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INTRODUCTION

Darcy-scale simulation of geochemical reactive transport has proven to be a useful tool 
to gain mechanistic understanding of the evolution of the subsurface environment under 
natural or human-induced conditions. At this scale, however, the porous medium is typically 
conceptualized as a continuum with bulk parameters that characterize its physical and 
chemical properties based on the assumption that all phases coexist in each point in space. 
In contrast, the pore scale can be defi ned as the largest spatial scale at which it is possible 
to distinguish the different fl uid and solid phases that make up natural subsurface materials. 
Because the pore scale directly accounts for the pore-space architecture within which mineral 
reactions, microbial interactions and multi-component transport play out, it can help explain 
biogeochemical behavior that is not understood or predicted by considering smaller or larger 
scales (Fig. 1). Specifi cally, the nonlinear interaction between the coupled physical and 
geochemical processes may result in emergent behavior, including changes in permeability, 
diffusivity, and reactivity that is not captured easily by a Darcy-scale continuum description.

Reactive processes in porous media such as microbially mediated reduction–oxidation 
(Fig. 1) or mineral dissolution–precipitation (Fig. 2) take place at interfaces between fl uid and 
solid phases. Because the different phases are distinguishable at the pore scale, experimental 
and modeling studies need to consider these interfaces so as to accurately determine reaction 
rates. An interface is the surface between two phases that differ in their physical state or 
chemical composition. Depending on the scale of observation, the appearance of the interface 
can vary. Sharp interfaces are those in which the physical and chemical characteristics change 
abruptly across the interface. Diffuse interfaces are those in which the characteristics change 
smoothly over a layer of varying thickness. Reactive processes themselves can change the 
appearance of the interface. For example, mineral heterogeneity can result in the creation of 
degraded zones (Fig. 2), where dissolution of a faster-dissolving mineral (e.g., calcite) from 
within a matrix of relatively insoluble minerals (e.g., dolomite and silicates) leaves behind a 
porous continuum Deng et al. (2013).

As advances in experimental and imaging techniques allow for improved characterization 
of pore-scale processes, modeling approaches are being challenged to incorporate the textural 
and mineralogical heterogeneity of natural porous media, in particular with regard to their 
treatment of interfaces. Simulation of the evolution of reactive interfaces is critical to capture 
the processes that lead to emergent behavior, including the reactive infi ltration instability 
(Ortoleva et  al. 1987; Hoefner and Fogler 1988; Steefel and Lasaga 1990) or reactivity 
evolution (Luquot and Gouze 2009; Noiriel et al. 2009). The focus of this chapter is on the 
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F       igure 1. Conceptual sequence of length scales associated with (microbially mediated) interfacial reac-
tions in porous media. [Reprinted from Wood BD, Radakovich K, Golfi er F (2007) Effective reaction at 
a fl uid–solid interface: Applications to biotransformation in porous media. Advances in Water Resources, 
Vol. 30, p. 630–1647, Fig. 1 with permission.]

F igure 2. SEM backscattered-electron images showing fracture surface geometries resulting from reaction 
with CO2-acidifi ed brine: (a) comb-tooth wall geometry resulting from receding calcite bands and persis-
tence of less soluble minerals and (b) porous “degraded zone” along the fracture wall created by prefer-
ential dissolution of calcite. [Reprinted from Deng H, Ellis BR, Peters CA, Fitts JP, Crandall D, Bromhal 
GS (2013) Modifi cations of Carbonate Fracture Hydrodynamic Properties by CO2-Acidifi ed Brine Flow. 
Energy Fuels, Vol. 27, p. 4221–4231, Fig 1 with permission. © 2013 American Chemical Society.]
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direct numerical simulation of reactive processes at the pore scale, with an emphasis on the 
role of fl uid–solid interfaces (Kang et al. 2007; Tartakovsky et al. 2007). Direct numerical 
simulation (DNS) employs mesh-based methods that often require an explicit representation 
of these reactive interfaces. Many concepts discussed in this chapter, however, are applicable 
more generally, including to other modeling approaches such as the lattice Boltzmann or 
particle methods (Kang et al. 2007; Tartakovsky et al. 2007).

In this chapter, the equations for pore-scale processes of fl ow, transport and geochemical 
reactions are succinctly presented, followed by a description of the methods for their direct 
numerical simulation within pore-scale domains. Next, the representation of reactive surfaces 
in DNS applications is reviewed, with an emphasis on surface reactivity evolution and 
transport limitations to reactive surfaces. This is followed by a review of methods to capture 
the physical evolution of the pore space with a focus on reactive instabilities. To end the 
chapter, an approach for upscaling interfacial reactions from the pore scale to the Darcy scale 
is presented.

