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INTRODUCTION

The field of reactive transport lies at the intersection of several disciplines in the Earth and 
Environmental sciences, including hydrology, geochemistry, biology and geology. The processes 
in natural and engineered media that are the focus of study of these disciplines take place over 
a wide range of spatial and temporal scales. Specifically, geological media are characterized by 
their physical and mineralogical heterogeneity at spatial scales from nanometers to hundreds 
of meters and beyond. Flow and advection of solutes take place at the scale of individual 
pores but are commonly represented at the Darcy scale where the porous medium is treated 
as a continuum. A large contrast is often observed between fluid residence times in regions 
of enhanced permeability such as fractures or macropores and less permeable media where 
diffusion may be the dominating solute transport process. Understanding of reactive processes, 
including those mediated by microorganisms, is often developed at the molecular scale in the 
laboratory but their impact in the environment is observed at larger spatial scales.

In addition to considering the scales of the individual processes, reactive transport must 
also consider how these different scales interact with one another to give rise to the overall 
coupled behavior. In fact, in many instances considering the processes at the observation (or 
native) scales has limited applicability in subsurface environments. For example, reaction 
rates derived from laboratory studies show large discrepancies from those observed in natural 
environments, where transport processes and accessibility to reactive areas control effective 
rates. Reactive transport models, thus, even in a simple form, must make assumptions regarding 
the scales associated with each process and how they interact with each other. Implicit in any 
model is also the assumption that the models for each process are applicable at the same 
spatial scale as the other processes represented. For example, local geochemical equilibrium 
may only be assumed where reaction rates are faster than transport rates such that the solution 
reaches equilibrium over a characteristic spatial scale.

Reactive transport modeling, as a tool to integrate knowledge and develop mechanistic 
understanding, seeks to incorporate improved process model representations that reflect our 
advances in fundamental understanding (Druhan and Tournassat 2019 and references therein). 
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The multiscale nature of reactive transport is one of the most prominent aspects in models and, 
hence, modeling approaches that address this multiscale nature are an increasingly important 
component of the toolset needed by researchers (Scheibe et al. 2015a). In particular, multiscale 
approaches make it possible to incorporate process representations at the appropriate native 
scale in models intended to simulate the coupled problem at a different spatial or temporal 
scale. A variety of approaches have been brought to bear that range from conceptual to 
mathematical to numerical. Specific goals of multiscale models are also diverse and include 
using the appropriate coupling between processes, capturing the processes at the relevant scale 
in different regions, capturing the physical and mineralogical heterogeneity at multiple scales 
or incorporating fine-scale information in larger-scale applications. Ultimately, there is the 
need to identify what processes and at what scale are controlling overall system behavior, and 
hence the appropriate spatial and temporal scales to represent each process.

Multiscale modeling is a very broad topic with applications across many disciplines 
(Tomin and Lunati 2013, 2016; Scheibe et al. 2015a; Amanbek et al. 2019). In this chapter, we 
specifically review multiscale approaches for reactive transport modeling from the conceptual 
and mathematical perspectives. Many of the approaches have also been used in the individual 
disciplines reactive transport draws from. They are here discussed in a general manner here but 
also specifically in relation to reactive transport applications. We include approaches where the 
multiscale nature is reflected in a continuum-mechanics-based model and we discuss numerical 
aspects of these approaches where needed. Approaches that incorporate upscaling procedures 
in the numerical solution process such as multiscale finite element or finite volume methods, or 
based on numerical upscaling however are not included, e.g., Efendiev and Hou (2009).

We start by establishing the equations that describe the processes of interest at a single scale 
and discussing the multiscale aspects associated with process coupling at a single scale. We 
relate these equations to the two scales commonly identified in porous media—the pore scale 
and the Darcy scale—but are generally applicable at a range of spatial scales, from fluid in pores 
to streams and rivers. Derivation of effective models by upscaling pore-scale equations to the 
Darcy continuum scale is used specifically to motivate the need for multiscale approaches. First, 
we describe approaches that use different scale representations in different regions in the domain. 
We continue with approaches based on the existence of two or more porous continua in the same 
region of the domain. We give examples of the use of the multiscale approaches described in 
selected literature applications before making some concluding remarks.

SINGLE-SCALE DESCRIPTION OF REACTIVE TRANSPORT

Reactive transport models simulate flow, solute transport and geochemical reactions. In this 
chapter, for simplicity, we will consider only single-phase (aqueous) flow and transport. These 
processes are typically described by two sets of equations, one for the conservation of mass and 
momentum of the fluid and the other for the conservation of mass of the reactive components. 
The form of these equations depends on continuum of reference for which they are written: a 
fluid continuum, a solid continuum or a continuum that includes both fluid and solid phases. 
For example, flow in streams and rivers may be represented by considering the fluid phase as 
the continuum of reference. In porous and fractured media in the subsurface, when the fluid 
and the solid are both treated as separate continua, we refer to the scale of observation as the 
pore scale, while when the porous medium is the continuum, we refer to it as the Darcy scale. 
For convenience, in the derivation that follows we will focus on porous and fractured media, 
but these single-scale equations can be read more generally as applicable at a range of spatial 
scales. Further, we will not consider here the scales where the medium is not characterized as a 
continuum. For example, we do not discuss characterizations at the molecular or atomistic scale, 
or the organism level in the case of microbial processes.
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Separate fluid and solid continua: Pore-scale equations

When the individual pores are represented explicitly, and the solid–fluid interfaces are the 
boundaries of the domain considered (Fig. 1), flow may be described with the Stokes equations
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where u is the fluid velocity (with |u| =0 on the solid–fluid boundary), and m, and p are the fluid 
viscosity, and pressure, respectively. The equations that describe the mass balance of chemical 
species subject to advective–diffusive transport and heterogeneous reactions at the fluid–solid 
surface may be written as

�
�
� �� �� � �� � �� �c

t
c D cu (3)

� � � �D c rn (4)

where c is the solute concentration, D is the diffusion coefficient of the solute in the solution, 
and r is the surface reaction rate. Equation (4) expresses the mass balance at the fluid–solid 
interface for the aqueous species involved in the heterogeneous reaction, where n denotes the 
unit normal pointing from solid to liquid.

