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INTRODUCTION

Biogeochemical processes are of tremendous importance for determining the fate of 
many organic and inorganic compounds in the subsurface. Most global elemental cycles 
involve biogeochemical transformation, and the recycling of carbon and nutrients relies 
almost exclusively on biogeochemical processes. In particular, the majority of natural 
organic compounds are biogeochemically reactive, but also a large number of anthropogenic 
organic carbon compounds can be biogeochemically transformed, for instance, during the 
biodegradation of organic contaminants. Furthermore, inorganic compounds such as e.g., 
many nitrogen, phosphorus or sulfur compounds, metal compounds or minerals are directly 
or indirectly affected by biogeochemical reactions. To which extent and at which conditions 
a biogeochemical reaction takes place depends not only on the properties of the involved 
chemical reactants and products but also on the behavior of the microbial community (or 
communities) catalyzing the biogeochemical transformation. Porous media—in particular 
natural porous media—are complex and often heterogeneous structures, which imposes severe 
challenges in determining the exact physical, chemical and ecological conditions the microbial 
community is exposed to and to which extent it is able to provide any ecosystem service, such 
as the catalysis of a biogeochemical reaction.

Reactive transport models have become an established mean for the investigation and 
quantification of countless chemical transformations in porous media (e.g., Lichtner et al. 
(1996), Xiao et al. (2018), other chapters of this issue), and modeling approaches addressing 
the biogeochemical dynamics in natural porous media such as soil, aquifers and aquatic 
sediments exist already for decades (Berner 1980; Lichtner et al. 1996; Boudreau 1997; 
Murphy and Ginn 2000; Barry et al. 2002; Brun and Engesgaard 2002; Meysman et al. 2003; 
Thullner et al. 2007; McGuire and Treseder 2010; Meile and Scheibe 2018, 2019). Over the 
last years the improvement of experimental techniques has led to a better knowledge on the 
behavior of microorganisms that drive biogeochemical reactions and, more broadly, to an 
increased understanding of coupled reactive-transport processes in the subsurface. This has 
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led to increasingly sophisticated geomicrobial modeling approaches which have been used 
already in a reaction-transport framework or which provide the potential for being used to 
simulate biogeochemical processes and their dependency on the abundance and activity of 
microbial communities in subsurface environments.

The aim of this chapter is to build upon established modeling approaches for the simulation 
of biogeochemical processes in soils, aquifers and sediments across scales and to provide an 
overview of recent extensions of these established approaches towards increasingly complex 
representations of microbial dynamics in the subsurface. We thus start with section ‘Traditional 
Approaches for Simulating Biogeochemical Processes in the Subsurface’ giving a brief summary 
of these established modeling approaches. This will be followed in section ‘Thermodynamically 
Informed Models’ by a discussion of thermodynamic constraints on microbial activity and how 
to include such constraints into the simulation of biogeochemical reactions. Thereafter two 
sections will focus on the explicit representation of microbial dynamics. In recent years the 
increasing computational power as well as the increasing amount of experimental information 
on microbial systems has led to numerous new approaches for modeling the behavior of 
individual microbial species as well as of microbial communities (Song et al. 2014) and only 
a limited overview can be provided here. We separate these approaches into two (certainly 
overlapping) aspects: section ‘Integration of Microbial Sequencing Data in Geomicrobial 
Models’ describes approaches of high complexity which consider a maximum of available 
data, mainly from various sequencing techniques, and section ‘Considering the Ecological 
Behavior of Microorganisms’ describes approaches which put more emphasis on the ecological 
behavior of the microorganisms represented by certain traits and which are (implicitly) 
based on the assumption that the complexity of an ecological model should be limited (May 
1974). Stable isotope approaches have become increasingly established for the investigation 
of biogeochemical processes and stable isotope data can be used to constrain the elemental 
fluxes between reactants and the microbial biomass or reaction products, and to identify which 
microbial pathway(s) has or have been involved into a degradation reaction. The section 
‘Considering Stable Isotope Signatures’ provides an overview on how such information can be 
embedded in reactive transport modeling approaches. Modeling microbially driven processes 
in a porous medium implicitly involves various spatial scales ranging from the micro scale 
on which microbial cells act to the observation scale which ranges from the cm scale in high 
resolution laboratory experiments up to the 100 km scale in global land and ocean models. 
In section ‘Scale effects’ some consequences of linking microbial and transport scales are 
discussed and approaches on how to consider them within a modeling framework are presented.

TRADITIONAL APPROACHES FOR SIMULATING 
BIOGEOCHEMICAL PROCESSES IN THE SUBSURFACE

Reaction networks for biogeochemistry

Microorganisms generate the energy required for growth and maintenance by catalyzing 
the transfer of electrons from electron donor substrates (ED) to terminal electron acceptors (EA). 
As a result, they exert a major control on the redox chemistry of their immediate surroundings 
(Thullner et al. 2007). In surface and subsurface systems such as rivers and lakes, sediments, 
soils and groundwater, the vastly dominant source of electrons is most often reduced carbon 
bound in complex organic molecules of natural or anthropogenic origin. Their progressive 
degradation (typically oxidation) shapes the redox conditions of the surrounding environment 
and classically leads to a redox stratification. This zonation results from the sequential utilization 
of EA’s (O2, NO3

−, Mn(VI), Fe(III), SO4
=) followed by methanogenesis, an order which is 

consistent with a progressive decrease in Gibbs energy yields released through these metabolic 
pathways (Claypool and Kaplan 1974; Froelich et al. 1979; Stumm and Morgan 1996).
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In Reactive Transport Model (RTM) applications, redox reactions have traditionally 
been simulated using the well-known Michaelis–Menten model for enzymatically catalyzed 
reactions (e.g., Van Cappellen and Gaillard (1996); Boudreau (1997); Barry et al. (2002)) 
but other approaches have also been proposed, e.g., the ‘reverse Michaelis–Menten’ model 
(Schimel and Weintraub 2003) or the ‘equilibrium chemistry approximation’ (Tang and Riley 
2013). The Michaelis–Menten model derives from theory of enzyme kinetics and is consistent 
with observations that show saturation behavior with increasing availability of ED substrate 
(Thullner et al. 2007). Field and laboratory observations also reveal similar saturation behavior 
with respect to the concentrations of EA’s, and the reaction rate for a redox metabolic pathway 
is classically represented as:
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where k is the maximum rate and KED and KEA denote half-saturation constants with respect to 
the electron donor and acceptor, respectively. Inhibition terms can be introduced in the rate law 
to account for the suppression of a specific metabolic pathway by the presence of higher energy-
yielding EA. This classical approach to simulate the redox zonation has been extensively used in 
RTM applications of natural and engineered environments, see, e.g., the reviews by Thullner et 
al. (2007), Arndt et al. (2013) and Paraska et al. (2014) for further details.

 (Sub)-surface environmental conditions can often be traced back directly or indirectly 
to the oxidation of reduced carbon molecules. As a result, an accurate representation of 
these processes, including their temporal evolution, is often of the upmost importance for 
characterization of the biogeochemical dynamics in these systems. Redox processes control, 
among others, the recycling of inorganic carbon and nutrients, the precipitation/dissolution 
of carbonate and sulfide minerals, the pH of (pore)-waters, the sorption/desorption of toxic 
elements as well as the carbon sequestration in soils and sediments, all of which have been 
addressed in RTM applications (see, e.g., Paraska et al. 2014; Li et al. 2017 for recent reviews). 
Models relying on kinetic rate laws similar to Equation (1) or variations of it have been applied 
across all spatial scales, from pore networks to the assumed horizontally homogeneous plot 
or core scale (e.g., Gharasoo et al. 2012; De Biase et al. 2013; Druhan et al. 2014), and from 
catchment scales (e.g., Bao et al. 2014) to regional and global scales (e.g., Thullner et al. 2009; 
Wania et al. 2010; Krumins et al. 2013; Raivonen et al. 2017; Hülse et al. 2018). They remain 
popular, although microbial rate laws explicitly accounting for the dependence of the microbial 
reaction rate on the abundance of the microorganisms are increasingly applied in RTMs, and 
begin to be used in large scale Earth System Models (e.g., Wieder et al. 2013, 2014; Sulman et 
al. 2014; Wang et al. 2016; Huang et al. 2018).

Kinetics of geomicrobial reactions

The Monod model for microbial growth. Models in which microbial biomasses are 
explicitly included are typically applied to study the response of microbial communities to 
fluctuations in environmental conditions and the competition of different microbial groups for 
a common substrate (Boudreau 1999; Wirtz 2003; Thullner et al. 2005, 2007; Dale et al. 2008a; 
Regnier et al. 2011; Arndt et al. 2013). These biomass-explicit models have been coupled to 
RTMs to address environmental questions in a wide range of natural and engineered systems 
including water bodies (e.g., Vanderborght et al. 2002; Reed et al. 2014), groundwaters (e.g., 
Thullner and Schäfer 1999; Barry et al. 2002; Yabusaki et al. 2007; Li et al. 2009; Tartakovsky 
et al. 2009; Bao et al. 2014), lake sediments (e.g., Jin et al. 2013), marine sediments, (e.g., Dale 
et al. 2010; Regnier et al. 2011), and soils (e.g., Neill and Gignoux 2006; Wieder et al. 2013; 
Sierra et al. 2015; Huang et al. 2018).
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Geomicrobial models rely on rate laws that explicitly account for the dependence of 
the microbial reaction rate on the biomass of the microorganisms, according to the Monod 
microbial growth equation (Monod 1949) or its derivatives (e.g., Soetaert and Herman 2009):
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where dB/dt is the rate of biomass production, B is the biomass, µmax is the maximum specific 
growth rate, S is the concentration of the substrate, and Ks is the Monod half-saturation 
constant, that is, the substrate concentration when µ = 0.5 µmax. In a related model approach—
the Contois model—KS is considered to depend linearly on B (Contois 1959). About a 
decade ago, the functional dependency on substrate and biomass of the classical microbial 
growth model was challenged by Schimel and Weintraub (2003) and the reverse Michaelis–
Menten kinetics was proposed as an alternative to simulate soil C decomposition. This model 
assumes that the rate is a nonlinear function of biomass while depending linearly on substrate 
concentration (Wang et al. 2016). Several later studies using microbial models showed that the 
classical Michaelis–Menten model may indeed fail to resolve the biogeochemical dynamics in 
both laboratory and natural settings (see Tang (2015) for an overview). This debate revolving 
around alternative nonlinear microbial models has received considerable attention in global 
scale applications of soil C decomposition and its response to global change. Comparative 
analysis of the model’s emerging properties has also recently been carried out (Wang et al. 
2016) and it has been demonstrated that both models are two special cases of the ‘equilibrium 
chemistry approximation’ (ECA) kinetics proposed by Tang (2015).

