the calculations, with temperature-
dependent thermodynamic, kinetic and transport properties.

The relative simplicity of the simulations, in terms of glass behavior, can be explained 
by the fact that the alteration of glass in the presence of complex mineralogical environments 
has been only studied extensively in the last decade, allowing for specific models for glass 
alteration to be developed and calibrated. 

Along with transport by diffusion, the dissolution of corrosion products and clay minerals and 
the precipitation of secondary crystallized minerals should be the main processes governing the 
long-term fate of glass. Dissolved cations such as Fe2+, Mg2+, Ni2+ have been shown to precipitate 
with silicon (if the pH is sufficiently high), which is the major element of the glass protective 
amorphous layer, and sustain glass dissolution (Aréna et al. 2016, 2017, 2018). The influence 
of Mg-rich Callovo–Oxfordian groundwater on glass dissolution has been modeled and fitted 
to the experimental results in Jollivet et al. (2012). The mechanism hypothesized by Rebiscoul 
et al. (2015) for modeling the long term alteration rate of glass in the presence of magnetite is 
slow magnetite dissolution followed by iron silicate precipitation. The ability of magnesium-rich 
minerals like hydromagnesite, dolomite and the argillite clay fraction to provide magnesium and 
sustain silicon consumption and glass alteration has been experimentally studied and modeled by 
(Debure et al. 2012, 2013, 2018). The effect of clay on glass alteration has often been described 
with a partition coefficient (Kd) of silicon in the clay, reflecting the complexity of the underlying 
dissolution/precipitation mechanisms (Godon et al. 1989; Gin et al. 2001; Pozo et al. 2007). 

Current research in glass alteration modeling focuses on the description of the amorphous 
layer (formation, structure, composition, solubility) and on the capacity of the amorphous layer 
to lower the glass dissolution rate (Gin et al. 2016, 2018). Following an approach initiated by 
Bourcier et al. (1994), the hypothesis of a backward reaction of formation of the amorphous layer 
from the bulk fluid composition is made in order to build a thermodynamic description of the 
amorphous layer (McGrail and Chick 1984; Daux et al. 1997; Frugier et al. 2009; Rajmohan et 
al. 2010; Steefel et al. 2015a; Frugier and Godon 2018). The amorphous layer composition and 
solubility are currently described by concatenating database minerals or hypothetical phases that 

Figure 3. Profile of glass alteration products at 100,000 years in a 21 cm radius glass cylinder (Bildstein 
et al. 2012). Results obtained after alteration 5% of the initial volume of glass. Chalcedony, saponite, and 
vermiculite dominated in the center of the glass (left plot). Greenalite and nontronite dominate towards the 
interface with iron, and Ca-siderite (right plot). 
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account for both the amorphous layer composition and the fluid composition at steady state.The 
GRAAL model (Frugier 2008; Frugier and Godon 2018) computes the local amount of protective 
layer to calculate the local thickness of the protective layer and deduce the glass alteration rate. 

The remaining challenge is to couple the specific model for glass alteration (e.g., 
GRAAL) with large-scale RTM simulations including the materials present in the near field of 
the disposal cell, i.e. to ensure compatibility between the two modeling systems.

The glass–concrete–(clay) interface

This interface plays a role in deep geological repository, especially in the Belgian concept 
of concrete supercontainer. Once the overpack (carbon steel) and primary container (stainless 
steel) have failed, glass will be in direct physical contact with concrete. There are currently no 
RTM studies of this interface at the scale of the disposal cell, to best of the authors’ knowledge. 
This is partly due to the challenge of understanding the complex behavior of glass in water and 
its interactions with materials such as concrete, which has only been studied in recent years.

The glass–concrete interface has been a growing field of interest since Belgium proposed 
the supercontainer concept for the disposal of high-level wastes (Kursten and Druyts 2008). A 
thick concrete buffer is meant to maintain high pH, to preserve the integrity of the carbon steel 
overpack at least during the waste’s thermal phase. France is studying the option of filling the 
gap between the rock wall and the casing with bentonite/cement grout. The grout thickness is 
dimensioned to compensate for acidic fluids coming from the oxidation of iron and sulfur in the 
clay occurring during the facility’s operational period. With high pH for long periods of time, the 
Belgian concept relies more on the overpack’s lifetime, whereas the French concept takes more 
advantage of the confinement properties of the waste glass. However, both require understanding, 
deterministic models, and long-term quantification relative to glass alteration close to concrete.

Alteration of glass at a pH higher than 10 results in the precipitation of other secondary 
crystallized minerals, especially zeolites, as well as C-S-H phases. Zeolite precipitation 
has been proven to sustain glass corrosion and to change the composition of the protective 
amorphous layer at the glass surface (Ribet and Gin 2004; Ferrand et al. 2013, 2014; Mercado-
Depierre et al. 2013, 2017). 