Single porous continuum: Darcy-scale equations

When the porous medium is treated as a continuum, i.e., when within an elementary 
representative volume (or REV) properties that described the medium such as porosity (q) or 
permeability (k) may be assumed constant (Fig. 1), flow in porous media can be described by:
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where q is the Darcy velocity vector, which is calculated with Darcy’s law (Eqn. 6), q is the 
porosity (water content in fully-saturated conditions), r is the fluid density, g is the gravitational 
constant, and z is the vertical coordinate. The equations that describe the mass balance of 
chemical species subject to advective-dispersive transport and heterogeneous reactions in 
porous media may be written as
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where C is the concentration at the Darcy-scale, D* is the effective diffusion/dispersion tensor, and 
R is the bulk reaction rate. In the view presented in this section, the properties that characterize the 
porous medium, i.e., q, k, or D*, or the bulk rates are assumed known (for example, empirically) 
and applicable at this scale. In general, however, they encapsulate information of the processes 
that take place at the scale of individual pores. In the section devoted to upscaling, we discuss 
how one may formally derive these parameters from the pore-scale description.
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Multiscale aspects of process coupling

The flow equations and the reactive transport equations are in general coupled via the 
composition of the fluid, as well as hydraulic and geometric properties of the porous medium. 
For example, changes in the fluid composition caused by geochemical reactions affect the 
fluid density, or dissolution–precipitation reactions change the pore space geometry which 
in turn affects the fluid velocity. The evolution of these properties is in many applications 
relatively slow compared to flow and transport and the coupling is assumed weak. In some 
other applications, the feedback processes are significant and are addressed specifically in the 
chapter devoted to porous media evolution in this volume (Seigneur et al. 2019, this volume).

Here we will briefly focus on the coupling of time scales associated with transport 
and reactions and how they affect the process representation at a specific spatial scale. For 
convenience, we re-write Equation (7) generically as
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where () is the transport operator and ()  the reaction operator. Transport is important as it 
provides the driving force for reaction but also because it provides a characteristic time scale to 
which the time scale of the reaction is compared. In an open system, as implied by Equation (8), 
if the characteristic time of transport (for a given characteristic length scale), τ ,is larger than 
that of the reaction, τ, the solution reaches equilibrium with itself or with a mineral phase. In 
Darcy-scale models, if this characteristic length scale is that over which the REV is defined, 
this makes it possible to assume local equilibrium. In the local equilibrium assumption (LEA) 
(Lichtner 1996), the rate of reaction is thus determined by the rate of transport of matter across 
the boundaries of the domain (Fig. 2a).

In pore-scale models (Eqns. 3–4 may also be written in a form similar to Eqn. 8), the 
concept of local equilibrium is different (Lichtner 1996). At the Darcy scale, geochemical 
equilibrium is attained at the REV scale which includes many pores. At the pore scale, the 
detailed pore space geometry plays a role. Although equilibrium may be attained at mineral 
surfaces, geochemical gradients may still be present in individual pores (Fig. 2b).

Figure 1. Conceptual representation of scales associated with interfacial (heterogeneous) reactions in po-
rous media. The existence of an REV makes it possible to describe the medium as a continuum (left), while 
at the scale of individual pores interfacial reactions are explicitly described at the fluid–solid interface. 
Adapted from Wood et al. (2007).
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UPSCALING AND EFFECTIVE MODELS

The macro- (Darcy) scale model in Equations (5–6) and (7) may be formally derived by 
scaling-up the micro-(pore) scale Equations (1–2) and (3–4). Upscaling has been the subject 
of intensive research for at least 50 years, with volume averaging being a commonly used 
approach for this purpose. In classical averaging theory, concentrations and fluxes are averaged 
over an REV composed of fluid and solid phases. The averaging of the pore-scale equations 
makes it possible to write conservation equations for these averaged quantities (see, e.g., Gray 
and Miller 2014). In these equations, however, new terms appear that still depend on pore-
scale quantities and hence for which closure relations must be postulated. The mathematical 
theory of (periodic) homogenization is used to solve the closure problem (Hornung 1997).

In the most simple form, periodic homogenization relies on the spatial periodicity of 
the domain W, which is conceived to be composed of shifted and e-scaled copies Ye of an 
REV Y (Fig. 3). The REV Y is made up of solid (Ys) and liquid (Yl ), separated by an interface 
G. Accordingly, the porous media domain We is composed of solid phase, with Ys,e being the 
union of the shifted and e-scaled Ys and the liquid phase. The subdomain Yl,e is defined similarly 
and assumed to be connected such that flow can take place. Let’s assume a coefficient (φ) that 
oscillates with a periodicity of length e such as the diffusion coefficient D, with D > 0 in the fluid 
and D = 0 in the solid. The aim of homogenization is to consider e → 0 (i.e., to zoom out) in order 
to see what description holds for the emerging homogeneous medium. Formally, this can be done 
assuming a two-scale asymptotic expansion for all unknown quantities φ in the form

Figure 2. (a) Steady state calcite dissolution rates as a function of the flow velocity (using a double logarith-
mic scale) from a 1-D continuum model of transport and calcite dissolution (implemented with a kinetic rate 
expression). For velocities between 0.0001 and approximately 0.01 cm/s the dissolution rate is controlled by 
transport, hence it is proportional to velocity. For faster flow velocities, the rate is controlled by both transport 
and the kinetic reaction. [Reprinted from (a) From Molins S, Trebotich D, Steefel CI, Shen C (2012) An inves-
tigation of the effect of pore scale flow on average geochemical reaction rates using direct numerical simula-
tion. Water Resources Research, 48(3):W03527, Figure 6, with permission] (b) Steady-state calcite dissolu-
tion rates in a single cylindrical pore calculated from a 2D pore-scale model (R2D) and from a Well-Mixed 
Reactor model (RM) as a function of the pore flow velocity for a pore of 100 µm in length and diameter. At 
low pore velocities, conditions in the pore are in equilibrium and R2D and RM produce the same results. Only 
under intermediate flow conditions where concentration gradients develop do the reaction rates depend on 
the spatial scale and the rate discrepancy between the two models reaches a maximum. [Reprinted from Li 
L, Steefel CI, Yang L (2008) Scale dependence of mineral dissolution rates within single pores and fractures. 
Geochimica et Cosmochimica Acta 72(2):360–377, Figure 5, with permission of Elsevier, Copyright 2008.]
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where y := x / e is a fast spatial variable in the sense that y covers Y, if x covers Ye. Depending 
on the problem, the interplay between the processes in e and separation of scales, it is possible 
to derive equations in which only the Y-averaged 0-th order terms appear. This is done by 
inserting the expansion in the governing (pore-scale) equation such that each e-power gives 
rise to a new equation for the coefficient that is being investigated.