PORE-SCALE PROCESSES

Flow

Given the low compressibility of water, the incompressible Navier–Stokes equations can 
be used to accurately describe the fl ow of water in the pore space via the conservation of 
momentum and mass, respectively, for most subsurface conditions:
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where the left-hand side of Equation (1) describes the inertial forces, and the right-hand side 
includes the pressure gradient ( )p  and the viscous forces, with u being the fl uid velocity,  
the fl uid density, and μ the dynamic viscosity. Inertial forces have their origin in the convective 
acceleration of the fl uid as it fl ows through the tortuous pore space. Viscous forces originate in 
the friction between water molecules and are responsible for the dissipation of energy. When 
viscous forces dominate (i.e., at very small Reynolds number) the above equations can be 
simplifi ed to the steady-state Stokes equations (Steefel et al. 2013):

20 ,p   u (3)

0. u (4)

Equations (1–2) and (3–4) are to be solved within the pore space occupied by the fl uid 
phase and delineated by the fl uid–solid interfaces (Fig. 1).

Multicomponent reactive transport

Transport and reaction of dissolved species in the aqueous phase can be described by the 
following conservation equation:
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where ci is the molal concentration of species i in solution (mol kg-1H2O), 
2H OM  is the mass 
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fraction of water (kg H2O kg-1), iD  is the diffusion coeffi cient (m2 s-1) and iR  is the reaction 
term (mol m3 s-1). In Equation (5), transport takes place by advection (the translation in space 
of dissolved or suspended material at the rate of movement of a bulk fl uid phase) and diffusion 
(mixing of solutes in the multicomponent mixture driven by concentration gradients). For 
simplicity, electrochemical migration associated with diffusion of charged species (Steefel 
et al. 2013) has not been included in Equation (5), although its contribution may be signifi cant 
under acidic conditions (Molins et  al. 2012; Ovaysi and Piri 2013). The reaction term 
Ri is expressed in volumetric terms and includes homogeneous reactions such as aqueous 
complexation. Aqueous complexation reactions are typically fast enough that they can be 
considered as locally at equilibrium, and Equation (5) can be written in the canonical form in 
terms of components (Steefel et al. 2014).  Interfacial reactions such as mineral dissolution–
precipitation take place at solid–fl uid boundaries and are not included in Equation (5). 

Surface reactions

Interfacial reactions can instead be expressed as a boundary condition at the solid–fl uid 
boundaries

 2H O ,i i im mD M c r    (6)

where mr  is the surface reaction rate (expressed in units of mass per unit time per unit surface) 
and im  is the stoichiometric coeffi cient of the i-th component in each surface reaction m.

A wide range of rate expressions can be considered. For mineral dissolution–precipitation 
reactions, the transition state theory law is often employed (e.g., Molins et al. 2014)
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where km is the intrinsic rate constant (mol m-2 reactive surface s-1), aE  is the activation energy 
(kcal mol-1), n

ia  is a product representing the inhibition or catalysis of the reaction by 
various ions in solution raised to the power n, with ia  being the activity of species I, G is the 
Gibbs free energy (kcal), with 1m , 2m , and 3m  being three parameters that affect the affi nity 
dependence, R is the ideal gas constant (kcal K-1 mol-1), and T is the temperature (K). In the 
case of far-from-equilibrium dissolution, the affi nity or G term can often be neglected, as in 
the studies of chlorite dissolution under high-pCO2 conditions (Smith et al. 2013).

Other rate expressions have been used for interfacial reactions. For example, Wood et al. 
(2007) used Michaelis–Menten kinetics for the enzyme-mediated reaction rate applicable at 
the fl uid–solid interface, assuming microbial cells were uniformly distributed on the surface 
(Fig. 1.I):
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where km is the surface reaction rate, which includes the effect of the enzyme or biomass 
present on the mineral surface (mol m-2 reactive surface s-1), and Km is the half-saturation 
constant associated with the redox species i that defi nes the kinetic rate. In addition to kinetic 
models, equilibrium models, which do not require an explicit calculation of the rate, have also 
been employed at the pore scale. For example, Zaretskiy et al. (2012) used an equilibrium 
Langmuir model to calculate surface concentrations of adsorption species (si mol m-2 surface) 
as a function of species concentrations:
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where smax and   represent the maximum surface concentration and the equilibrium constant, 
respectively (Zaretskiy et al. 2012).