The higher the pH, the faster the zeolite nucleation-growth process and the slower the 
induction time required for zeolite surface to be high enough to impact the glass dissolution 
rate (Fournier et al. 2017). Zeolite precipitation consumes Si and Al, two key constituents in 
the amorphous layer, and therefore sustains glass dissolution. However, zeolites also consume 
alkali, which in return lowers both the pH and the zeolite precipitation rate. Zeolite-seeded 
experiments have been a major tool for investigating those experimental conditions where a 
mineral’s precipitation kinetics drive the glass dissolution rate (Fournier et al. 2017). The first 
time-dependent geochemical modeling of alteration resumption has been achieved with the 
GRAAL model (Frugier et al. 2017). Only a limited number of modeling studies of glass–cement 
interactions exist and none of them integrated the transport component. Liu et al. (2015) report 
simulations of glass alteration in hyperalkaline solution from their 300-day experiments at the 
laboratory scale, showing a diffusion-controlled glass alteration rate at 30 °C and a shift towards 
a surface reaction-controlled rate after 100 days at 70 °C. Baston et al. (2017) performed batch 
type scoping thermodynamic modeling on the interactions between two illustrative vitrified 
ILLW products and two cementitious backfill, predicting limited changes in mineralogy and 
properties of the two materials. Improving knowledge about i) amorphous layer composition 
and solubility at high pH and ii) zeolite precipitation kinetics is still required before applying 
the model to the complex chemistry and the long time scales of geological disposal.
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The iron–concrete interface in anoxic conditions 

This interface will be encountered in the Belgian concept with the concrete supercontainers 
(steel envelope and overpack) and also in all type of repository concepts where steel reinforced 
concrete is envisaged. Although experimental studies on iron corrosion in concrete have been 
performed in the context of waste disposal (e.g., L’Hostis et al. 2011; Kursten et al. 2017), no 
RTM studies have been found in the literature concerning this interface in anoxic conditions. 

In the highly alkaline interstitial solution of Portland concrete, the corrosion of carbon 
steel is characterized by a low corrosion rate (passive mode) in the order of 0.1 µm/yr to 1 µm/
yr (Smart et al. 2013; Chomat et al. 2017; Kursten et al. 2017). This corrosion mode is due 
to the formation of a thin protective layer, with corrosion products similar to those observed 
at the iron–clay interface: magnetite dominates, accompanied by small amounts of hematite. 
The stability of this layer depends highly on the solution chemistry: pH, buffering effect, 
carbonate and sulfate content (Chomat et al. 2017). Corrosion can therefore resume when the 
conditions are no longer favorable, i.e. when concrete does not buffer the pH at high values 
(typically upon degradation by carbonation). 

Since corrosion models are at the heart of this problematic, significant advances will be 
achieved in the near future by coupling RTM codes with electrochemical corrosion models 
(Bataillon et al. 2010; Macdonald et al. 2011).

GENERAL CONCLUSION AND PERSPECTIVES

Over the last two decades, the use of RTM in simulations of the long-term behavior of 
materials in waste repositories has evolved to consider geochemical systems of increasing 
complexity, driven by the improvement of numerical codes (more functionalities), and 
their efficiency (solver, parallelization), as well as the accumulation of data acquired to 
feed thermodynamic and kinetics databases. Overall, these simulations provide a better 
understanding of physical and chemical change and how materials interact; they give more 
confidence in the prediction of the durability of materials by converging on the alteration 
extent that can be expected at the interfaces between different materials over long periods of 
time. Benchmarking RTM codes on problems related to waste repositories (e.g., Marty et al. 
2015b) and continuous database development (Blanc et al. 2012, 2015b; Giffaut et al. 2014; 
Lothenbach et al. 2019) also improve the robustness of the predictions. This is not to say 
that we fully understand all the physical and chemical phenomena or that modeling is fully 
representative of all the processes occurring in such complex systems. These are two different 
aspects to be considered which call for different treatment: either acquiring more scientific 
knowledge through experiments, or new developments or approaches in numerical codes. 
Often, both issues have to be tackled together. 

An example of the “lack of knowledge” issue is the question of how redox conditions are 
controlled in deep geological environments (e.g., see the results of redox measurements in 
European project RECOSY (Duro et al. 2014). Oxygen is a very reactive chemical compound, 
readily producing oxic conditions along its diffusive pathway during the operational stage 
(see dedicated section in this chapter). These oxic conditions will not remain long after the 
closure of the disposal cells and the onset of the corrosion phase. The re-establishment of 
reduced conditions in the host rock is expected within a few hundreds to thousands of years. 
Moreover, reduced conditions do not mean reducing conditions, i.e. the formation of reactive 
reductants: the reactivity of hydrogen is low, sulfate reduction is thought to be very slow and 
only catalyzed by microorganisms (Truche et al. 2009) and argillaceous rocks only contain 
small amounts of ferric compounds (e.g., in the Callovo–Oxfordian claystone). The question 
therefore remains about the buffering capacity of the host rock with respect to additional 
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oxidative perturbations once the hydrogen has diffused away from the cell disposal. Such 
perturbations could come from the alteration of glass that will release significant amounts of 
ferric species. This is of course a crucial issue for the concomitant migration of RNs. It is not 
clear whether the host rock will contain enough reactive reductants (ferrous and/or sulfide 
compounds, such as pyrite) to maintain reduced conditions at this stage. Most RTM codes 
are ready to simulate this type of situation, since redox couples can usually be deactivated to 
define only the reactive ones (even H+/H2 in post-corrosion conditions). 