A particular biomass group i may rely on more than one substrate to sustain its metabolic 
needs. This dependency includes catabolic reactions involving the transfer of electrons from 
an external electron donor (ED) to a terminal electron acceptor (EA) as well as the possibility 
for a microbial group to rely on j electron donors to sustain its metabolic needs (Dale et al. 
2006). The generalized form of Equation (2) thus reads:
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where n is the number of ED’s sustaining the growth of biomass group i, and FK i
j
,  are dimensionless 

kinetic limitation terms (0-1) for each of the j catabolic reaction that are function of the uptake 
efficiencies of the ED’s and EA’s by the microorganisms, as well as the local availabilities of the ED 
and EA. Note that Equation (3) can further be modified by including inhibition terms to account 
for the suppression of a specific metabolic pathway by the presence of higher energy-yielding 
EA’s or for the presence of toxic compounds. This is usually realized by introducing a series of 
hyperbolic functions, each characterized by an inhibition constant Kin (see, e.g., Van Cappellen 
et al. 1993; Boudreau 1997). In case where microorganisms are exposed to a new substrate an 
initial delay of their growth and degradation activity may be observed as the enzymatic apparatus 
of the cells needs to adapt to the new compound and a lag effect needs to be considered in the 
modeling approach (Wood et al. 1995; Ginn 1999; Nilsen et al. 2012). 

The rates of biomass growth and substrate utilization are directly coupled through the 
growth yield, Y, expressed as the amount of biomass carbon produced per unit of mass electron 
donor consumed (Regnier et al. 2011). Values of Y depend on the Gibbs energy generated 
by the catabolic reaction j, the Gibbs energy needed for the formation of a new biomass i 
(anabolism), and the efficiency with which the organisms utilize energy (VanBriesen 2002). In 
other words, the growth yield partitions the flow of electrons between the catabolic pathway 
of energy generation and the anabolic pathway of microbial growth (Rittmann and McCarty 
2001); accurately predicting Y is thus key to properly represent geomicrobial processes in 
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RTMs (see next section for further details). The change in electron donor concentration due to 
microbial processes can then be represented by:
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where m is the number of microbial groups relying on the substrate (electron donor) j to 

ustain their metabolic energy needs and 
j

iY represents an observed growth yield, which is the 
efficiency of converting carbon into microbial products (Sinsabaugh et al. 2013; Bradley et al. 
2018b). A similar equation can be written for the electron acceptor consumption, which can 
be catalyzed by multiple microbial groups relying on several electron donor substrates. The 
coupled Equations (3, 4) are at the foundation of geomicrobial models. An alternative approach 
to simulate microbially driven reactions is to constrain the substrate consumption through 
Michaelis–Menten kinetics and then quantify the microbial growth rate by multiplying the 
consumption rate by the yield (e.g., Thullner et al. (2007)). Both approaches are identical if 
Yi

j  is constant but if it varies, the choice defines if changes in yield imply unchanged growth 
rate but changing substrate consumption (Monod) or unchanged substrate consumption but 
changing growth rate (Michaelis–Menten). 

As further discussed in section ‘Thermodynamically Informed Models’ of this chapter, 
the computation of Y values depends on the Gibbs energies generated and consumed by 
the catabolic and anabolic (new biomass synthesis) reactions, respectively. The underlying 
principles to combine the catabolic and anabolic pathways in so-called macrochemical 
equations are described in detail in Dale et al. (2006) and Smeaton and Van Cappellen (2018). 
In short, electrons supplied by an ED are used partially to generate energy and partially for 
biomass synthesis, the partitioning of this electron flow depending of the stoichiometry of the 
half-redox reactions involved in catabolism and anabolism. As an example, the macrochemical 
equation for anaerobic methane oxidation catalyzed by methane oxidizing archea (MOA),

14.3CH +0.2NH +40.3H O 0.2C H O N+13.5H + 55.1H + 13.3 HCO4 4
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is obtained from the combination of the following two redox reactions :
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14 3 42 9 55 1 14 3 18 3 44 2 2 3. . . . .CH H O H HCO H e� � � � �� � � (7)

for anabolism and catabolism, respectively. See Dale et al. (2006) for the determination of the 
stoichiometric coefficients in Equations (5–7). We thus note that only a fraction of the carbon 
source is fully oxidized to dissolved inorganic carbon (HCO3

−), while the other fraction is only 
party oxidized into biomass (C5H7O2N). Furthermore, in this reaction the MOAs produce a 
reactive intermediate (H2) that can be used by other anaerobic microorganisms to sustain their 
metabolic needs, most notably sulfate reducing bacteria (SRB). The latter group uses H2 as 
energy source according to the following macrochemical equation:

9.7 SO + 40.7 H + 10.5 H + 0.2 NH + CO
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Reaction 5 is endergonic under standard state conditions (see below for a definition) and 
thermodynamic calculations have in fact shown that CH4 can only be oxidized to H2 under a 
narrow range of in-situ pressure, temperature and solution composition (LaRowe et al. 2008). 
This thermodynamic constraint requires maintaining low H2 concentrations, which is typically 
achieved through H2 consumption by the SRB (Hoehler et al. 1994; Dale et al. 2008b). The 
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syntrophic association of MOA and SRB thus catalyzes the net reaction of anaerobic oxidation 
of methane coupled to sulfate reduction, which can be obtained by combining Equations (5,8). 
If MOA and SRB biomasses are not explicitly simulated, the combination of the two catabolic 
pathways CH H O H HCO + H and 4 H + SO + H HS H O+

2
+

4 2 2 3 4
2

23 4 4� � � � �� � � )  only leads 
to the much simpler net reaction stoichiometry for anaerobic oxidation of methane (assuming 
that the reactive intermediate (H2) produced by the MOA is entirely consumed by the SRB):

CH SO HCO HS H O4 4
2

3 2� � � �� � � (9)

In RTMs, the classical approach is to implement the net reaction Equation (9) for 
simulating the coupled methane-sulfur cycles (Regnier et al. 2011), but several authors have 
also explicitly modeled the dynamics of reactive intermediates (e.g., Dale et al. 2008b; Orcutt 
and Meile 2008; Alperin and Hoehler 2009b), thereby providing useful insights into the 
mechanisms and environmental controls of microbially mediated reactions. This metabolic 
modeling approach is straightforward to implement in RTMs as, for the above example, it 
only requires the addition of a new mass conservation equation for the intermediate species, 
H2, while the rate expression for the net oxidation of methane by sulfate is replaced by two rate 
expressions, one for each of the individual reaction steps (Regnier et al. 2011).

Mortality and maintenance terms in geomicrobial models. The death of microorganisms 
and the contribution of dead biomass to substrate pools are included in geomicrobial models by 
assuming that mortality scales to the active biomass pool via a first-order decay rate constant 
µe (e.g., Dale et al. 2006). If the electron donor is an organic carbon substrate fed by the death 
of microbes, the conservation equations for biomass and substrates are modified according to:
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with zj
i as fraction of the dead biomass returning to the pool of substrate j.

The above two equations form the cornerstone of biomass-explicit modeling approaches in 
RTMs (e.g., Thullner et al. 2007). However, the observed growth yields in this model does not 
distinguish the energetic costs associated to growth from those due to maintenance (Bradley et 
al. 2018b). The classical models of Herbert (1958) and Pirt (1965) allow to separate the energetic 
costs required to generate new biomass (Lipson 2015) from the energetic costs to perform all 
maintenance functions. These classical models differ by the provenance of maintenance energy, 
Herbert considering maintenance costs as endogenous catabolism, i.e., the consumption of 
biomass while Pirt assumes that maintenance leads to an additional consumption of substrate. 
Both models have their inherent limitations (see, e.g., Wang and Post (2012); and references 
therein for details). In addition, observations show that the specific maintenance rate, and the 
provenance of maintenance energy, can vary under different environmental conditions (van 
Bodegom 2007). Together, these elements call for the development of an hybrid model that 
allows for alternative supplies of maintenance energy from biomass and/or substrate, as proposed 
by Wang and Post (2012) and Bradley et al. (2018b) for soils and sediments, respectively:
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where mq i
j
,  represents the specific maintenance rate, and the term in parenthesis tends to zero 

when substrates are abundant, consistent with the idea that microorganisms do not consume 
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biomass for their maintenance requirements in this case. Electron donor substrates are 
consumed instead and calculated according to:
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where YG i
j
, is now the “true” growth yield, that is a parameter that only reflects the expenditure of 

energy to generate new biomass (Lipson 2015). Conversely, when substrates are scarce, the second 
term in Equation (13) tends to zero while the term in parenthesis in Equation (12) approaches 1.

THERMODYNAMICALLY INFORMED MODELS

In what follows, we review several quantitative approaches aiming at the integration 
of thermodynamic constraints in RTMs that explicitly simulate geomicrobial population 
dynamics. We restrict our analysis to concepts derived from equilibrium thermodynamics, 
which have been extensively applied within the framework of RTMs over the last decade. 
Appealing extensions to such classic, equilibrium thermodynamic approaches are models 
relying on the Maximum Entropy Production (MEP) concept (e.g., Vallino 2010). In these 
models, MEP is used either as an optimization goal or as a governing principle to understand 
and model biogeochemical processes (Meysman and Bruers 2010; Vallino 2010; Song et al. 
2014). To our knowledge, however, application of these non-equilibrium thermodynamic 
approaches, including those relying on statistical thermodynamics (Song et al. 2014), have 
remained largely theoretical and conceptual. Despite their significant potential, the modeling 
of microbial processes based on MEP is thus not covered in this chapter.