DIRECT NUMERICAL SIMULATION

Direct numerical simulation involves the use of conventional discretization methods 
to solve the fl ow, transport, and geochemical equations. These include Eulerian, mesh-
based methods such as fi nite-difference, fi nite-element, or fi nite-volume methods, in which 
the differential equations are discretized by defi ning the value of the unknowns at fi xed 
points in space. Finite differences have been applied to the simulation of fl ow and transport 
in sandstones (Sallès et  al. 1993; Bijeljic et  al. 2011a,b; Blunt et  al. 2013) and carbonates 
(Bijeljic et al. 2013). The fi nite-element method has been used for the simulation of fl ow and 
transport in sphere packs (Cardenas 2008, 2009) and as a mixed fi nite-element–fi nite-volume 
method for fl ow and reactive transport in Fontainebleau sandstone (Zaretskiy et al. 2012). A 
fi nite-volume method has been applied for fl ow and reactive transport in computer-generated 
and experimentally derived simulation domains (Molins et al. 2012, 2014). Direct numerical 
simulation has also been used in combination with other approaches. For example, Yoon et al. 
(2012) used fi nite-volume methods to simulate reactive transport with a fl ow solution obtained 
with a lattice Boltzmann method, and a random-walk method was used for reactive transport 
by Sadhukhan et al. (2012) while a direct fi nite-difference solver was employed for Navier–
Stokes fl ow. Both structured (e.g., Molins et al. 2014) and unstructured (e.g., Zaretskiy et al. 
2012) meshes have been used in these applications. 

To perform direct numerical simulation at the pore scale, experimental images of porous 
media resolved at the micrometer scale (e.g., from X-ray computed microtomography or 
XCMT) need to be converted to computational domains. Typically, segmentation is used to 
identify the discrete materials in an image (Wildenschild and Sheppard 2013). A number of 
techniques are used to segment images to obtain the morphology and topology of the pore 
space (Wildenschild and Sheppard 2013), frequently by binarization (e.g., Noiriel et al. 2009) 
but more recently using ternary segmentation methods (e.g., Deng et al. 2013; Scheibe et al. 
2015). Binary reconstructed domains consist of voxels that are classifi ed as either pore space 
or solid, while ternary reconstructed domains may allow for assigning a porosity value to areas 
of the domain that are under resolved by the characterization method (Scheibe et al. 2015) or 
may have been subject to reaction (Deng et al. 2013).

Interface representation

Binary domains can be directly incorporated into numerical models. In this scenario, 
fl uid–solid interfaces can take the shape of a staircase in the case of structured meshes, where 
complex surfaces are represented as perpendicular walls locally at the grid cell level. Most 
structured-grid applications to simulation of fl ow and transport use this approach (e.g., Sallès 
et al. 1993; Bijeljic et al. 2011a,b; Blunt et al. 2013). However, for reactive applications the 
approach can lead to an overestimation of the actual interfacial area available for surface 
reaction (Fig. 3b). Finite-element and fi nite-volume unstructured methods are not affected by 
this issue because they can capture arbitrary surfaces by appropriate meshing strategies (e.g., 
Cardenas 2008, 2009; Zaretskiy et al. 2012). However, this advantage may be lost when the 
mineral surface evolves due to dissolution and precipitation, as re-meshing may be required. 
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To remedy the issue of reactive surface overestimation for a structured mesh, Molins 
et al. (2011) used the marching cubes algorithm to evaluate the interfacial area specifi cally for 
surface reactions while still solving for fl ow and transport within a binary, staircase domain. 
Another approach, the embedded boundary method, uses cut cells that result from intersecting 
the irregular fl uid–solid interfaces with the structured Cartesian grid (Fig. 3a) to discretize the 
equations using the fi nite-volume method (Trebotich et al. 2014; Trebotich and Graves 2015). 
The embedded boundary method is thus a more rigorous approach in that fl ow, transport, and 
reactions are solved within the same domain. This method also makes it possible to leverage 
the advantages of structured methods while capturing complex surfi cial geometries (Molins 
et al. 2014). In Molins et al. (2014), a level set was used on the segmented microtomographic 
image to obtain the implicit function representing the calcite surface on the Cartesian grid. 
With a level set, the fl uid–solid interface,   x  is represented by a contour of a function 
 ,t x  such that:

 { | , },x t c   x (10)

where c is a constant, and the level-set function   is greater than c for one phase, and less 
than c for the other phase. The so-called level-set method builds on this description of the 
interface to track its motion (in particular, as a result of dissolution–precipitation reactions) 
and is discussed in the section devoted to pore-space evolution.