Another recurrent issue in RTM is the value of reactive surface area that should be used for 
minerals in the simulation of these systems (see discussion in Li 2019, this volume). An example 
of assessment of the reactive surface of glass dissolving in water is given by Fournier et al. (2016), 
who demonstrated that the use of geometrical surface area provides a consistent approach whenever 
it can be easily calculated. When trying to apply this approach to porous media, and even more so 
to evolving porous media, the question is inevitably linked to the concepts of porosity network, 
accessibility to water, and physical and chemical heterogeneities (e.g., Landrot et al. 2012, Noiriel 
et al. 2012). Variable porosity is the result of the volume balance between mineral dissolution and 
precipitation (Seigneur et al. 2019, this volume); clogging phenomena are predicted at the interfaces 
between reactive materials in the repository because secondary minerals take up more volume than 
primary minerals. This is particularly true for metallic components, especially if technological gaps 
are rapidly filled by swelling clay upon rehydration (Wilson et al. 2015). This behavior is also 
predicted at the interface between concrete and clay. No consensus has been reached today about 
how the RT processes are affected by porosity clogging, i.e. how the macroscopic mineral reaction 
rate changes when porosity vanishes. This is a domain where RT simulations at the pore scale 
could help decipher the mechanisms controlling the dissolution and precipitation rate (Molins and 
Knabner 2019, this volume). A corollary aspect of this question brings us to the way we consider the 
evolution of transport properties in (strongly) altered zones. For instance, the diffusion properties 
in the corrosion layer, which controls the mineral sequence of corrosion products, had to be set to 
very low values to reproduce the observed paragenesis (Bildstein et al. 2016). In these situations, 
Kozeny–Carman and Archie’s law fail to reproduce experimental observations and thermodynamic 
properties such as solubility are also modified if pores reach micrometric size (e.g. Emmanuel and 
Berkowitz 2007, Mürmann et al. 2013, Bergonzi et al. 2016, Rajyaguru et al. 2019). Although the 
precipitation of minerals, in general and in particular in this type of pores, should theoretically be 
described in RTM as a sequence of steps including nucleation, scavenging (or ripening), and growth, 
this approach has only been used by Savage et al. (2010) in the context of waste repositories. This 
type of model has been developed in the last decade and could be used more widely, providing that 
the necessary data are acquired (Fritz and Noguera 2009, Noguera et al. 2006, 2016). Combined 
with the thermodynamic approach in small pores, they may also shed new light on the processes 
controlling mineral reactivity during porosity clogging.

Recognizing that the combination of heat release in HLLW disposal cells and the 
production of hydrogen gas (also in the ILLW cells) will significantly delay the resaturation 
of the repository near field, more THC processes have been implemented to perform 
simulations with realistic temperature and water saturation changes during the lifetime of the 
repository. Multiphase RTM has been conducted, first looking at TH processes with a source 
of hydrogen (e.g., Xu et al. 2008, Zheng et al. 2008, Senger et al. 2011, Treille et al. 2012). It 
has progressively integrated more complex chemistry (e.g., pyrite oxidation in De Windt et al. 
2014; bentonite illitization in Zheng et al. 2015), but full chemical treatment has been limited 
so far mainly to concrete carbonation (Trotignon et al. 2011, Thouvenot et al. 2013). The 
coupling between the fast diffusive transport of very reactive gas has proven to be a challenge 
for numerical codes. In this regard, the RTM of waste repositories could benefit from the 
experience return of modeling in other systems such as CO2 sequestration (Sin and Corvisier 
2019, this volume). Another aspect of unsaturated porous media that is not yet widely treated 
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in RTM relates to the dependence of chemical reactivity with regard to the water content, in 
particular looking at how the mineral and gas solubility and the aqueous speciation relate 
to capillary pressure at low water saturation (Lassin et al. 2005, 2011, 2016). This process 
may be enhanced by the fact that some chemical reactions, such as steel corrosion and glass 
alteration, consume water; this coupled effect is only starting to be fully integrated in RTM 
codes (Seigneur et al. 2018).

Finally, even though large-scale 3D RTM calculations started to be tractable very recently 
thanks to improvements in computer calculation capacity, studies looking at waste repositories 
in this way are scarce (Trinchero et al. 2017). The main reason remains the large scale of 
the problems considered: metric to kilometric spatial domain, time period of 100,000 to 
millions of years. This explains, at least partly, why numerical simulations in this context have 
not yet fully benefited from recent advancements in RTM such as the diffusion in charged 
porous media (Tournassat and Steefel 2019, this volume). This feature would be particularly 
appropriate for clay materials encountered in deep geological storage to account for different 
“porosities” accessible to anions and cations. The same statement is applicable for modeling 
at the pore scale, which could be combined with the macroscopic approach, for instance, for 
problems involving porosity clogging.
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