Incorporating bioenergetics in models of microbial dynamics

Microbial dynamics is constrained by classical thermodynamics in two ways: (1) Growth 
yields (Y) are dependent on catabolic energy gains (Roden and Jin 2011) and (2) redox 
reactions can only proceed when the energy yield of the catabolic reaction exceeds a metabolic 
threshold. This bioenergetic limitation can be included in the Monod geomicrobial model for 
redox processes (section ‘Traditional Approaches for Simulating Biogeochemical Processes 
in the Subsurface’) using a functional dependency on the thermodynamic driving force for the 
reaction, which depends on the Gibbs energy yield (Regnier et al. 2011):
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where the thermodynamic limiting term, F
T
, represents the limitation that energy yields have 

on catabolic reactions rates (Jin and Bethke 2002; Dale et al. 2008c; LaRowe et al. 2014). 
Therefore, the implementation of thermodynamic constraints in geomicrobial models require 
calculation of the energetics of catabolic reactions and subsequent quantification of the FT 
term as well as derivation of a relation between Y and the energetics of cellular metabolism.

Energetics of catabolic reactions

Modeling studies on the energetics of redox reactions catalyzed by microorganisms have 
mostly concentrated on the relative Gibbs energy yields associated with different TEAs (Arndt 
et al. 2013), often to predict their classical sequential utilization (O2, NO3, MnO2, Fe(OH)3, 
SO4) in subsurface environments (e.g., Thullner et al. 2007 and references therein). This well 
documented redox sequence may however no longer hold under non-standard state conditions 
prevailing in natural environments (Amend and Teske 2005; Bethke et al. 2011; LaRowe and 
Van Cappellen 2011) and sulfate may, for instance, become an energetically more favorable 
TEA than iron oxides (LaRowe and Van Cappellen 2011).
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Recently, LaRowe and Van Cappellen (2011) have extended such classical thermodynamic 
analysis to a wide variety of natural electron donors, mainly organic matter compounds. The 
approach has the major advantage of not requiring structural information in order to estimate 
the energetic potential of complex, natural organic matter. Instead, it uses the average Nominal 
Oxidation State of the Carbon (NOSC) as a proxy to scale the bonding in organic compounds to their 
energetic content (Arndt et al. 2013). The NOSC is readily determined for a wide array of organic 
compounds as it only depends on the net charge Z and the stoichiometric numbers of the elements 
C, H, N, O, P and S in a given organic compound, respectively denoted by a, b, c, d, e and f:

NOSC
Z a b c d e f

a
��
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�

4 3 2 5 2
4 (15)

Thermodynamic calculations for the oxidation half reactions of organic compounds show 
that Gibbs energies of reactions and NOSC values follow an inverse relationship (Fig. 1). This 
remarkable linear correlation can thus be used to estimate the energetics of catabolic reactions 
(ΔGcat) coupling organic matter oxidation with any TEA as long as the average NOSC, which 
is directly calculated from element ratios, is known. These findings are potentially of high 
value for reactive-transport modeling and, more specifically, geomicrobial modeling. Indeed, 
while much attention has been given to the simulation of the redox sequence in subsurface 
environments, much remains to be done regarding the quality and diversity of substrates 
available for microbial growth and how they shape the biogeochemistry of the subsurface. A 
better representation of the energetics of substrates in RTMs would thus help predict important 
patterns of organic matter degradation in natural environments. For instance, the degradation 
of labile organic carbon compounds (e.g., planktonic biomass, polysaccharides) leads to 
similarly high Gibbs energy yields in both oxic and anoxic settings (e.g., Henrichs (2005)). In 
stark contrast, the degradation rates of more refractory compounds such as lignins or lipids are 
much more sensitive to redox conditions (Canfield 1993; Canuel and Martens 1996; Hartnett 
et al. 1998; Henrichs 2005; Jin and Bethke 2009). In oxic environments, the degradation rates 
of refractory compounds remain high because of the very high oxidative potential and the 
resulting weak sensitivity towards the depletion of energy-rich organic compounds while in 
anoxic environments deprived of energy rich-organics and powerful TEAs, the degradation 
rate becomes thermodynamically limited (Arndt et al. 2013).

Figure 1. Standard molal Gibbs energies of the oxidation half reactions of organic compounds as a func-
tion of the average nominal oxidation state of carbon (NOSC) in the compounds, at 25 °C and 1 bar. The 
Gibbs energies are expressed in kJ per mole of carbon (Adapted from LaRowe and Van Cappellen 2011).
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Bioenergetic theory: the FT term

Microorganisms channel part of the catabolic energy released by redox reactions into 
metabolism and growth via intracellular synthesis of adenosine triphosphate, ATP (Regnier et 
al. 2011). In natural settings, the fraction of energy an organism uses to make ATP is essentially 
unknown (Harold 1986; Russell and Cook 1995). Therefore, the energetics of catabolic redox 
reactions only provides a quantitative estimate of the maximum amount of ATP that can be 
synthesized (LaRowe and Helgeson 2007; LaRowe et al. 2008; LaRowe et al. 2012). ATP 
synthesis implies that catabolic reactions must generate useable energy under the non-standard 
state conditions of natural environments (Smeaton and Van Cappellen 2018), that is, ΔGcat < 0:

ΔGcat = ΔG˚cat+ RT ln(Qcat) (16)

where ΔGcat and ΔG˚cat are the Gibbs energy change of the catabolic reaction under actual and 
standard-state conditions, respectively, and Qcat refers to the reaction quotient of the reaction. 
The notion of standard state results from the impossibility to define absolute values of some 
thermodynamic quantities. Only changes can be determined, which require definition of a 
baseline, or a standard state, for substances. Precise definitions for gases, pure liquids, solids 
and admixtures are provided in Cox (1982). For application of the concept of standard state 
to substances in solutions, which is particularly relevant to this chapter, the composition of the 
system (as well as the pressure) must be defined and is customarily taken as the standard state 
molality of 1 mol kg−1. Note that temperature does not intervene in the definition of the standard 
states, but most thermodynamic tables report values at the recommended temperature of 298.15 K.

Values of Qcat, are calculated using:

Q a
i

i
i
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(17)

where ai designates the activity of the ith species and vi corresponds to the stoichiometric 
coefficient of the ith species in the given catabolic reaction (LaRowe et al. 2014).

It is thought that redox reactions can however only proceed when the Gibbs energy yield 
for the catabolic reaction ΔGcat exceeds a minimum metabolic threshold. Such requirement 
can be added to the thermodynamic limiting term, FT, in the Monod model. The standard 
formulation (Boudart 1976; Jin and Bethke 2002; Jin and Bethke 2007) relates the minimum 
excess catabolic energy production to the energy required to synthesize one mole of ATP from 
ADP and monophosphate, ΔGATP, in such a way that the FT term reads:
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In Equation (18), m is the number of ATP molecules produced per catabolic formula 
reaction, R is the universal gas constant, T is the absolute temperature, and χ is the average 
stoichiometric number. The latter is equivalent to the number of times the rate limiting step 
occurs per mole of ATP made multiplied by the number of electrons transferred in the jth 
reaction (Jin and Bethke 2002; Jin and Bethke 2003; Jin and Bethke 2005). Thermodynamics 
therefore imposes that ΔGcat+mΔGATP must be negative for a microbially mediated reaction 
to proceed. Because ΔGATP is defined as a positive (energy-requiring) value, ΔGcat must 
be sufficiently negative to exceed mΔGATP in absolute magnitude (Regnier et al. 2011). 
Equations (16, 17) show that the accumulation of reaction products (such as H2 in Eqn. 5) may 
limit the thermodynamic drive of the catabolic reaction and thus reduce rates in the Monod 
model via the FT term. For microbial reaction processes operating close to their thermodynamic 
limit, the reaction rates may become very sensitive to FT (Thullner et al. 2007). This has 
been shown, for example, in the case of anaerobic oxidation of methane in marine sediments 
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(Regnier et al. 2005; Dale et al. 2006, 2008a) or for methanogenesis and sulfate reduction 
with H2 in hydrothermal systems (LaRowe et al. 2014). When geomicrobial reactions become 
thermodynamically limited, most energy generated by the catabolic process is then diverted to 
maintenance functions, with little energy left to invest in growth.

Alternative expressions accounting for thermodynamic limitations of microbial reactions 
have been proposed in the literature (Cupples et al. 2004; Thullner et al. 2007). Recently, 
LaRowe et al. (2012) proposed a formulation for FT that (1) relies on only one adjustable 
parameter rather than the three required by Equation (18) (ΔGATP, m and χ) and (2) circumvent 
the need to set a priori values of mΔGATP. Here, the approach relies on the amount of energy 
required to maintain a membrane potential (ΔGmp = FΔΨ) as a proxy for the minimum amount 
of energy that a microbe needs to be considered active:
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where ΔGcat denotes the Gibbs energy of the catabolic reaction (per electron transferred), F is 
the Faraday constant and ΔΨ is the electric potential (in volts) across an energy transducing 
membrane. Such expression has been used to simulate, e.g., microbial dynamics in hydrothermal 
vent systems (LaRowe et al. 2014) and coupled CH4–SO4 cycles in sediments on an active 
continental margin offshore New Zealand (Dale et al. 2010) where methane-rich fluids migrate 
upwards through the sediment (LaRowe et al. 2012). The sensitivity of a reaction rate to the 
FT term in the above equation is shown for methanogenesis (MET) occurring in the wall of 
a hydrothermal vent chimney, as an example. Figure 2 shows that the computed MET rates 
are significantly reduced by the low energy yields in the inner part of the chimney wall, and 
become 0 towards the outer part of the chimney when the values of ΔGcat are positive. Without 
the FT term, the active zone of methanogenesis within the chimney wall would be larger.

The dependence of microbial reaction kinetics on bioenergetics is accounted for in the FT 
term. However, catabolic energy gains also constrain the value of Y (Roden and Jin 2011) and 
thermodynamics is also needed to relate Y to the energetics of cellular metabolism (Smeaton 
and Van Cappellen 2018). Therefore, the growth yield, Y, provides another link between the 
kinetics and thermodynamics of microbially driven redox reactions.