Micro-continuum and multiscale approaches

Binary representations of porous media as discussed above may not be suffi cient where 
reactive processes result in degraded porous zones due to mineral heterogeneity (Deng et al. 
2013) (see Fig. 2) or in porous precipitates that allow for diffusion (Yoon et al. 2012). The 
porosity in these reacted porous regions may be under-resolved at a given pore-scale model 
resolution; thus, the interface can be better described as discontinuous and diffuse rather than 

F igure 3. Example of an irregular geometry on a Cartesian grid (left), in which shaded areas represent 
volume of cells excluded from domain: (a) Embedded boundary representation with interfaces “cutting” 
regular cells (left) and single-cut cell showing boundary fl uxes (right); (b) Binary “staircase” representation 
of the interface [Adapted from Trebotich et al 2014].
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continuous and sharp. In fact, one could argue that binary representations do not represent 
natural porous materials where porosity is distributed—as a fractal or otherwise—over a very 
large range of spatial scales (Anovitz et al. 2013), or where reactivity may be preferentially 
found in connected nanoporosity, e.g., within chlorite in the Cranfi eld sandstone (Landrot 
et al. 2012).

The micro-continuum approach assumes the existence of a porous medium continuum at 
very small spatial scales. This assumption is valid over porous volumes in which the properties 
of the medium are continuously distributed (region II in Fig. 4). Darcy’s law is the governing 
equation for fl ow in the micro-continuum, while reactive transport is described by the mass 
balance equation of each species. Micro-continuum equations are parameterized using bulk 
parameters such as porosity and reactive surface area. For more details, the reader is kindly 
referred to the chapter of this volume devoted to the micro-continuum approach (Steefel et al. 
2015, this volume).

A well-established example of the use of the continuum approach for interfacial reactive 
processes is that of reactive transport in fractures (Steefel and Lichtner 1998a,b; Noiriel et al. 
2007). In fractured media, there is a sharp contrast—with a clear separation of scales—between 
the porosity in the fracture and in the rock matrix. As a result, the fracture is modeled as a fast 
fl ow path, where transport is dominated by advection, and the rock matrix, where transport is 
dominated by diffusion (Fig. 5). Heterogeneous reactions take place within the porous rock 
matrix or the layer of precipitate that coats the surface (Fig. 5). To simulate fl ow in discrete 
fractures in Darcy-scale models, the cubic law is often used to obtain a fracture permeability 
under the assumption of parallel smooth walls, e.g., Steefel and Lichtner (1998a,b) and Noiriel 
et al. (2007). However, this model does not typically provide an accurate estimation of fracture 
hydrodynamic properties at realistic fracture roughness, e.g., Deng et al. (2013).

Pore-scale fl ow in multiscale domains, such as fractured or vuggy media, can instead be 
simulated using the Stokes–Darcy or the Stokes–Brinkman equations (Golfi er et al. 2002; Popov 
et al. 2009; Gulbransen et al. 2010; Yang et al. 2014). In the Stokes–Darcy approach, Darcy’s 
law and mass conservation are applied in the porous subdomains, and the Stokes equations in 
the free-fl ow subdomains. To close the model, mass- and momentum-conservation equations 
are specifi ed at the interfaces between domains (Popov et al. 2009). When the geometry of 
these interfaces is very complex, however, the Stokes–Brinkman model is advantageous, in 
that a single set of equations is used over the entire domain. In the Stokes–Brinkman model, 
the Navier–Stokes equations (Yang et al. 2014) or the Stokes equations (Golfi er et al. 2002; 
Popov et al. 2009; Gulbransen et al. 2010) are modifi ed to add a Darcy term, e.g.:

1 2 0,   K V P V (11)

0, V (12)

where V is the effective velocity, K  is the permeability tensor, P  is the pressure, and   is an 
effective viscosity. The uppercase notation indicates here that these quantities apply to a porous 
medium continuum, where both fl uid and solid phases are assumed to coexist at each point 
in space, rather to each discrete phase separately as in a pore-scale description. The process 
of obtaining these quantities from the microscale (pore-scale) description, formally referred to 
as upscaling, is discussed in a separate section below. In the pore space, permeability tends 
to infi nity, the Darcy term becomes negligible and Equations (11-12) simplify to the Stokes 
equations (Eqn. 3-4). In the porous regions, on the other hand, both viscous and inertial terms 
become negligible due to slow velocities and Darcy’s law governs fl uid fl ow (Popov et al. 2009; 
Yang et al. 2014). A very similar approach has been recently used by Scheibe et al. (2015) to 
simulate fl ow and tracer transport in a soil column imaged by XCMT and segmented using a 
ternary approach making it possible to explain the breakthrough curves observed experimentally.
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Figure 5. Schematic representation of the transport phenomena in an idealized fracture