For example, one can derive the upscaled, Darcy-scale form of the diffusion equation (i.e., 
Eqn. 7 with q = 0 and no reaction term) from the pore-scale diffusion counterpart (i.e., Eqn. 3) with 
|u| = 0). Solving the closure equations on Y numerically makes it possible then to obtain the 
effective diffusion tensor D*, which encodes the information about the pore geometry, see, 
e.g., Ray et al. (2018). The closure equations are typically solved using idealized or randomly 
generated porous geometries (Fig. 4). From these calculations, it is possible to describe the 
dependence on pore geometry solely by a macroscopic parameter such as porosity (Fig. 5).

Figure 3. Two-dimensional domain W constructed by periodic repetition of a porous medium We (left), repre-
sented by a unit cell Y composed of fluid and solid separated by a circular interface (right). Examples of other 
geometries used for unit cells are shown in Figure 4. [Modified from Ray N, van Noorden T, Frank F, Knabner P 
(2012) Multiscale modeling of colloid and fluid dynamics in porous media including an evolving microstructure. 
Transport in Porous Media 95(3):669–696, Figure 2, with permission of Springer Nature. Copyright 2012.]

Figure 4. Representative elementary volumes in 2D: square, circle, rectangles, ellipse, crosses (type 1 and 
2), octagon, hexagon, and random geometry (top), and representative elementary volumes in 3D: cube, 
sphere, 3D cross, hexagonal prism, and random (bottom) [Reprinted from Ray N, Rupp A, Schulz R, Knab-
ner P (2018) Old and new approaches predicting the diffusion in porous media. Transport in Porous Media 
124: 803–824, Figures 1 and 2, with permission of Springer Nature. Copyright 2018.]
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The above procedure can be accomplished when there is scale separation (i.e., the micro- 
and macro-scales can be described independently from each other) but in general it also 
depends on the proper scaling of the parameters in the e-problem. For example, to deduce 
Darcy’s law from the Stokes equation at the pore scale (i.e., with a computable permeability), a 
scaling of the viscosity m to em is required. Further, when several different processes are in play 
(e.g., advection and diffusion), characteristic numbers such as the Péclet number (Pe) may be 
needed in the efficient coefficients, e.g., in the derivation of mechanical dispersion (Mikelić et 
al. 2006). For reactive transport problems, efforts in upscaling have focused on heterogeneous 
reactions. Here we present a short derivation of upscaled relationships for (first-order) sorption 
reactions and dissolution-precipitation reactions first with non-evolving geometries and then 
with evolving geometries.

Upscaling interfacial reactions

We consider a surface reaction such that Equations (3–4) may be written on Ge as
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where cm is the concentration in the fluid, and the rate is expressed as an exchange between the 
fluid and the surface concentration, r = a(cm − cim), with the immobile concentration (cim) being 
a surface concentration such that
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where a is the rate of mass transfer between the bulk fluid and the surface, with a > 0. A no-
flow boundary condition (u = 0) is assumed on �

,�. The upscaled model then takes the 
following macroscale form
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where s is the specific surface (s = G/ Y, which along with q and D*are computed from the pore 
geometry, and the macro-scale rate is described by

Figure 5. Scalar ratio between scalar representative effective diffusion (Dp) over intrinsic diffusion (D0) as a 
function of porosity for isotropic geometries in 2D: square, circle, crosses (type 1 and 2, see Fig. 4), and octa-
gon; Hashin–Shtrikman bound q(2 - q) (exclusion of gray area); and functional relations q3/2 (Marshall 1959) 
and q2 (Buckingham 1904) [Reprinted from Ray N, Rupp A, Schulz R, Knabner P (2018) Old and new 
approaches predicting the diffusion in porous media. Transport in Porous Media 124: 803–824, Figures 1 
and 2, with permission of Springer Nature. Copyright 2018]
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where micro- and macro-scale problems are separate. However, if surface diffusion is 
considered at Ge such that the micro-scale Equation (12) is written as
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where Ds, is the surface diffusion coefficient, it is not possible any longer to obtain the average 
of cim and a coupled macro-scale/micro-scale model is obtained
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where the micro problem depends at every point x on the macroscopic concentration Cm(x,t). (Note 
that the emerging equations for Cm and Cim = Cim (y,t;x) read as Eqn. 35, with G in lieu of Wx).

Upscaling interfacial reactions with evolving geometries

Precipitation–dissolution reactions are of interest as they change the pore geometry and 
can have a positive feedback on flow and transport processes, leading in some case to clogging 
or wormholing. In the classical approach this is reflected in the change of porosity as described 
by Ray et al. (2015)
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where rs is a surface density used as conversion factor between mass and volume. To close the 
model, the specific surface s must be related to q, which requires assumptions on the evolving 
micro geometry. In the case of known geometries (e.g., spheres, cubes, etc), this leads to the 
commonly used relation (Lichtner 1996)
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where Cmin is the mineral concentration and b is a factor to convert from units of mass to volume

The evolution of the interface as a result of the reaction can be described with a sharp 
interface approach (e.g., a level set) or approximated by a phase field model (Bringedal et al. 
2019). The normal component of the velocity of the interface is denoted by nn,e

v R cn
s

m,� �
�
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This velocity is a function of the reaction rate R and the density of the precipitate rs. 
Considering the reaction to be a single-component reaction for simplicity, Equation (11) can 
be replaced with

D n� � � �� �c v cm n m s,� � (20)

where the precipitate can form the outer surface of the solid grain. By upscaling we can again 
recover Equation (13), but here the closure comes from a detailed description of the interface 
via the evolution of a level-set function L0 in the REV Y, described by (Ray et al. 2015)
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yielding q, s, D needed in Eqn. 13 but dependent now on the macroscopic concentration 
Cm(x, t). Thus, we obtain again a coupled micro-macro model. The solution of Equation (21) is 
not straight-forward and can be derived by a two-scale asymptotic procedure (Ray et al. 2015).