Figure 2. Values of the thermodynamic 
rate-limiting term, FT and ΔGcat across 
a hydrothermal vent chimney wall of 
thickness d (see inserted sketch) for 
methanogenesis. Adapted from LaRowe 
et al. (2014).
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Quantifying growth yields

Growth yields (Y) are generally incorporated into biomass-explicit kinetic models using 
the Monod formulation, as summarized in section ‘Traditional Approaches for Simulating 
Biogeochemical Processes in the Subsurface’ (e.g., Thullner et al. 2007). In simple terms, 
Y values depend on the Gibbs energy generated by the catabolic reaction, the Gibbs energy 
needed for the formation of new biomass, and the efficiency with which organisms utilize 
energy (VanBriesen 2002). Two distinct lines of approach that relate Y to the catabolic energy 
yield either through empirical relationships (e.g., Rittmann and McCarty 2001; Roden and Jin 
2011) or through bioenergetically based models (Heijnen and Van Dijken 1992; Heijnen et al. 
1992; McCarty 2007) such as the Gibbs Energy Dissipation model, have then been followed. 
In short, the latter approach accounts for the loss of energy due to entropy production and 
heat dissipation by cells (see Dale et al. 2006 for further details). As shown by VanBriesen 
(2002) and for a variety of organic carbon compounds and metabolic pathways (aerobic 
degradation, denitrification and methanogenesis), energy dissipation approaches are consistent 
with empirically based methods and predict quite similar yields with laboratory-determined 
values of Y. A slightly less complex theoretical approach has also recently been developed (the 
so-called Microbial Turnover to Biomass (MTB) method of Trapp et al. (2018)) and applied to 
the quantification of pesticide degradation and formation of biogenic non-extractable residues 
(Brock et al. 2017). Overall, the major drawback of these theoretical calculations is that they 
provide only maximum Y values, and do not consider energy changes due to variations in 
chemical composition of the system (Thullner et al. 2007). That is, Y values are calculated 
under biogeochemical standard state conditions that may deviate significantly from those 
encountered in natural settings (LaRowe and Amend 2015b).

To circumvent this important limitation, Smeaton and Van Cappellen (2018) recently 
developed a quantitative method for Y that accounts for changes in physical (e.g., temperature) 
and chemical conditions under which the metabolic processes are occurring. Their resulting 
semi-empirical model, the Gibbs Energy Dynamic Yield Method (GEDYM), is an extension of 
the one by Heijnen et al. (1992) and relies upon a much larger database of experimental Y values, 
most of which are relevant to low energy yielding catabolic processes such as methanogenesis 
and sulfate reduction. Briefly, the method computes for a given microorganism, Gibbs energy 
changes of metabolic reactions by linking Gibbs energy changes of their corresponding catabolic 
(ΔGcat) and anabolic (ΔGsyn, see below) reactions through their growth yield. In their approach, 
Gibbs energy changes of metabolic, catabolic and anabolic reactions all depend on Q as shown 
by, e.g., Equation (16). Therefore, the resulting Y values account for changes in the chemical 
environment surrounding the cells (Smeaton and Van Cappellen 2018). As an example of 
application of the GEDYM model, Figure 3 reports Y values for sulfate reduction coupled to 

Figure 3. Predicted growth yields Y for sulfate reduction as a 
function of log acetate and sulfate activities. Y is expressed as 
C-mol biomass/mol acetate. Adapted from Smeaton and  Van 
Cappellen (2018).
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acetate oxidation for a broad range of environmental conditions, which in turn impact values of 
ΔGcat and ΔGsyn. Y values applied in geochemical models generally fall within their predicted 
range but are assumed constant (Smeaton and Van Cappellen (2018) and references therein).

At this stage, it is important to note that the metabolic energy balance reported above 
only accounts for the catabolic energy invested in anabolism, that is, biomass synthesis. It 
therefore differs from the total cellular energy balance, which also includes the energy needed 
to sustain all maintenance functions. In a biomass-explicit kinetic model, maintenance 
energy requirements are implemented separately through an additional term, as shown in 
Equations (12, 13). The following section elaborates on the quantification of anabolic and 
maintenance energy requirements through classical thermodynamics.

Energetics of anabolism and maintenance

The calculation of the Gibbs energy required to synthesize biomolecules, ΔGsyn, from 
simple material such as CO2 or acetate, involves three important steps: 1) definition of cellular 
biomass composition; 2) definition of the anabolic reaction stoichiometry; and 3) computation 
of the resulting Gibbs energy of the anabolic reaction.

In RTM applications, biomass synthesis generally assumes a unique biomass composition 
such as C5H7O2N (Rittmann and McCarty 2001; Dale et al. 2006, 2008a) or C5H9O2.5N which 
are based on the measured elemental concentrations of microbial species (Roels 1980; Smeaton 
and Van Cappellen 2018). A more complex approach consists in explicitly accounting for the 
variety of molecules making up the cell, that is, individual amino acids, nucleotides, lipids, 
saccharides, amines and other compounds (McCollom and Amend 2005) and subsequently 
calculate the energetics associated to each of these biomolecules. The polymerization of these 
various compounds in their respective biomacromolecules can also be accounted for in the 
energetics of anabolism, as performed in, e.g., Amend et al. (2013) and LaRowe and Amend 
(2016). To our knowledge, such approach as not yet been applied in a reactive-transport 
framework, despite being in principle compatible with RTM simulations.

Methods to constrain the anabolic reaction stoichiometry are presented in detail and illustrated 
in Rittmann and McCarty (2001), Dale et al. (2006), and Smeaton and Van Cappellen (2018). 
Briefly, establishing the full anabolic reaction requires combination of the half-redox reaction for 
biomass synthesis and the half-redox reaction providing the carbon source and electrons. If the 
carbon in microbial biomass is less oxidized than the carbon source, then the latter can also serve 
as electron donor in the full anabolic reaction. If not, the carbon source cannot be used to balance 
electrons during anabolism and an electron donor distinct from the carbon source is required in 
this case. Following LaRowe and Van Cappellen (2011), Smeaton and Van Cappellen (2018) 
have shown that the relative oxidation states of biomass (ROSB = 4 − NOSCB) and carbon source 
(ROSS = 4 − NOSCS) can directly be compared using the NOSC of both compounds. Thus, only 
when ROSS < ROSB the carbon source can also serve as electron donor.

As an example, consider biomass synthesis using ethanol as carbon substrate:

0 5 0 2 0 2 0 1 2 2 2 02 6 4 5 7 2 2. . . . . .C H O NH C H O N H O H e� � � � �� � � (20)

Here, NOSCS and ROSS of ethanol are −2 and 6, respectively while NOSCB and ROSB of 
biomass are 0 and 4, respectively. Therefore, since ROSS > ROSB, an electron acceptor other 
than the C source is needed to consume the electrons released by anabolism. For instance, the 
two electrons produced in Equation (20) can be consumed during sulfate reduction:

0 25 2 25 2 0 0 254
2

2. . . .SO H e HS H O� � � �� � � � (21)

which leads to the full anabolic reaction:

0 5 0 25 0 2 0 05 0 2 0 252 6 4
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Importantly, the oxidation states of other elementary building blocks (e.g., N, S…) required 
for biomass synthesis also influence the stoichiometry of the full anabolic reaction (LaRowe and 
Amend 2016). For instance, in well-oxidized conditions NO3

− will be used as nitrogen source 
during biosynthesis while under reducing condition, NH4

+ will be used instead. In the latter 
case, the microorganisms will not need to invest a stream of electrons to reduce the nitrogen 
compounds during biosynthesis (LaRowe and Amend 2016). This example highlights that the 
prevailing environmental conditions not only affect the energetics of catabolism but may also 
influence the energetic of anabolism, an aspect not yet fully accounted for in RTM applications.

The full anabolic reaction formula derived above can then be used to compute the 
energetics of biomass synthesis. This step is relatively straightforward if a single biomass 
composition and standard state conditions are assumed, as shown by the RTM simulations of, 
e.g., Dale et al. (2008a). However, as already pointed out, similar computation using a range 
of biomacromolecular compounds synthesized under variable environmental conditions that 
depart from standard states has, to our knowledge, not yet been performed in the context of 
reactive-transport modeling. In principle, such coupling would nevertheless be achievable and 
ΔGsyn values would then be calculated according to LaRowe and Amend (2016):

� � �G G G
i

r isyn poly� �� , (23)

where ΔGr,i stands for the Gibbs energy of the reaction describing the synthesis of the ith 
biomolecule and ΔGpoly denotes the Gibbs energy required to polymerize biomolecules into 
their respective biomacromolecules, a term neglected when simple non-polymerized biomass 
composition are assumed. Values of ΔGr,i and ΔGpoly can then be calculated as a function of 
temperature and pressure using equations similar to Equations (16, 17).

The results by LaRowe and Amend (2016) clearly demonstrate that values of ΔGsyn 
depend strongly on the combination of the redox state of the precursor compounds and that 
of the environment, with values varying by up to about 40 kJ (g cell)−1 depending on the 
different combinations. LaRowe and Amend also show that the contribution of ΔGpoly to ΔGsyn 
is significant when biomass synthesis occurs in the most conducive environmental conditions. 
Overall, the important control of environmental conditions on the energetics of anabolism 
calls for more direct linkages between spatio-temporal gradients in redox conditions simulated 
by RTMs and their effects on biomass synthesis.

In addition to the energy required to synthesize biomolecules, the total cellular energy 
balance also includes the maintenance energy ΔGmain which is needed to sustain all other 
functions in support of viability and that do not result in new biomass (LaRowe and Amend 
2016). The total cellular energy requirement, ΔGcell, thus reads:

ΔGcell = ΔGsyn + ΔGmain (24)

where we note that the above formulation is certainly a simplification because energies required 
for biosynthesis and maintenance are not completely decoupled (van Bodegom 2007).

Thermodynamic models for the maintenance energy compute ΔGmain from typical doubling 
times of microbial populations and the power demand required to maintain cell integrity (LaRowe 
and Amend (2016) and references therein). The latter must nevertheless distinguish the power 
used while organisms are growing, from the so-called ‘basal maintenance power’ (Hoehler and 
Jørgensen 2013), which is the power required by microorganisms to remain viable only and is 
typically several orders of magnitude lower (LaRowe and Amend 2015a). Overall, maintenance 
energies can become important for populations that have long doubling/replacement times and 
large (cumulative) maintenance powers, ΔGmain exceeding ΔGsyn in this case, and may even 
become the dominant component of the total energy budget. Major avenues for future RTM 
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research would thus be to calculate changes in power demands for maintenance as a function of 
environmental conditions and evolving states of the microorganisms as well as to better couple 
the energetics of biomolecule synthesis and maintenance into a unified modeling framework.