F igure 4. Porosity () variation over growing porous medium volumes, indicating the range of applicabil-
ity of the continuum assumption. Reprinted from Borges et al. (2012) based on Bear (1988).
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For reactive transport problems, multiscale hybrid (Battiato et  al. 2011; Roubinet and 
Tartakovsky 2013) and mortar methods (Mehmani et al. 2012) have been proposed. In these, 
Darcy-scale and pore-scale models are used in different subdomains, with the appropriate 
continuity of mass fl uxes being enforced at the interfaces between subdomains (Battiato 
et al. 2011; Mehmani et al. 2012; Roubinet and Tartakovsky 2013). While these studies have 
simulated the macroscale treating the porous medium as a continuum (i.e., at the Darcy-scale, 
region II in Fig. 4) and the microscale with a pore-scale representation (region I in Fig. 4), 
the methods are general enough that they could be applied in multiscale problems in which a 
pore-scale representation were used for the macroscale (inhomogeneous region III in Fig. 4) 
and a micro-continuum representation for unresolved nanoscale porous regions (region II in 
Fig. 4). In this sense, they would be conceptually equivalent to the Stokes–Darcy approach for 
multiscale fl ow.

SURFACE AREA ACCESSIBILITY AND
EVOLUTION IN MINERAL REACTIONS

Mineral rates measured in laboratory experiments are often several orders of magnitude 
faster than those estimated from natural systems, e.g., Malmström et  al. (2000). These 
differences in rates have been attributed to a variety of factors including, among others, reactive 
surface area accessibility in natural porous media (Peters 2009; Landrot et al. 2012), limitations 
on fl ow and transport in heterogeneous material (Drever and Clow 1995; Malmström et al. 
2000; Salehikhoo et  al. 2013; Li et  al. 2014), or transport, rather than interface control of 
rates (Drever and Clow 1995; Steefel and Lichtner 1998b). Pore-scale modeling can be used 
to address some of these hypotheses by explicitly accounting for the rate-limiting effect of 
transport, and by incorporating mechanistic descriptions for the evolution of reactive surface 
area.

Transport control on rates

Transport to mineral surfaces, especially in physically heterogeneous media, can lead to 
poorly mixed conditions at the pore scale. As a result, effective rates cannot be determined 
using an average concentration in the pore space. Instead concentrations need to be resolved 
within the pore space, and rates calculated at each mineral surface. The pore-scale description 
can thus be used to evaluate the impact on the effective rates of the departure from the 
assumption of well-mixed conditions.

Molins et al. (2014) used a combination of experimental, imaging, and modeling techniques 
to investigate the pore-scale transport and surface reaction controls on calcite dissolution under 
elevated-pCO2 conditions. The laboratory experiment consisted of the injection of a solution 
at 4-bar pCO2 into a capillary tube packed with crushed calcite. A high-resolution, pore-scale, 
direct numerical model was used to simulate the experiment based on a computational domain 
consisting of reactive calcite, pore space, and the capillary wall, constructed from volumetric 
X-ray microtomography images. Part of the reported discrepancy between simulated Darcy-
scale and pore-scale effl uent concentrations was apparently due to mass-transport limitations 
to and from reactive surfaces. These were most pronounced near the inlet where larger diffusive 
boundary layers formed around grains. Transport limitations resulted from the heterogeneity 
of the pore structure: in slow-fl owing pore spaces that exchanged mass by diffusion with fast 
fl ow paths, the assumption of well-mixed conditions did not apply (Fig. 6). Although the 
difference between pore- and Darcy-scale results due to transport controls was discernible 
with the highly accurate methods employed, this difference is expected to be more signifi cant 
in more heterogeneous porous media, such as in natural subsurface materials.
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Surface area evolution

In the study of Molins et al. (2014) it was assumed that the surface and pore-space geometry 
did not evolve over the 16 s of simulated time. However, as a result of reactive processes, normally 
both the reactive surface area and pore structure evolves. Here, two studies are presented that 
considered evolution of reactive surface area using a micro-continuum approach. Methods to 
track pore-space evolution are introduced in the next section.