Extension of this approach to multicomponent problems that include homogeneous and 
heterogeneous reactions, in equilibrium or kinetic, is still in the early stages of development. 
While homogeneous or sorption reactions are tractable, development of passivation layers 
in systems with multiple mineral reactions, e.g., Daval et al. (2009), is considerably more 
difficult to handle in this framework.

COMBINING SCALE REPRESENTATIONS

The ability of pore-scale models to explicitly resolve individual pores make them suitable 
to simulate flow and reactive transport without using bulk parameters to characterize the 
medium. The computational cost of pore-scale simulations, however, is very high if one wants 
to cover volumes of porous media large enough for relevant applications. As noted in the 
previous section, the macro (Darcy)-scale problem can only be formulated separately from 
the micro (pore)-scale problem under a number of simplifying assumptions, see also Battiato 
and Tartakovsky (2011). Rather than formulating and solving closure equations for periodic 
unit cells of idealized geometries in these cases, one may want to solve the pore-scale problem 
directly. In applications where the pore-scale characterization is needed only in certain regions 
rather the entire domain, an attractive approach is then to combine a pore-scale description in 
these regions and revert to a Darcy-scale description elsewhere. Broadly, two approaches have 
been used for this purpose: hybrid models and the Darcy–Brinkman–Stokes approach.

Hybrid multiscale models

Hybrid multiscale models combine different scale representations in a single simulation 
(Battiato et al. 2011; Roubinet and Tartakovsky 2013; Yousefzadeh and Battiato 2017). In this 
approach, the domain is divided in two or more regions where different scale representations 
are used (Fig. 6a). Because often this implies that different process models, and thus 
potentially also the numerical solution method, are used in each of the regions, hybrid models 
are sometimes known as multi-algorithm or algorithm refinement models. An advantage of 
hybrid models from the multi-algorithm perspective is that it is possible to consider different 
spatial and temporal discretization in different portions of the domain, or the use of different 
dimensionality for each of the sub-domains (e.g., Fig. 6b).

A hybrid model of reactive transport on a domain W composed of a pore-scale domain Wp 
and a Darcy-scale domain WD, such that W = Wp∪ WD, entails the solution of Equations (1–4) in 
Wp and Equations (5–7) in WD. The pore-scale and Darcy-scale simulations are coupled by 
enforcing the continuity of mass (concentration) and mass flux (its normal component) along 
the interface G between Wp and WD:

Figure 6. (a) Schematic representation of the pore-(Wp) and Darcy-scale (Wp =WT
 − Wp ) domains [Reprinted from 

Battiato I, Tartakovsky DM, Tartakovsky AM, Scheibe TD (2011) Hybrid models of reactive transport in porous 
and fractured media. Advances in Water Resources, 34(9), 1140–1150, Figure 1, with permission of Elsevier. Copy-
right 2013.] (b) Hybrid finite-volume discretization. The (small green and big red) circles indicate nodes at which 
the (pore-scale and Darcy-scale) unknowns are computed with a regular finite-volume method. The (big red and 
small green) crosses denote extra nodes used to enforce the continuity conditions at the hybrid’s interfaces. [Re-
printed from Roubinet D, Tartakovsky DM (2013) Hybrid modeling of heterogeneous geochemical reactions in 
fractured porous media. Water Resources Research, 49(12), 7945–7956, Figure 1, with permission.]
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where Qp(x, t) and QD(x, t) are the normal components of the pore-scale and Darcy-scale mass 
fluxes , Qp(x, t) = uc − D∇c and QD = qC − D*∇C, respectively.

From a numerical perspective, hybrid models need to consider the interface between the sub-
domains explicitly and coupling the sub-problems at the interface. Typically, concentrations and 
fluxes are used as coupling unknowns for Equations (22) and (23). This adds some complexity 
in the implementation of hybrid models, especially when the dimensionality or discretization 
on both sides of the interfaces are different. An example of a numerical method designed to 
handle these exchanges in a general and flexible way is the mortar method (Balhoff et al. 2008; 
Mehmani et al. 2012). In this method, coupling between sub-domains is accomplished by using 
finite-element (FEM) spaces to determine interface conditions (Fig. 7). Using the flow problem 
as example (with pressure being the unknown of the problem), the pressure field in the mortar 
space (noted by p) is a linear combination of finite element (FE) basis functions (φi):

p i i� �� � (24)

The basis functions may be constant, linear, quadratic, or higher order functions. The solution 
is obtained by determining the coefficients (ζi) that result in matching of fluxes at interface. 
The mortar solution then describes the pressure field only at the interface which is used as a 
boundary condition and projected onto the individual sub-domain. The sub-models are then 
solved using the appropriate algorithm.

Darcy–Brinkman–Stokes approach

An approach for combining pore- and Darcy-scale representations that has received 
increasing attention is the one conceptualized by the Darcy–Brinkman–Stokes equation 
(Golfier et al. 2002; Popov et al. 2009; Gulbransen et al. 2010; Yang et al. 2014; Soulaine and 
Tchelepi 2016; Soulaine et al. 2017). Darcy–Brinkman–Stokes describes flow in open pore 

Figure 7. Schematic showing one pore-scale model and three Darcy-scale models arranged using 4×4 
quadratic mortars. [Reprinted from Balhoff MT, Thomas SG, Wheeler MF (2008) Mortar coupling and 
upscaling of pore-scale models. Computational Geosciences 12(1):15–27, Figure 7, with permission of 
Springer Nature. Copyright 2008.]
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space and in a porous continuum with a single equation (written here to recover the transient 
incompressible Navier–Stokes equations in the fluid domains in lieu of Eqn. 2):
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where e is the porosity of the medium, with e =1 in the pore spaces, 0 < e < 1 in a porous 
continuum and e = 0 in the solid phase. The permeability k of the medium requires a 
constitutive relation linking it to e, for example the Kozeny–Carman equation. As a result, the 
terms associated with porous-media flow become negligible in the pore scale, while the terms 
associated with pore-scale flow become negligible in the porous continuum or the solid phase 
(Fig. 8). The transport of the aqueous species is described by a locally averaged equation
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where dissolution is here described as a source-sink term (R) as in Equation (7).