Carbon Use Efficiency as an alternative to Ys

Before proceeding, it is important to stress that thermodynamic constraints on microbial 
growth have been measured, reported and implemented in models using multiple currencies 
(Sinsabaugh et al. 2013). In particular, in the field of ecological modeling and especially in 
soil science, Y is typically not used and growth yields are constrained from rates of carbon 
transformation using the concepts of ‘Carbon Use Efficiency’ (CUE) and its equivalent 
Microbial Growth Efficiencies, MGE. The CUE is generally defined as the ratio of growth (µ) 
to assimilation, that is, CUE = µ / (µ + R), where R includes any C losses to respiration (Sterner 
and Elser 2002; Manzoni et al. 2012b). Reported CUE values determined in the laboratory 
and in the field have been synthesized by del Giorgio and Cole (1998) for aquatic systems 
and by Six et al. (2006) for soil environments. These empirically determined CUEs span a 
broad range, from typical values as low as 0.01 up to values close to 0.8, partly reflecting 
the diversity of processes captured by the applied empirical methods (physiological, but also 
characteristic of community or ecosystem dynamics) that influence C metabolism across 
varying spatio-temporal scales (Manzoni et al. 2012b; Sinsabaugh et al. 2013; Geyer et al. 
2016). In order to better organize and properly interpret CUEs, Geyer et al. (2016) recently 
proposed a conceptual framework that structures its definition according to increasingly 
temporal and spatial scales of investigation. In short, Geyer and co-workers distinguish the 
CUE of populations, which is governed by species-specific metabolic and thermodynamic 
constraints as described by the growth yield Ys discussed above, from CUEs of communities 
and ecosystems which include many additional controls such as substrate stoichiometry, 
external physico-chemical conditions (temperature, moisture, pH,…) or substrate recycling. 
These distinctions are important because many large scale models of soil carbon dynamics, 
especially those embedded in Earth System Models of the coupled biogeochemical cycles 
and climate such as the CENTURY model (Parton et al. 1988) rely on the CUE (or the MGE) 
concept, and mostly address the larger ecosystem scale (e.g., Allison (2014), Wieder et al. 
(2014), Huang et al. (2018)). The reader is referred to e.g., Geyer et al. (2016) for further 
discussion on the use of the CUE and its relation to Y across scales.

INTEGRATION OF MICROBIAL SEQUENCING DATA 
IN GEOMICROBIAL MODELS

In recent years the improvement of biomolecular methods has led to a number of powerful 
approaches providing sequencing data from e.g., genomics, proteomics, transcriptomics or 
metabolomics and the combination of them. Such ‘omics’ approaches provide information on 
the metabolic potential of individual microbial species as well as of microbial communities 
(Müller and Hiller 2013; Franzosa et al. 2015). Together with biochemical data this has led to 
the set-up of extensive biochemical reaction networks describing the entire metabolism of a cell 
(Fig. 4). The resulting ‘genome-scale model’ provides the basis for the prediction of cellular 
functions such as growth or the formation of specific metabolites (Durot et al. 2009; Kim et al. 
2012; Monk and Palsson 2014; O’Brien et al. 2015). For this purpose the stoichiometric matrix 
describing the reaction network needs to be combined with a ‘constrained-based modeling’ 
approach making use of additional knowledge and assumptions e.g., regarding the occurrence 
and magnitude of individual reaction fluxes and the steady-state assumption (Bordbar et al. 
2014) and of the available experimental data e.g., on gene expression, protein expression or 
metabolite concentration (Reed 2012). Among a variety of such approaches the so-called 
‘flux-balance analysis’ is one of the most commonly used (Orth et al. 2010). This methodology 
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allows considering dynamic changes of the chemical environment of the cells (Mahadevan et 
al. 2002), but several other methods have also been proposed (Lewis et al. 2012; Ramkrishna 
and Song 2012; Song et al. 2014). While ‘omics’-based approaches have initially been used 
for modeling single microorganisms (or cell types) they have recently been expanded to 
describe metabolic fluxes in bulk microbial communities (Larsen et al. 2011; Biggs et al. 2015; 
Hanemaaijer et al. 2015; Gottstein et al. 2016; Perez-Garcia et al. 2016). The size of such 
communities is constrained by the required input data as well as the computational demands. 
So far, applications range from two-species systems (Klitgord and Segre 2010; Zomorrodi and 
Maranas 2012) to several hundreds of species (Magnúsdóttir et al. 2017).

Most metabolic flux approaches find their origin in the areas of medical and biotechnological 
research and have shown their potential for predicting the response of single cells to genetic 
modification or to drugs, or have been used to optimize the microbial production of specific 
compounds in industrial processes. However, they have also been used for the simulation of 
specific biochemical processes of relevance to the geosciences. Examples are methane oxidation by 
Methylococcus capsulatus (Lieven et al. 2018), methanogenesis by a community of Desulfovibrio 
vulgaris and Methanococcus maripaludis (Stolyar et al. 2007), and Fe(III) reduction by Geobacter 
metallireducens (Fang et al. 2012), by a community of Geobacter sulfurreducens and Rhodoferax 
ferrireducens (Zhuang et al. 2011) or by a community of the latter two species and Shewanella 
oneidensis (Zomorrodi et al. 2014). The Fe(III) reduction process is of particular interest in the 
context of uranium (U) reduction which is performed co-metabolically by some Fe(III) reducing 
microbes and leads to immobilization of uranium in contaminated aquifers.

The few applications of genome-scale descriptions of microorganisms in a RTM framework 
are also focusing on Fe-U cycling. King et al. (2009) coupled the dynamics of Geobacter 
sulfurreducens as described by Mahadevan et al. (2006) with a two-dimensional reactive 
transport solver and compared the resulting microbial growths and substrate consumptions with 
those obtained with more simplified description of microbial dynamics. Similarly Scheibe et 
al. (2009) coupled the same description of Geobacter sulfurreducens growth to the reactive 
transport model HYDROGEOCHEM to simulate acetate induced reduction of Fe(III) and U(VI) 

Figure 4. Left: Simplified generic example of a metabolic reaction network. R.. denote metabolic trans-
formations, r.. denote uptake and release ‘reactions’, i.e. the exchange of chemical compounds between 
the cell interior (inside the dashed circle, upper case symbols) and its surrounding (lower case symbols). 
Right: On top the reactions of the network are provided with their stoichiometry which forms the basis for 
the stoichiometric matrix shown below, which is used for the calculation of mass fluxes along the network 
(adapted from (Durot et al. 2009). 
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along a one-dimensional representation of an aquifer. In a follow-up study by Fang et al. (2011), 
a more integrated coupling of genome-scale data and reactive transport modeling was achieved. 
The same type of coupling was recently presented by Tartakovsky et al. (2013) using a “pore-
scale smooth-particle hydrodynamics approach” (Tartakovsky et al. 2009). Their results were 
also compared to those obtained with a Monod-type model of bacterial growth and activity.

With the continuously increasing availability of sequencing data and computational power 
the inclusion of genome-scale models into reactive transport approaches has a clearly growing 
potential for applications focusing on the study of in situ processes occurring in porous 
media. There are however several important challenges limiting such applications. Natural 
microbial communities often consist of an unaccounted number of species and depending on 
the processes of interest the amount of data needed to set up a genome-scale model might be 
excessively large. An automated assembly of such data is supported by metabolic data bases 
(Karp et al. 2019) but results need to be checked for inconsistencies (Richter et al. 2015). In 
addition, a community-wide metabolic network implicitly considers all metabolites produced 
by a species to be fully available to all other species in the system, an approach which neglects 
limitations in availability due to transport into and out of a cell as well as to spatial separation 
of the cells. These limitations could be circumvented by considering the spatial distribution 
of the cells but existing approaches are limited to small number of species (Harcombe et al. 
2014). Furthermore, substrate concentrations and environmental conditions may vary down 
to the pore-scale (Semple et al. 2004; Johnsen et al. 2005; Hesse et al. 2009; Schmidt et al. 
2018),which challenges the genome-scale simulation of microbial dynamics in the same way 
as it does for other kinetic models of microbial activity.

Next to genome-scale models other less complex approaches that take available 
sequencing data into account exist. In these simpler methodologies, the data are used as 
proxies or biomarkers to constrain the dynamic behavior of a microbial community. While in 
the past, traditional microbial biomarkers such as cell counts, colony forming units, proteins or 
polysaccharides were used already as experimental references for the dynamics of microbial 
species or functional groups in the context of reactive transport simulations (Wirtz 2003; 
Thullner et al. 2004) more recent approaches combined these traditional approaches with 
marker genes to simulate the response of microorganism to fluctuating growth conditions 
(Stolpovsky et al. 2011) or carbon turnover and pesticide degradation in in a 1-D soil column 
(Pagel et al. 2016). Reed et al. (2014) and Louca et al. (2016) went further and applied a 
complex ‘gene-centric’ approach using marker genes as experimental references, the 
production of which was linked to biogeochemical reactions in the ocean.