In a study by Noiriel et al. (2009) of limestone infi ltrated by CO2-rich solution, Sr and Ca 
release rates were used to assess the relative dissolution rates of the sparitic and microcrystalline 
phases in the limestone subjected to infi ltration of CO2-rich solution. The results demonstrated 
that the reactive surface area (RSA) of the sparite increased greatly, as recorded by the rate of 
dissolution of that phase over time. In contrast, its geometric surface area, as recorded by XCMT, 
decreased slightly. To describe the time-dependent behavior, Noiriel et al. (2009) proposed a 
“sugar cube” model in which disaggregation of the granular network (presumably resulting in 
the large increase in RSA of the sparitic phase, which is now exposed to more of the reactive 
infi ltrating solution) precedes dissolution of the individual grains of sparite (Fig. 7). Noiriel et al. 
(2009) described mathematically the time-dependent RSA, Ar, with the expression
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(13)

where 0rA  is the initial surface area, rmA  is the maximum surface area given by the sum of all of 
the surface areas of the individual particles,  is the concentration of calcite over time, 0  is its 
initial concentration, and n1, n2, and n3 are empirical coeffi cients that depend on the geometry of 
the aggregate.

Figure 6. Results from reactive transport simulations of a crushed calcite capillary experiment (Molins 
et al. 2014). pH values are shown on calcite grain surfaces while vectors (black arrows) indicate direc-
tion and magnitude of fl uid velocities in the pore space. Values of pH along fast fl ow paths are lower 
than in slow-fl ow paths, resulting in heterogeneous dissolution rates on minerals surfaces located in close 
proximity. The diameter of the capillary tube is 524 μm. [Modifi ed from Molins S, Trebotich D, Yang L, 
Ajo-Franklin JB, Ligocki TJ, Shen C, Steefel CI (2014) Pore-scale controls on calcite dissolution rates 
from fl ow-through laboratory and numerical experiments. Environmental Science and Technology, Vol. 48, 
p. 7453–7460 Abstract Art with permission. © 2014 American Chemical Society.]
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Dissolution rates can also be affected by the precipitation of secondary mineral or 
transformation products, as it can limit access to the surface of the dissolving mineral. This is 
the case of the carbonation of wollastonite (CaSiO3) studied by Daval et al. (2009):

3 2 3 2CaSiO CO CaCO S .iO   (14)

Experimental results showed that under circumneutral pH conditions dissolution rates 
were inhibited by the formation of a dense calcite coating. The passivation effect was 
successfully accounted for by the use of an effective reactive surface area

     
3 3

'
eff 0 CaSiO CaCO .

p

pA t a t k t    (15)

This equation links the true reactive surface area of wollastonite to the amounts of 
wollastonite and neo-formed calcite 

3CaCO( ),  with 0a  being the specifi c surface area in units 
of mol m-2, '

pk  is a proportionality factor that can be obtained assuming that when t→∞, 
Aeff(∞) = 0, and 2 / 3p   for monodisperse spherical particles, and 2 / 3p   for particle size 
distributions with a non-spherical geometry. Although the model slightly overestimated the rate 
for intermediate values of the reaction extent, the overall behavior of the extent of carbonation 
as a function of time was reproduced closely (Fig. 8). This showed that secondary calcite 
precipitation can play an important role as coatings of reactive surfaces (Daval et al. 2009).

Figure 7. (top) Dissolution process according to the sugar-lump model. The matrix is composed of (a) 
spherical grains of surface area 0rA  (b) which dissociate into smaller grains, thus increasing the water-
exposed surface area. (c) Subsequently, the individual particles dissolve, which reduces the surface area. 
(bottom) Thin section of the rock observed with optical microscopy in transmitted light. (b) Scanning 
electron microscopy (SEM) observations of the sparite and the micrite. [Reprinted from Noiriel C, Madé 
B, Gouze P (2007) Impact of coating development on the hydraulic and transport properties in argillaceous 
limestone fracture. Water Resources Research, Vol. 43, W09406, Fig 1, 2 with permissions.]
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PORE-SPACE EVOLUTION

Dissolution and precipitation of minerals and biogeochemical transformations such as 
bacterial growth change the geometry of the pore space. Although this evolution takes place at 
each fl uid–mineral interface, the resulting changes have impacts at larger scales. For example, 
(bio)precipitates can signifi cantly reduce the macroscopic porosity and permeability by 
plugging pore throats, e.g., Oelkers et al. (2008), Englert et al. (2009). Similarly, dissolution 
driven by injection of CO2 in the subsurface leads to an increase in porosity and permeability 
as well as changes in the mineral reactive surface area (Luquot and Gouze 2009).