The use of a single equation simplifies the numerical implementation of this method. Further, 
it does not require explicit representation of an interface between pore-scale and Darcy-scale, 
which is especially convenient in problems with evolving media. In fact, the distinction 
between pore-scale and Darcy-scale is only conceptual. In the pore-scale limit, i.e., when e and 
k are very small, Equations (25) and (26) recover the pore-scale description in Equations (1–3) 
and it may be used as a pore-scale method (Golfier et al. 2002; Soulaine et al. 2017).

MULTI-RATE AND MULTI-CONTINUA MODELS

Natural porous media are characterized by the existence of porosity at multiple spatial 
scales. The conceptual model presented in Figure 1 only considers inter-granular porosity, that 
is, porosity available between solid grains where in general fluid velocities are appreciable. We 
update here this model to include intra-granular porosity, that is, porosity that exists at small 
spatial scales in regions, which we will for convenience refer to as aggregates, where fluid 
flow is in general very slow and transport processes are dominated by diffusion (Fig. 9). In this 
media, the mass of each constituent is distributed between inter-porosity and intra-porosity, or 
mobile and immobile regions, between which mass is exchanged.

Figure 8. Conceptual representation of the void and solid in the pore-scale approach in contrast to the Darcy–
Brinkman–Stokes (DBS) approach. (a) In the former, solid grains are explicitly described, the flow is governed 
by Navier–Stokes everywhere in the void. (b) In the latter, a cutoff length is introduced by means of the control 
volume V and the void is represented by the volume fraction e, (c) discretized representation of the medium 
near the fluid–solid interface where the volume fraction of the solid ranges from 0 (pore space) to 1 (solid). 
[Reprinted from Soulaine C, Roman S, Kovscek A, Tchelepi HA (2017) Mineral dissolution and wormholing 
from a pore-scale perspective. Journal of Fluid Mechanics 827:457–483, Figure 2, with permission.]
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Multi-rate models

The concept of mass exchange between mobile and immobile regions is analogous to 
considering heterogeneous reactions between a mobile and immobile species, such as in 
sorption reactions, see Equations (10–12). We will use this idea here to present single- and 
multi-rate models, see, e.g., Haggerty and Gorelick (1995), Hollenbeck et al. (1999). We start 
by writing the mass balance of a species as (omitting the species index for simplicity)
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where Cm and Cim are the mobile and immobile concentrations of the species, where we assume 
the immobile concentration is not subject to transport (). The mobile (qm) and immobile 
(qim) porosities are the corresponding conversion factors to normalize the concentrations to 
the volume of an REV (if Cim is a surface concentration, then qim = rb, with rb being the bulk 
density). Equation (27) needs a closure relation that links the two concentrations, which may 
be a quasi-stationary approximation

C Cim m� � (29)

describing a linear equilibrium sorption reaction (k ≡ Kd), or a first-order kinetic exchange such as
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Integration of Equation (29) makes the memory effect of the linear mass transfer process evident
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For more flexibility in the description of this memory (or tailing) effect, Cim can be further sub-
divided in different fractions (bk) with different kinetic behavior in a multi-rate formulation. 
Equations (27) and (29) can be generalized to
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Figure 9. Conceptual representation of media with porosity at multiple spatial scales, showing mass ex-
change fluxes between internal porosity in aggregates and inter-granular porosity.
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Applying (30) to each of the fraction and expanding the sum in (31), one can see that the 
exponential kernel in the memory term becomes multimodal. The model can be also used to 
describe physical non-equilibrium, where now the mass transfer is between the mobile region 
and each of the fractions of the immobile region (or classes of micro-porosity, each giving a 
different memory effect). All these fractions (or sorption sites in the sorption interpretation), 
exchange mass with the mobile region directly based on the same Cm.

A generalization of Equations (31) and (32) is given by extending them from a finite number 
of fractions (i.e., sorption sites/micro-porosity classes) to an infinite number (or a continuum) 
of them by re-writing them as
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Extension of multi-rate mass transfer models to multicomponent reactive transport is possible; 
see, e.g., Donado et al. (2009) where the equilibrium is assumed in each the mobile and immobile 
domains such that Equations (27) and (30) may be written in terms of total concentrations and 
speciation calculations performed once the equations are solved for these total concentrations.

Multi-continua models

Multi-rate models are derived for two continua: a mobile and immobile region. This can be 
generalized for any number of continua. One can transition from multi-rate models to multi-
continua models (MC). We can start by assuming that in one aggregate class the diffusive 
transport within the aggregate is taken into account. For the ease of notation, we consider only 
one rate (N = 1) . The averaged concentration Cim = Cim(x,t) is now replaced by cim = Cim(y,t;x), 
y ∈ Wx where Wx is a representative aggregate and the total mass conservation from (31) reads
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Equation (31) is substituted by a partial differential equation on Wx
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where dim > 0 denotes the molecular diffusion coefficient in the aggregate and ny is the unit 
normal at ∂Wx pointing out of Wx.

If we have several points x = xk, where the detailed dynamics must be considered, we go from 
a two-continuum/region model to a multiple continuum/regions models with a considerable 
increase in numerical complexity. The extreme is to do this for every (discretization) point 
x = x ∈ W. In this case, we can again arrive at a micro-macro model as in Equations (13) and 
(16). To avoid enormous numerical complexity in simulating such a model, on can try solving 
Equations (36) and (37) analytically with appropriate initial conditions. This is possible 
in special cases, e.g., when Wx is a sphere. This solution representation, which depends on 
cm(x, t), may be viewed as analogous to the multi-model extension of Equation (30), where 
now the integral in (30) has to be substituted by an integral of the type
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to close the relation in Equation (35), with c y xm , ,0 0� � �  for simplicity.