CONSIDERING THE ECOLOGICAL BEHAVIOR OF MICROORGANISMS

The main reason for the simulation of microbial dynamics in the context of reactive 
transport modeling is their ability to catalyze biogeochemical reactions. This requires first of 
all modeling approaches describing the growth and metabolic activity of microbial species 
appropriately. However, the simulated systems represent an entire microbial ecosystem of 
varying complexity. In such an ecosystem the abundance of the microorganisms of interest 
can be affected not only by the concentration of substrates but also by a number of additional 
constraints, and the ability of the microorganisms to respond to these constraints also 
determines their abundance and their functional performance. There are numerous types 
of interactions between a (group of) microorganisms and their environment which for the 
sake of simplicity are separated here into two groups: microbe–microbe interactions, and the 
response of the microorganisms to abiotic constraints.
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Microbe–microbe interactions

(Microbial) species may interact in different ways, with one species promoting or 
inhibiting the growth and activity of another species (Fig. 5, Lidicker 1979). While it can 
be challenging to determine such interactions in large communities (Faust and Raes 2012) 
specifi c interactions can be modeled using a generalized Lotka–Voltera approach describing 
the change of abundance Bi of a species i interacting with N other species according to:

�
�

� � �
�
�B

t
B B Bi

i i i
j

N

i j j� �
1

,
(25)

with µi as specifi c growth rate and γi,j as strength of the interaction between species i and j. 
γ values can be either positive or negative depending on the type of interaction, a value of 0 
indicating no infl uence of species j on species i (Fig. 5). Applications of the Lotka–Voltera model 
in the context of microbial community dynamics range from single predator-prey interactions 
(Mauclaire et al. 2003) for which this approach was originally developed (Lotka 1925; Voltera 
1926) to interactions in large communities found in the human gut (Stein et al. 2013; Kuntal 
et al. 2019) or in cheese (Mounier et al. 2008). Next to direct interactions such as protists 
predation (Mauclaire et al. 2003) or phage infections (Jover et al. 2013), indirect interactions 
have also been addressed by the generalized Lotka–Voltera approach. Indirect interactions may 
be mediated by a chemical compound produced or provided by a microbial species, which then 
promotes or inhibits the growth and activity of another species. Such interactions can be modeled 
by including a dependency of growth rates on the abundance of other species as described above 
but can of course also be addressed explicitly, e.g by linking the rate expressions describing the 
two species to the concentration of such mediator compounds or via a multi-species metabolic 
network simulation (Freilich et al. 2011). Similarly, the competition of species for a chemical 
compound can be addressed by a generalized Lotka–Voltera approach but can also be explicitly 
implemented in reactive transport simulations for, e.g., describing redox stratifi cation associated 
with organic carbon degradation (Thullner et al. 2007).

A different type of microbe-microbe interaction occurs in the terrestrial mycosphere where 
bacteria can benefi t from the presence of extensive networks of fungal mycelia (Harms et al. 2011; 
Worrich et al. 2018). These networks can act as ‘fungal highways’ which promote the mobility 
of bacterial cells (Kohlmeier et al. 2005) (see below) and as ‘fungal pipelines’ that facilitate the 
transport of water and nutrients to bacteria (Furuno et al. 2012; Schamfuss et al. 2013; Worrich et 
al. 2017). These effects have been simulated by considering a highly increased diffusion coeffi cient 
for transport of bacteria and/or nutrients along the fungal networks (Banitz et al. 2013).

Figure 5. Overview of all possible pair-wise interactions between two species and of the resulting effect on 
each species (wheel display after Faust and Raes 2012 and Lidicker 1979). Shown signs also indicate the 
sign of the terms γi,j in Equation (25).
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Interactions between microbes and their physical environment

Subsurface environments impose a multitude of physical constraints on the abundance and 
activity of microorganisms. The solid matrix and its properties define the space and surface 
area available for the microorganisms while water flow (and distribution in unsaturated media) 
controls not only the transport of dissolved compounds but also the relocation of microorganisms. 
Due to the heterogeneity of the subsurface, these physical constraints can exhibit spatial 
variations at scales ranging from the pore scale to the field scale. Furthermore, flow and transport 
conditions can vary in time due to surface processes such as precipitation events, seasonal effects 
or anthropogenic activities. As a result, the microbial communities that live in the shallow 
subsurface need to adapt to changing environmental conditions. In particular such changes can 
involve periods of unfavorable conditions or disturbances (Fig. 6) (Allison and Martiny 2008; 
Shade et al. 2012) which can occur either as extended stress periods (Manzoni et al. 2012a; 
Worrich et al. 2016; Rocca et al. 2019) or as (series of) short disturbance events.

Microbial transport of bacteria by the flowing water is generally described by advective–
dispersive transport combined with rate expressions for attachment and detachment of 
cells (Ginn et al. 2002; Tufenkji 2007). Attachment and detachment of cells are commonly 
simulated using first-order rate expressions with values of the rate parameters depending on 
the flow velocity and the resulting shear forces, the size and surface properties of the bacterial 
cells as well as the structure and surface properties of the solid matrix. Considering cells as 
solid particles allows application of the filtration theory (Tien and Payatakes 1979) to predict 
the attachment rate coefficient katt:
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with n as porosity, d as average grain size, v as transport velocity, η as collection efficiency 
(with values predicted from theory), and α as (empirically determined) collision efficiency. 
Limitations of the theoretical concepts of filtration theory to simulate the attachment process 
have been attributed e.g., to heterogeneities of the adhesion properties within the bacterial 
population (Simoni et al. 1998), to different microbial species affecting each other in their 
deposition behavior (Stumpp et al. 2011), or to repulsive interactions limiting the adhesion 
of cells on the matrix. While adhesion can alternatively be predicted by the (extended) DLVO 
theory (Hermansson 1999), there are also limitations to its application (Tufenkji 2007; Boks et 
al. 2008). Detachment rates depend on various factors (Peyton et al. 1995; Xavier et al. 2005) 
and are difficult to predict also as cells may increase their resistance to detachment producing 

Figure 6. Schematic description of possible responses of a single microbial species to a (series) of 
disturbance(s) and of the meaning of resistance and resilience as ecological stability criteria (Grimm and 
Calabrese 2011). See e.g., Allison and Martiny (2008) for an analogous scheme for entire communities.
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extracellular polymeric substances (EPS) (Tay et al. 2001) or may in turn actively detach from 
surfaces as response to nutrient availability or other favorable/unfavorable conditions (see Ginn 
et al. 2002 and literature cited therein). A general theory (such as filtration theory for attachment) 
providing a quantitative description of detachment processes has not been introduced, yet.

Besides being passively transported by the water flow or by the movement of solid 
particles they are attached to (Thullner et al. 2005) some bacterial species are motile and 
are thus actively able to swim in water (Blair 1995) or slide along a surface (Kearns 2010). 
This active movement may occur as random or chemotactic movement, that is to say, by 
sensing and following chemical concentration gradients (Berg 2000; Alexandre et al. 2004). 
This movement allows bacterial cells to relocate to more favorable conditions e.g., by 
moving towards higher nutrient concentrations or by moving towards lower concentrations of 
hazardous compounds—an ability which is however at the expense of significant metabolic 
costs. Furthermore, bacteria can produce chemoattractants triggering the chemotactic self-
attraction of their own species and promoting their aggregation (Mittal et al. 2003; Park et 
al. 2003). In addition, bacterial motility may affect the attachment rates of cells in porous 
media (Nelson and Ginn 2001; de Kerchove and Elimelech 2008), their resilience towards 
disturbances (König et al. 2017) and their macroscopic transport behavior (Ford and Harvey 
2007; Bai et al. 2016; Creppy et al. 2019), and it may promote the formation of pronounced 
spatial distribution patterns (Budrene and Berg 1991; Keymer et al. 2006). To model bacterial 
motility, the time evolution of bacterial abundance B in space can be described as
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with Db as random motility coefficient and χs,i as chemotactic sensitivities to the gradient of 
chemical compounds si. Sensitivities may be functions of the chemoattractant concentration 
(Keller and Segel 1971; Ford and Harvey 2007) or more simply considered as constants 
(Centler et al. 2011). In any case, positive χs,i values indicate attraction, while negative 
χs,i values indicate repulsion. Alternatively, the explicit link to the gradient of a chemical 
compound can be replaced by a dependency of the random motility coefficient Db on 
the concentration of a chemical compound (Banitz et al. 2011a). Typically only a single 
compound (e.g., a nutrient) is considered to drive the chemotactic motility of bacteria, but 
two compounds might be considered if, in addition to a substrate, a bacterially emitted 
chemoattractant is also present (Saragosti et al. 2010; Centler et al. 2011).

Implementation of these motility concepts into reactive transport models have allowed to 
match high resolution data on bacterial chemotaxis (Pedit et al. 2002; Banitz et al. 2012) and 
predict traveling bands of bacteria (Hilpert 2005; Saragosti et al. 2010) as well as to simulate 
the formation of aggregated population patterns (Centler et al. 2011; Gharasoo et al. 2014; 
Centler and Thullner 2015) or the spreading of chemotactic bacteria at larger scales (Valdés-
Parada et al. 2009). Microorganisms can also promote the dispersal of other microbial species 
(Ben-Jacob et al. 2016). Assuming fungal hyphae as pathway of increased bacterial motility 
(‘fungal highways’) in the simulation of microbial systems allowed describing the benefit of 
such high motility networks for biodegradation (Banitz et al. 2011a,b), for horizontal gene 
transfer (Berthold et al. 2016) or for the resistance of bacterial populations to disturbances 
(König et al. 2018a,b). A link between such reactive transport approaches with models 
describing fungal growth in porous media (Cazelles et al. 2013) has not been introduced, yet.

Dormancy is another microbial strategy to endure stress periods caused by natural effects 
(Lennon and Jones 2011; Joergensen and Wichern 2018) or anthropogenic perturbations 
(Balaban et al. 2004). When facing such unfavorable conditions microorganisms can switch from 
an active state into a dormant state which is characterized by a reduced metabolic activity, lower 
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maintenance requirements and thus a better survival of the cells. If environmental conditions 
become favorable again microorganisms can reactivate and grow again (Dworkin and Shah 
2010). For modeling microbial dormancy microorganisms are classically subdivided into an 
active and a dormant fraction (Fig. 7), but approaches considering a single fraction with transient 
changes of its dormancy degree exist, too (Resat et al. 2012). The transition between these 
two fractions is typically linked to environmental conditions by using a kinetic rate expression 
(depending on environmental variables) for the deactivation rate (transition into dormancy) and 
a complementary expression for the reactivation or resuscitation (transition from dormancy to 
active state) rate (Bär et al. 2002; Jones and Lennon 2010; Wang et al. 2014). Alternatively, a 
switch function that depends on environmental conditions can be used to determine the direction 
of the transition (Stolpovsky et al. 2011; Mellage et al. 2015; Bradley et al. 2018a). Other concepts 
consider both, deactivation (Chihara et al. 2015) and reactivation (Epstein 2009; Buerger et al. 
2012) to be random processes, or rely on a growth rate dependent dormancy index to determine 
the fraction of dormant bacteria (Wirtz 2003). Furthermore, different degrees of dormancy may 
be considered assuming either distinct subgroups of dormant microorganisms or considering the 
depth of dormancy to increase with the duration of the unfavorable conditions (Stolpovsky et al. 
2011). Models using such concepts have been applied to match data from specific experiments 
(Stolpovsky et al. 2011; Wang et al. 2014, 2015) and to analyze environmental samples ranging 
from dynamic systems such as the surface layer of lakes (Jones and Lennon 2010) to low activity 
systems like the deep subsurface of marine sediments or to soil organic matter composition 
at arbitrarily large scales (Huang et al. 2018). Furthermore, such simulations highlighted the 
relevance of dormancy for microbial competition (Stolpovsky et al. 2016) and long-term 
survival (Bär et al. 2002) in periodically changing environments. When implemented into RTMs 
dormancy approaches have allowed to match observations from shallow marine sediments 
(Wirtz 2003) and to study the influence of dormancy on the coexistence of competing species in 
heterogeneous porous media (Stolpovsky et al. 2012).