Mathematically, solute dissolution and/or precipitation can be formulated as a moving 
boundary, or Stefan problem. Assuming uniform dissolution–precipitation of a single-mineral 
solid phase (m), the velocity of the moving solid–fl uid interface ( )nu can be described by, e.g., 
Li et al. (2010):

,n m mu V  r   u n (16)

where Vm is the molar volume of the mineral. Equation (16) needs to be solved along with 
Equations (1, 2, 5, and 6) or Equations (3–6).

The front-tracking (Glimm et  al. 1998), volume-of-fl uid (Hirt and Nichols 1981), and 
level-set (Osher and Sethian 1988) methods have been used to solve moving boundary 
problems for tracking or capturing sharp interfaces. The advantage of these methods is that 
one can perform direct numerical simulations involving surfaces using the Eulerian approach 
on fi xed Cartesian grids without having to parameterize these surfaces. Diffuse interface 
models, such as the phase-fi eld method (Langer 1986), in which the interface is captured with 
a continuous variation of an order parameter, rather than explicitly represented as a sharp 
boundary, can also be used to solve the moving boundary problem. The level-set method and 
the phase-fi eld method are described below in the context of recent applications to modeling 
pore-scale dissolution and precipitation processes.

Figure 8. (a) Backscattered SEM images of a cross-section of a carbonated wollastonite grain after 2 days 
of reaction in circumneutral pH conditions. Note the succession of the inner intact core of reacting wol-
lastonite, a fractured layer composed with calcite and silica, and the compact continuous and poorly per-
meable coating of calcite. (b) Normalized extents of wollastonite carbonation as a function of time in 
circumneutral pH conditions. The lower two curves correspond to fi ts of the data assuming the progressive 
formation of a passivating coating of calcites. [Reprinted from Daval D, Martinez I, Corvisier J, Findling 
N, Goffé B, Guyot F (2009) Carbonation of Ca-bearing silicates, the case of wollastonite: Experimental 
investigations and kinetic modeling. Chemical Geology, Vol. 265, p. 63–78, Figs. 3c, 6, with permission.]
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Level set method

In the level-set method, the fl uid–solid interface  ( ) x  is represented by a contour level 
of the level-set function  ,t x , Equation (10). The evolution of the level set is governed by 
the following advection equation, which describes the motion of the fl uid–solid interface (Li 
et al. 2010):

 0,nu
t


  


n (17)

where n  is the norm of the level-set function ( / )  n  at  = c.

Li et al. (2010) used the level-set method for capturing interface evolution in simulations 
of dissolution and precipitation in a three-dimensional, single-pore throat (e.g., Fig. 9). 
The simulations were performed for a single-component system, where the reaction rate 
was described with both a zero-order kinetic term and an affi nity term to account for near-
equilibrium conditions. The three-dimensional effects of fl ow conditions and reaction rates 
were explored quantitatively. The simulation showed that the evolution of the permeability–
porosity relationship depended on particular parameter values used (i.e., fl ow rates, rate 
constants). Further, the empirical Carman–Kozeny constitutive model did not capture evolution 
of permeability–porosity, especially for the conditions that led to non-uniform dissolution or 
precipitation patterns (Li et al. 2010).

Figure 9. Evolution of the three-dimensional solid surface together with the velocity and concentration 
fi elds for precipitation in a pore throat with an initially sinusoidal-shaped aperture under different condi-
tions expressed in the form of the dimensionless Damköhler (Da) and Péclet (Pe) numbers. [Reprinted from 
Li X, Huang H, Meakin P (2010) A three-dimensional level set simulation of coupled reactive transport 
and precipitation/dissolution. International Journal of Heat and Mass Transfer, Vol. 53, p. 2908–2923, Fig, 
6 with permission.]
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Phase-fi eld method

Phase-fi eld methods are based on the idea that the free energy depend on an order 
parameter (the phase-fi eld variable) that acts as a function indicating what phase a point in 
space is in. The method replaces the boundary conditions at the interface (e.g., Eqn. 6) with a 
partial differential equation for the evolution of the phase fi eld. The fi eld changes smoothly in 
a diffuse zone around the interface that has a fi nite width. 