Multiple interacting continua

The multiple interacting continua (MINC) is a multi-continuum approach developed 
specifically as a discretization method for fractured media. In this approach, the matrix is 
represented by multiple continua, each one further away from the fracture continuum. The 
idea is that changes in fluid conditions propagate more slowly in less permeable matrix blocks 
compared to the smaller fracture volumes. This approach allows for accurate resolution of the 
gradients in pressures and concentrations into the matrix. It is distinct from the MRMT in that 
matrix continua are connected in series to account mass transfer between, while in the MRMT 
mass transfer is always between the mobile region and the immobile region according to a 
number of parallel rates. While the MINC method was developed for fractured media, it may be 
used as general multi-continuum discretization approach, and in some MINC implementations 
multi-rate mass transfer models can be obtained as a specific case.

MULTISCALE MODEL APPLICATIONS

In the previous sections, we have reviewed approaches to simulate reactive transport 
processes in media characterized by the multiplicity of scales. These approaches have been 
brought to bear on several applications in the field. Here we presented a selection of applications 
where one or more of these approaches have been used. In some of these applications, 
to evaluate the ability of multiscale methods to capture the processes of interest, they are 
compared to micro-scale simulations, macro-scale simulations, or simulations with other 
multiscale approaches. We organize this section by first distinguishing between applications 
in granular porous media and fractured media. We move on to applications in integrated 
hydrology that connect surface and subsurface compartments, which share similarities to the 
multiscale concepts discussed in this chapter.

Granular porous media

Dissolution of rocks often involves the development of altered rinds in the grains that make 
up the rock, e.g., Navarre-Sitchler et al. (2009). These layers may be characterized by changes 
in porosity or diffusivity that determine the rate at which reactant accesses the reactive mineral. 
Rates of dissolution observed at the large scale depend on diffusion-reaction processes that 
take place at the scale of micrometers. Although the method of multiple interacting continua 
was developed for fractured media it can be viewed as similar to the “shrinking core” model 
(Wunderly et al. 1996). In this view, the grains can be conceptualized as consisting of several 
continua connected in series. Aradóttir et al. (2013) used this approach to capture the microscopic 
dynamics of basaltic glass dissolution in a Darcy-scale model (Fig. 10). The MINC method 
involves dividing the system up to ambient fluid and grains, using a specific surface area to 
describe the interface between the two. The various grains and regions within grains can then 
be described by dividing them into continua separated by dividing surfaces. Millions of grains 
can thus be considered within the method without the need to explicitly discretizing them. Four 
continua were used for describing a dissolving basaltic glass grain; the first one describes the 
ambient fluid around the grain, while the second, third and fourth continuum refer to a diffusive 
leached layer, the dissolving part of the grain and the inert part of the grain, respectively.
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The physical heterogeneity of natural porous media often leads to poorly mixed conditions 
such that different conditions exists within relatively small volumes of the media. From a 
reactive transport perspective, the existence of micro-environments implies that geochemical 
gradients can develop. For example, diffusion-dominated micro-environments conditions may 
be at equilibrium or close to equilibrium with certain minerals, while in advection-dominated 
pore spaces reactions are far from equilibrium. Mineralogical heterogeneity at different scales 
compounds to this effect where a correlation may exist between a certain mineralogy and 
enhanced reactivity due to availability of micro-porosity (Landrot et al. 2012). Poorly mixed 
conditions may also exist within individual pores, which under certain conditions lead to scale 
dependent rates (Li et al. 2008).

Although pore-scale simulations make it possible to reproduce geochemical gradients at 
the micrometer scale (Molins et al. 2012), multiscale models offer an alternative that is less 
computationally demanding. Liu et al. (2015) designed a micromodel experiment coated with 
hematite where macro- and micro-porosity domains where present (Fig. 11a). Three separate 
models were used to describe transport processes and reductive dissolution of hematite: a pore-
scale model, a 1D single-continuum model, and a 1D triple-continua model. The predictions 
from the pore-scale reactive transport model predicted reasonably well the measured pore-
scale rates of hematite reduction. Geochemical gradients within the domain (Fig. 11a) made 
it necessary to divide the domain in three continua: one that captured advection-dominated 
domain, one to capture the diffusive gradients within the macro-pore and a third on to capture 
diffusive limitations in the micro-pores. While the rate of hematite reduction in the advection-
dominated and macro-pore domains was affected by the flow rate, the rate in the micropore 
domain was not, however, as reactant diffusion was rate-limiting. Results from the single 
domain model deviated significantly from the pore-scale results.

 Pore-scale is not always available due to the large dimensions of the domain and the 
associated large computation costs. In these circumstances, multiscale approaches that 
retain a pore-scale description for part of the domain while using Darcy-scale for the rest 
help bridge the trade-off between process resolution and domain size. Yan et al. (2017) used 
a Darcy–Brinkman–Stokes-based approach to simulate biogeochemical reaction rates in 
heterogeneous sediments. An X-ray computed tomography image was used to construct a 

 Figure 10. (a) Four-dimensional MINC interpretation of basaltic glass dissolution in the context of a column flow 
through experiment, (b) Schematic illustration of elements and connections in the four-dimensional MINC setup. 
Columns represent different continua, each of which has a number of elements (represented by boxes). Arrows show 
connections between elements and continua. [Reprinted from Aradóttir ESP, Sigfússon B, Sonnenthal EL, Björnsson 
G, Jónsson H (2013) Dynamics of basaltic glass dissolution–Capturing microscopic effects in continuum scale models. 
Geochimica et Cosmochimica Acta 121:311–327, Figures 2 and 5, with permission of Elsevier. Copyright 2013.]
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3D multiscale domain where e was assigned a value from grayscale image (Fig. 12a), and 
in turn, a permeability value calculated from e. A critical aspect of the model was, however, 
the assumption that the distribution of soil organic carbon (SOC) and biomass was correlated 
inversely with e. That is, these variables were high near or on solid surfaces while low in large 
pore spaces. Additional simulations with single- and dual-domain models were performed to 
test this assumption. These simulations show that only when a large fraction of the soil organic 
carbon and biomass was placed in the immobile domain, dual-domain models were able to 
capture effluent concentrations of nitrate (Fig. 12b). In fact, single-domain models captured 
well effluent concentrations for non-reactive tracers. The multiscale aspect of the problem 
appeared only in the reactive transport component.