Noteworthy, yet not addressed this chapter, are feedbacks of the microorganisms on their 
physical environments. This includes changes of the hydraulic properties of the solid matrix 
(Hommel et al. 2018) due to biomass aggregation (Baveye et al. 1998; Yarwood et al. 2006; 
Thullner 2010), or due to microbially induced mineral dissolution, precipitation (Barkouki et 
al. 2011; Ebigbo et al. 2012) or gas formation (Mahabadi et al. 2018).

CONSIDERING STABLE ISOTOPE SIGNATURES

Most elements, e.g., H, C, N, S, O associated in biogeochemically reactive compounds are 
found in more than one stable isotope form and the relative abundance of these isotopes can 
be determined with high accuracy. In recent years, isotopic methods have become increasingly 
used for the assessment of microbially driven processes in the subsurface. The most common 

Figure 7. Schematic representation of active and dormant microorganisms and of the processes affecting 
them. Note that death rate of the dormant fraction is considered to be much smaller than for the active frac-
tion (adapted from Stolpovsky et al. 2011).
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approach is to use compound-specific stable isotope analysis (CSIA) to detect the stable 
isotope fractionation of reactants during (biogeo)chemical transformations (Brüchert 2004; 
Meckenstock et al. 2004; Elsner 2010; Thullner et al. 2012; Brunner et al. 2013; Blaser and 
Conrad 2016). The consideration of these fractionation effects in the context of reactive 
transport modeling is addressed in Druhan et al. (2019, this volume) and will thus not be 
discussed here. Instead, focus of this section is on the use of stable isotope signatures to trace 
the incorporation of inorganic compounds into microbial biomass, to identify the origin of 
microbial degradation products and to follow microbial degradation pathways.

Stable isotopes as tracers of matter fluxes into biomass

Since decades, the isotope signatures of animal biomass is known to be determined by 
the isotope signatures of their food sources (DeNiro and Epstein 1978). In the same way the 
isotopic composition of microbial biomass reflects the isotopic signatures of the used substrates 
(Coffin et al. 1989). Furthermore, stable isotope probing (SIP) approaches relying on the isotopic 
composition of specific biomarkers allow determining which (group of) microbial species 
pertaining to a complex community have taken up a specific substrate (Boschker and Middelburg 
2002; Abraham 2014; Vogt et al. 2016b). Originally lipids were the commonly used biomarkers 
(Pancost and Sinninghe Damsté 2003; Yao et al. 2014; Wegener et al. 2016), which together with 
isotopically labeled substrates allowed for the detection of the substrate uptake into biomarkers 
(Pelz et al. 2001; Pombo et al. 2002; Stelzer et al. 2006). More recently, such SIP approaches 
were extended to the analysis of e.g., microbial DNA (Coyotzi et al. 2016), RNA (Lueders et 
al. 2016; Bradford et al. 2018) or proteins (Jehmlich et al. 2016) used as biomarkers for specific 
(groups of) microorganisms and the uptake of labeled substrate into their biomass.

The inclusion of stable isotope signatures into RTMs is well established. In short, heavy 
(h) and light isotope (l) fraction of a specific element in a reactive compound i are treated 
independently as two separate compounds with concentration hci and lci, respectively. The 
isotopic signature for each compound is then given by the concentration ratio Ri = hci / lci and 
commonly expressed as a relative deviation δi from a standard value (Rs):

δi = (Ri-Rs)/Rs (28)

Note that δ-values are typically expressed in ‰. Analogously, for each reactive transformation 
rate j expressions hrj and lrj have to be defined for each fraction. The rate expressions have 
to fulfill the relation hrj / lrj = αjRi if compound i is consumed by process j. The fractionation 
factor αj describes the magnitude of the stable isotope fractionation induced by the reactive 
transformation with αj = 1 indicating no fractionation. For further details—in particular 
regarding the simulation of stable isotope fractionation—see e.g., van Breukelen and Griffioen 
(2004), Thullner et al. (2008, 2012) and Druhan et al. (2019, this issue).

Although this RTM concept is well suited to describe the uptake of substrates and the 
resulting stable isotope signature into microbial biomass it has only rarely been applied for this 
purpose yet. Mauclaire et al. (2003) used stable isotope signatures to simulate carbon fluxes 
along a microbial food chain in a batch system (Fig. 8). 13C-labeled toluene was used as primary 
substrate, which was taken up by a bacterial species that served as a prey for a protist predator. 
Isotopic signatures of the bacterial and protist biomasses were determined using biomarker fatty 
acids while total bacterial biomass was quantified using cell counting combined with image 
analysis techniques. Rate expressions based on Monod-type growth of the bacteria and Lotka–
Voltera type predation for the protist were used to simulate changes of concentration and carbon 
isotope signatures in the different carbon pools (toluene, bacterial biomass, protist biomass). 
Using this approach, a carbon conversion efficiency of approximately 30% for the bacterial 
growth on toluene, and of approximately 10% for the protist predation on the bacteria was 
determined. Relying on 13C-labeled E. coli cells added to a soil batch system Kindler et al. (2009) 
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quantified the transformation of the labeled carbon during recycling of the biomass in the 
microbial food chain. Fatty acids were used to distinguish between living and dead biomass, 
the latter considered as part of the soil organic matter. Instead of using a classical kinetic model 
approach the process was modeled by applying a series of feeding cycles to quantify the flux 
of carbon between living biomass, soil organic matter and inorganic carbon (CO2). Results 
indicated that within each feeding cycle approximately 20% of the biomass food source was 
transferred into soil organic matter and that 33% of the added carbon source accumulated as 
soil organic matter. Carbon uptake by microbes and the associated changes of carbon isotope 
signatures in the biomass was simulated by Alperin and Hoehler (2009a) for anaerobic methane 
oxidation in marine sediments. To do so, they represented the network of biochemical reactions 
catalyzed by a consortium of methane oxidizing archea and sulfate reducing bacteria, and by 
organic matter oxidizing bacteria. In addition, various stable isotope fractionation effects were 
considered. Using this complex reaction network the authors showed that although the stable 
isotope signature of the biomass of the methane oxidizing consortia was similar to the stable 
isotope signature of methane, methane was not the only source of the biomass carbon, and the 
CO2 released by the organic carbon oxidizing bacteria was another likely contributor.

Stable isotope signatures have also been used as tracers for the formation of reaction 
products during (microbially induced) reactive transformations (Avery et al. 1999; Bolliger 
et al. 1999; Kindler et al. 2009). The interpretation of such signatures can be done by mass 
balance approaches not requiring more elaborate model simulations as long as fractionation 
effects can be neglected.

Stable isotopes as indicators of degradation pathways

Next to using stable isotope fractionation as qualitative and quantitative indicators of 
biodegradation processes (not discussed in this chapter), the combined analysis of the 
fractionation of two elements provides additional information on the dominant fractionation 
pathway (Elsner 2010; Vogt et al. 2016a)—also known as dual or 2D isotope analysis. The 
basic principle of this approach takes advantage of the fact that during a reaction a stable 
isotope fractionation of different elements in the reactant can occur, each of which described 
by a pathway- and element-specific fractionation factor α. When analyzing the change of the 
stable isotope signatures of two of these elements a linear relation between these changes 
(expressed in δ-notation) is often observed as long as fractionation effects are not too strong. 
The ratio between these changes, that is the slope of the linear correlation when plotting the 

Figure 8. Simulation of carbon fluxes along a food chain consisting of (13C-labeled) toluene, toluene 
feeding bacteria and a protist predator feeding on the bacteria (adapted from Mauclaire et al. 2003). 
A: measured and simulated concentrations; B: measured and simulated carbon isotope signatures.
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changes against each other, is specific for each degradation pathway and given by the ratio 
between the isotope enrichment factors ε = 1 − α (Fig. 9). Therefore, such plots can be used to 
identify a dominating degradation pathway, e.g., to distinguish between aerobic and anaerobic 
pathways (Fischer et al. 2007) or between biotic and abiotic transformations (Badin et al. 
2016), or to elucidate the specific reaction mechanism (Meyer et al. 2009; Dorer et al. 2014). 
If fractionation effects are very strong as e.g., for H fractionation or if two pathways take place 
simultaneously (Van Breukelen 2007; Centler et al. 2013) a more complex analysis is needed.

SCALE EFFECTS

While the sections above focused on approaches describing the dynamics of microbial 
growth and activity two aspects have not been directly addressed: the measure by which the 
microbial abundance is quantified and the spatial representation of the microorganisms. Both 
of these interlinked aspects are explicitly or implicitly affected by the spatial resolution of the 
applied modeling approach.

Most reactive transport applications considering microbial abundance use a population-
based concept in which biomass is quantified as concentration of microbial carbon mass, 
microbial cells or of specific parts (DNA, RNA, fatty acids or other biomarkers) of the microbial 
cells. Concentration may refer to individual species as sometimes implemented for simulating 
controlled laboratory experiments (Bauer et al. 2009; Dechesne et al. 2010; Banitz et al. 2011a; 
Monga et al. 2014) while for natural environments, the vast number of species in microbial 
communities often preclude the possibility to link the rate of a specific biogeochemical reaction 
to the abundance and activity of a restricted number of individual species. Instead the species 
are pooled into groups of specific traits, microbial guilds or functional groups e.g., catalysts of 
specific degradation pathways (Schäfer et al. 1998a; Brun et al. 2002; Wirtz 2003; Thullner et 
al. 2005; Yabusaki et al. 2011; Bouskill et al. 2012; Pagel et al. 2014; Yu and Zhuang 2019). 
In contrast, individual-based models consider the dynamic behavior of each single microbial 
cell in a system (Ferrer et al. 2008; Kreft et al. 2013; Hellweger et al. 2016; Jayathilake et al. 