Figure 11 (a) Pore-scale simulation results for selected components and (b) Hematite concentration normalized to 
initial values in triple-continua domains (A, C and E), and accumulated Fe(II) mass in effluent (normalized to initial 
hematite-Fe in the micromodel) (B, D and F). Symbols denote calculated results from pore-scale simulations, and 
lines denote predicted results from the triple-domain model. [Reprinted from Liu Y, Liu C, Zhang C, Yang X, Zach-
ara JM (2015) Pore and continuum scale study of the effect of subgrid transport heterogeneity on redox reaction 
rates. Geochimica et Cosmochimica Acta 163:140–155, Figures 4, 8, with permission of Elsevier. Copyright 2015.]

Figure 12 (a) An X-ray computed tomography image of a sediment column where a larger grayscale value 
indicates that the volume contains a higher content of solids; (b) porosity distribution converted from the 
left grayscale image where 0 denotes solid, 1 denotes pore, and other values between them denote the 
regions with mixed pores and solids, (c) Effects of biofilm and SOC heterogeneity on NO3 reduction for 
the DBS-based model (Multiscale), the single-domain model (SDM), the dual-domain model (DDM) and 
two additional DDM, one where the positive correlation is only assumed for the biofilm (DDM for biofilm) 
and the other for the soil organic carbon (DDM for SOC). [Reprinted from Yan Z, Liu C, Liu Y, Bailey 
VL (2017) Multiscale investigation on biofilm distribution and its impact on macroscopic biogeochemical 
reaction rates. Water Resources Research 53(11):8698–8714, Figures 1, 9, with permission.]
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 These applications highlight the importance of mixing processes in reactive transport in 
heterogeneous porous media. In some instances, however, simulation of mixing processes in 
relatively homogeneous media may need of a multiscale approach when they are coupled to 
reactive processes. An example of this are mixing-controlled reactions. When two solutions mix 
such that a precipitate may form that has the potential to clog the pore space, it may be necessary 
to perform pore scale simulations. Scheibe et al. (2015b) presented a hybrid model that performed 
Darcy-scale simulations everywhere in the domain, and based on an incomplete mixing 
conditions, dynamically performed additional pore-scale simulations in a narrow region of the 
domain where precipitation occurred as a result of the mixing. This overlapping or hierarchical 
approach eliminated the need for matching boundary conditions between pore-scale and Darcy-
scale domains. Hybrid simulations showed a sharper reaction front than equivalent Darcy-scale 
simulations, although some instabilities were observed in the hybrid approach (Fig. 13).

Fractured media

Flow and transport in fractured media occur primarily through a network of fractures, 
while flow in the matrix may be significantly slower with transport dominated by diffusive 
processes. While the fractures account for most of the flow and transport they typically make 
up a small portion of the overall volume of the medium. One could argue that to simulate 
fracture systems and incorporate this disparate scale, most fracture models has in one way or 
other multiscale aspects. Specific approaches to simulate fractures are reviewed in detail in a 
chapter of this volume (Deng and Spycher 2019, this volume). Here we describe the work of 
Molins et al. (2019) to develop a hybrid multiscale of fractured media as an example of the 
two separate scales. In this hybrid model, a pore-scale component captures Navier–Stokes 
flow, multi-component transport and aqueous equilibrium in the fracture, while a Darcy-scale 

Figure 13. Concentration of product species C (mol/cm3) in (a) a single-scale (Darcy-scale only) simulation, 
(b) hybrid multiscale simulation and (c) pore-scale simulation. [Reprinted from Scheibe, T. D., Schuchardt, K., 
Agarwal, K., Chase, J., Yang, X., Palmer, B. J., et al. (2015). Hybrid multiscale simulation of a mixing-controlled 
reaction. Advances in Water Resources 83:228–239, Figure 5, with permission of Elsevier. Copyright 2015.]
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component captures multi-component diffusive transport, aqueous equilibrium and mineral 
reactions in the porous matrix (Fig. 14). The interface between the sub-models, the fracture 
surface, is represented by an embedded-boundary. To simplify exchange of concentrations 
and fluxes at this interface, adaptive mesh refinement is used such that resolutions of the sub-
models match at the interface while still using coarser resolution away from the interface 
when not needed in the Darcy-scale domain. The multiscale model is capable to capture flow 
channelization observed in an experimental fractured core and, at the same time, limitations in 
the dissolution of calcite by diffusive transport through an altered porous layer.

Surface–subsurface hydrologic coupling

Reactive transport of geochemical species in streams is result from an interplay between 
biogeochemical processes and mass exchange between the stream and the subsurface. The 
saturated sediment adjacent to the stream is therefore an important region for understanding 
the composition and evolution of water in the stream. For its role, the hyporheic zone has 
been the focus of study to understand flow and solute transport. Increasingly, there is interest 
to simulate reactive transport in the context of integrated surface–subsurface processes where 
both compartments are considered.