Figure 9. Schematic example for a dual isotope analysis of two arbitrary elements A and B. For a given 
pathway changes of the δ-values should plot along a line, the slope (Λ) of which given by the ratio of the 
stable isotope enrichment factors ε for each element. As values for ε are typically pathway specific, each 
pathway is characterized by a pathway specific slope (Λ1 and Λ2 in the present example; dashed lines). If 
measured δ-values (dot symbols) plot along a line with one of these slopes they indicate which degradation 
pathway has taken place.
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2017; Leveau et al. 2018), an approach that allows considering random variations of microbial 
behavior or intra-species variations of cell properties. Such individual-based models have 
been considered also within reactive transport approaches (Gras et al. 2011; Ebrahimi and 
Or 2014; Gharasoo et al. 2014; Centler and Thullner 2015; Ebrahimi and Or 2015; Kim and 
Or 2016) but applications are necessarily limited to small-scale (cm-scale or below) systems 
given typical abundances of 106 cells per cm3 or more in most porous medium environments.

In most aqueous systems microorganisms tend to be evenly distributed in the water without 
exhibiting significant biomass concentration gradients at small spatial scales. In porous media 
microorganisms are primarily associated with the solid matrix (Lehman et al. 2001; Griebler et al. 
2002; Mellage et al. 2015), which favors the development of small-scale spatial heterogeneities. 
Even along the surface of the solid matrix large variations in microbial abundance may occur 
(Dechesne et al. 2003; Nunan et al. 2003; Or et al. 2007; Iltis et al. 2011). As a consequence 
not all microorganisms at a macroscopic location (defined e.g., by the experimental sampling 
volume) are exposed to the same environmental conditions. In particular, small scale variations 
in substrate concentration may expose microorganisms to environmental conditions that differ 
from the mean state, that is to say, substrate bioavailability is not the same everywhere (Semple 
et al. 2004). The bioavailability of a substrate is thus no only limited by its interaction with 
solid and liquid phases (Johnsen et al. 2005; Haws et al. 2006; Amos et al. 2007) but also by 
a mass transfer process that is required to provide the substrate at the microscopic location of 
the microbial cells (Bosma et al. 1997). In most cases a limited bioavailability of a substrate 
leads to reduced degradation rates but in cases where high substrate concentrations become toxic 
to the degrading microorganisms, limited bioavailability may exceptionally promote higher 
degradation rates (Hanzel et al. 2012; Gharasoo et al. 2015).

Mass transfer processes can be explicitly included into reactive transport models of high 
spatial resolution. Such implementation requires a theoretical framework for simulating the 
distribution of the microbial biomass. The simpler approach represents the interface between 
pore water and solid matrix as a reactive surface of no volume homogeneously covered by 
microorganisms (Hesse et al. 2009; Gharasoo et al. 2012). A slightly more sophisticated 
approach is to consider that microorganisms form a biofilm covering the surface of the solid 
matrix. Biofilms are aggregations of microbial cells and extracellular polymeric substances 
(Costerton 1999; Watnick and Kolter 2000; Branda et al. 2005; Carrel et al. 2018), either 
forming a homogeneous layer of biomass or heterogeneously distributed biomass aggregates 
on the solid matrix. Since the introduction of the first biofilm models (Rittmann and McCarty 
1980) increasingly complex approaches have been implemented (Kreft et al. 2001; van 
Loosdrecht et al. 2002; Picioreanu et al. 2004; Alpkvist et al. 2006; Cumsille et al. 2014) and 
combined with different pore-scale reactive transport models (Suchomel et al. 1998; Dupin 
et al. 2001; Thullner et al. 2002; Kapellos et al. 2007; Thullner and Baveye 2008; von der 
Schulenburg et al. 2009; Bottero et al. 2013; Qin and Hassanizadeh 2015; Tang and Liu 2017). 
These simulations have allowed constraining the distribution and thickness of the biofilm as 
a result of the mass transfer of substrates to and into the biofilm and its subsequent in-situ 
degradation by microorganisms. Results from pore-scale simulations of mass-transfer limited 
microbial degradation in porous media (see Fig. 10 for an example) show that the extent of the 
mass transfer limitation depends (among several other factors) on the size of the pores, on the 
heterogeneity of the size distribution and on the pore-scale distribution of the biomass along 
the solid matrix surface (Hesse et al. 2009; Gharasoo et al. 2012; Schmidt et al. 2018).

At the continuum scale, i.e. the scale at which porous media are described by representative 
elementary volumes (REV), pore scale structures and the pore-scale distribution of the biomass 
can’t be resolved anymore (Fig. 11), and although often still called biofilm, model approaches 
typically consider only a bulk biophase of unknown spatial distribution (Schäfer et al. 1998b; 
Schäfer 2001; Ebigbo et al. 2010; Bozorg et al. 2011). Regardless of the distribution type 
(colonies, aggregates, biofilm etc.), a linear exchange term
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J k c ctr tr bulk bio� � �� � (29)

has been suggested to describe the mass flux Jtr between the bulk aqueous phase and the 
biophase (Baveye and Valocchi 1989). This flux term links the bulk substrate concentration cbulk 
(affected by the transport processes along the model domain) and the substrate concentration 
cbio inside the biophase, the latter describing the bioavailable concentration. All other 
factors controlling the magnitude of Jtr are subsumed into the value of the mass-transfer rate 
coefficient ktr. Predictions of the value of ktr can be obtained from formal upscaling approaches 
(Hesse et al. 2010; Orgogozo et al. 2013), which do however require a series of simplifying 
assumptions. As a result, in many reactive transport applications the transfer rate is not well 
constrained in quantitative terms. In cases of a single rate-limiting chemical compound mass 
transfer (Eqn. 29) and a biodegradation rate following Michaelis–Menten kinetics (Eqn. 1), 
both rates can be combined into a single expression known as the Best equation (Best 1955), 
which has been shown to provide adequate descriptions of mass transfer limited microbial 
degradation rates (Bosma et al. 1997; Simoni et al. 2001). Alternatively, formal upscaling 
approaches have been used to derive effective rate expressions where small-scale mass transfer 
effects are affecting the values of the degradation rate or transport parameters at larger scales 
(Wood et al. 2007; Golfier et al. 2009; Hesse et al. 2009).

Interestingly, we are not aware of applications of microbial explicit RTMs at scales larger 
than the plot or the sediment core scale. For instance, the coupled microbial-geochemical 
dynamics has not yet been addressed at the catchment scale, at least with regard to processes 
associated with subsurface flow. This contrasts with catchment-based RTM applications 
simulating surface flow hydrodynamics in, e.g., rivers, lakes or estuaries where heterotrophic 

Figure 10. Simulated distribution of substrate (acetate) in and around a colony of 200 bacterial cells in 
a pore channel (adapted from Schmidt et al. 2018). Concentration inside the colony is determined by the 
distribution of the individual cells (no shown).

Figure 11. Overview of length scales involved when simulating microbially driven processes in porous 
media. The length scales of the simulated domains may go up to 104–105 m for catchment scale model and 
beyond for global scale models.
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and autotrophic microbial community dynamics has already been explicitly simulated (e.g., 
Vanderborght et al. (2002), Billen et al. (2013)). In these applications, the interaction between 
substrates and microbial biomasses ignore the potential effects of spatial heterogeneities at the 
sub-grid scale and the concentrations are thus assumed homogeneous at scales smaller than the 
model resolution (typically hundreds to thousands of meters). In stark contrast to subsurface 
catchment scale models, several biomass-explicit models have been developed for global-scale 
applications over the last 5–10 years, mostly in relation to soil C dynamics. In terms of biological 
process representation, these large-scale microbial models are not fundamentally different from 
those applied at (much) smaller spatial scales. A major alteration, however, lies on the assumption 
that soil physics and microbiology are homogenous within the soil grid to which it is applied 
(e.g., Huang et al. (2018)). Taken that the typical resolution of land surface schemes of Earth 
System Model is on the order of 0.5–2° (i.e. from tens to hundreds of km), numerous physical–
biogeochemical–microbial interactions occurring at smaller spatial scales are unresolved in these 
models and their parametrization remains a grand challenge for the future.

CONCLUSIONS

The advancement in experimental methods has provided an enormous amount of information 
on microbial community dynamics in the subsurface and the ongoing development of new 
methods for the analysis of microbial processes will further increase our knowledge in this field. 
As outlined in this chapter, this has triggered the development of a large number of modeling 
concepts that support the exploitation of this new knowledge in the broader context of reactive-
transport modeling. Not all of these concepts have yet been embedded in reactive transport 
modeling approaches, but the existing combinations indicate the strong potential of improving 
the representation of microbial processes in such models. Next to technical developments there is 
however the need to establish effective modeling concepts that can be applied for the simulation of 
microbial community dynamics and their biogeochemical function in natural porous media. The 
complex behavior of microbial communities still imposes severe challenges in their experimental 
assessment as observations obtained from any location in the subsurface may integrate the effects 
of several micro-environments each with distinct communities. Furthermore, many microbial 
species in a natural community are still not known or characterized. The required effective model 
approaches thus imperatively need to reduce the real world complexity of a natural community into 
a less complex community represented in the model framework. However, this reduced community 
should still reproduce the dynamics of the real community adequately. How to meet this challenge 
in the best possible way depends not only on the available data but also on the microbial functions 
of interest and thus on the purpose of the specific reactive transport modeling effort. For many 
subsurface compartments there is a growing need for reactive transport approaches to consider 
the functional dynamics of the microbial community more adequately, from the pore scale to the 
global scale. This is in particular the case for the Critical Zone and its compartments (Griebler 
et al. 2014; Vereecken et al. 2016; Li et al. 2017; Baveye et al. 2018; Vogel et al. 2018) partly 
because surface processes (e.g., weather, climate, anthropogenic activities) lead to a dynamic 
variation in the environmental conditions. However, this can also be the case for marine sediments 
(van de Velde et al. 2018). The increasing global population will lead to further anthropogenic 
disturbances of the subsurface and global change is expected to lead to more dynamic weather 
conditions. This further increases the need for model approaches that can predict the response of 
the microbial functions to such perturbations together with the adaptation to a changing climate.
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