Although we have motivated the need for multiscale approaches in porous media from the 
pore- to Darcy-scale models in porous media, coupling of surface and subsurface processes 
requires the solution of similar equations in a coupled manner. The understanding of multiscale 
approaches in this sense is related to that of multi-physics, where the processes of interest 
are described by different equations. These processes may be characterized by different 
time scales, e.g., fast overland flow compared to long residence times for subsurface flow. 
Conceptually, these systems are similar to some of the subsurface systems considered in this 
chapter such as fractured media with fast flow in fractures compared to long residence times 

Figure 14. Steady-state calcium concentrations in the 3D simulations of the Duperow fracture experi-
ment (a) in the Darcy-scale domain and (b) the pore-scale domain. (c) A close-up view of the pore-scale 
domain shows concentration gradients within the fracture opening, and (d) a side view of the Darcy-scale 
domains shows the embedded boundary and the mesh refinement around the fracture surface, where it 
interfaces with the pore-scale domain and steep concentration gradients develop. [Reprinted from Molins 
S, Trebotich D, Arora B, Steefel CI, Deng H (2019) Multi-scale model of reactive transport in fractured 
media: Diffusion limitations on rates, Transport in Porous Media 128:701–721, Figure 7, with permission.]
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in the rock matrix. As a result, the approaches to coupling processes between the different 
compartments fall within those described in this review, including multi-rate approaches and 
hybrid approaches that require enforcement of continuity of mass and fluxes across interfaces. 
Examples of each of them are presented in what follows.

Painter (2018) use the residence time concept to develop a multiscale model for hyporheic 
exchange considering biogeochemical reactions. In this approach, the channel is a one-dimensional 
domain in which each cell of the discretization is connected to one dimensional sub-grid model 
for reactive transport (Fig. 15a), which are convolution representations of the exchange of solute 
with the hyporheic. This approach is mathematically equivalent to multi-rate mass transfer 
formulations such as Equations (33–34). In Painter (2018), the sub-grid model is generalized 
to include multicomponent reactive transport with general nonlinear reactions. Hyporheic zone 
denitrification is simulated with these non-linear models to demonstrate the approach (Fig. 15b).

Hybrid approaches are also being brought to bear on the surface–subsurface hydrologic 
exchange. Bao et al. (2018) developed a one‐way coupled surface and subsurface water 
flow model to simulate a 7‐km long reach along the Columbia River (Fig. 16). While the 
subsurface model is a Darcy-scale model, the surface component is solved with computational 
fluid dynamics software that solves a form of the Navier–Stokes equations with a free surface 
boundary. The model was employed to investigate surface water fluid dynamics and the impact 
of subsurface structures on the hydrologic exchange.

SUMMARY AND CONCLUSIONS

The issue of scale is central in reactive transport modeling and the different disciplines it draws 
from. It is often implicitly behind common assumptions used in most models, for example to couple 
different processes at the appropriate scale. The term multiscale is often used to specifically refer 
to applications that explicitly consider the different scales present in a given application. Here we 
have motivated the use of multiscale approaches by the need to scale-up processes that take place 
at the pore scale, where the medium is treated as composed of separate fluid and solid phases, to 
the Darcy-scale continuum, where the porous medium is characterized as a continuum. As shown, 
formally upscaling reactive transport only results in separate macro- and micro- problems under a 
limiting set of conditions. In general, however the macro and micro problem are coupled.

Figure 15. (a) Schematic of a multiscale representation of transport in a stream corridor. Hyporheic zone 
transport is represented by subgrid models in residence time formulation, which are coupled to the stream 
channel. The subgrid auxiliary equation associated with each channel grid cell is representative of the 
ensemble of pathways within the grid cell (b) Solutions of the subgrid reactive transport equations for 
biomass abundance (left column) and solute concentration (right column) versus residence time τ in the hy-
porheic zone at two channel locations and in steady state. Dissolved organic carbon (DOC) is consumed in 
the oxic zone at the downstream location leaving little DOC to fuel the denitrification reactions. [Reprinted 
from Painter SL (2018) Multiscale framework for modeling multicomponent reactive transport in stream 
corridors. Water Resources Research 54(10):7216–7230, Figures 1, 5, with permission.]
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Although insightful, mathematical methods for upscaling reactive transport rely on 
idealized representation of porous media and rarely used to investigate experimental or field 
systems. Simulation of these systems usually requires bringing to bear methods that use 
different scale descriptions within the same model such that micro-scale descriptions are 
used where it is needed; for example, to represent processes without making assumption of 
constitutive models for bulk parameters. Two approaches are prominent to simulate reactive 
transport in domains consisting of pore-scale and Darcy-scale sub-domains, one that uses a 
single equation to describe processes at both scales, and one that solves the problem in each 
domain separately and applies appropriate coupling conditions at the interface. These methods 
have also been used to find a compromise between the process and domain resolution and the 
size of domain that can be addressed with limited computational resources.

Multi-rate and multi-continua constitute another class of multiscale models that conceptualize 
the Darcy-scale porous medium as composed of two or more sub-regions that exists at each 
point in space and exchange mass according to a single-rate, multi-rate or continuum of rates. 
Mass exchanges between sub-regions or continua can represent micro-environments in which 
geochemical conditions may be different. Often these differences imply that a certain correlation 
exists between their hydrological accessibility and their mineralogical composition and reactivity.

Applications of these approaches in porous and fractured media show that often more 
than one approach can be used for a specific application. As application of reactive transport 
expands to consider surface processes, in addition to subsurface processes, available approaches 
are adapted and brought to bear on the surface–subsurface coupling. Generally multiscale 
approaches seek to represent processes at the appropriate scale, but different reasons are 
identified for this need. In some cases, the heterogeneous structure and composition of the 
porous medium necessitates micro-scale representation of the processes, while in other cases, 
the processes lead to the need for this micro-scale representation. For example, when solutions 
of different compositions mix, zones of active biogeochemical processes may require a micro-
scale representation, especially when the media evolves as a result of it. While there is interest 
in capturing accurately these hot spots of biogeochemical activity, there is also interest in 
multiscale methods that can dynamically adjust process representation in time to capture 
periods of increased biogeochemical activity or hot moments.

Figure 16. Meshes for the simulation domain of hydro-
logic exchange with a hybrid model. (a) Perspective view 
of the meshes. (b) Side view of the meshes for clarifying 
the mesh regions. [Reprint from Bao J, Zhou T, Huang M, 
Hou Z, Perkins W, Harding S, et al. (2018) Modulating fac-
tors of hydrologic exchanges in a large-scale river reach: 
Insights from three-dimensional computational fluid dy-
namics simulations. Hydrological Processes 32(23):3446–
3463, Figure 2, with permission.]
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