A sharp-interface asymptotic analysis of the phase-fi eld equations was developed by Xu 
and Meakin (2008) for the precipitation–dissolution problem considering diffusion as the only 
transport process. In this model, the evolution of the concentration fi eld is a function of the 
evolution of the phase fi eld:

2

2 1
m

Dc tD c
t t k

         
    

 

(18)

where  is proportional to the molar volume of the mineral. The evolution of the phase fi eld 
is described with 

  2 2 2 21 ,c
t


          


(19)

where  is the phase-fi eld characteristic time parameter,  is closely related to the interface 
thickness, and  controls the strength of the coupling between the phase fi eld  and the 
concentration c. The relationship between   and  is the n obtained from an asymptotic 
analysis, which ensures that the phase-fi eld equations converge to the sharp interface solution:

2 5 2
.

3 m

D

D k

 
      

(20)

Two-dimensional dendritic growth due to solute precipitation was simulated using this 
phase-fi eld model (Xu and Meakin 2011). The simulations were performed under diffusion-
limited conditions by setting the chemical reaction rate much larger than the rate of diffusion—
i.e., the kinetics of the reaction at the interface was not relevant. The Mullins–Sekerka 
instability (Mullins and Sekerka 1964)—the same responsible for the dendritic growth of the 
snowfl ake—caused the growth process of a small circular nucleus placed in the center of a 
square domain to be very sensitive to perturbations (Xu and Meakin 2011). In the phase-fi eld 
simulations of Xu and Meakin (2011), the perturbation was provided by the discretization of 
Equations (18–20) on a square lattice. As a result, diffusion-limited precipitation was observed 
to take place as an unstable dendritic growth (Fig. 10). The resulting solid–fl uid interfacial 
pattern displayed a fractal geometry, whose fractal dimension agreed well with that estimated 
independently with a diffusion aggregation model (Meakin and Deutch 1984).

Continuum and multiscale approaches

As apparent from the results presented previously, the application of interface tracking 
methods to direct numerical simulation of pore-scale processes has been limited to relatively 
small, ideal problems. Instead direct simulation of pore-space evolution has often relied on 
treating the porous medium as a continuum at the Darcy scale. 

An example of pore-space evolution that has received wide attention in the literature is 
the well-known reactive infi ltration instability, which results in the formation in wormholes 
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(Ortoleva et  al. 1987; Hoefner and Fogler 1988; Steefel and Lasaga 1990). Similar to the 
unstable dendritic-growth process simulated by Xu and Meakin (2011), in the reactive 
infi ltration instability, mineral dissolution takes places under transport-controlled conditions. 
In this instability, however, dissolution is limited by the rate of advection, which leads to the 
more rapid dissolution in high-fl ow-velocity pathways (wormholes) over slower pathways.

Direct numerical simulation at the Darcy scale has shown that the wormholes become 
more highly ramifi ed and ultimately diffuse when the Damköhler number is small (surface-
reaction-controlled) for a given system (Steefel and Lasaga 1990; Steefel and Maher 2009). 
More recently, Golfi er et al. (2002) used the multiscale Stokes–Brinkman equations (11–12) 
to simulate the formation of wormholes. The reactive transport equations were formulated 
by upscaling the pore-scale equations to the Darcy scale with the volume-averaging method 
(cf. Appendix A Golfi er et al. 2002). This upscaling approach is discussed in the next section. 
As a result, the surface reaction (i.e., dissolution) was represented at the Darcy scale in its 
upscaled form, via a mass-transfer coeffi cient (Golfi er et al. 2002), thus avoiding the direct 
representation of the surface as in the level set or phase-fi eld method examples presented 
above. 

The model was able to reproduce the dissolution regimes observed experimentally with 
increasing fl ow rates (Fig. 11): (a) face dissolution (diffusion dominates over advection and 
instabilities do not develop), (b) conical wormholes (instabilities are present but still strongly 
infl uenced by diffusion), (c) dominant wormholes (advection-dominated instabilities), (d) 
ramifi ed wormholes, and (e) uniform dissolution. Golfi er et al. (2002) pointed out that for (a)–
(c) very rapid dissolution led to local equilibrium conditions at the sharp interfaces, while for 
(d)–(e) faster fl ow rates led to local non-equilibrium dissolution, with more diffuse interfaces, 
and even stable displacement observed for (e). The Stokes–Brinkman model was able to 
capture fl ow in the multiscale domain, with Stokes fl ow being prominent in the free-fl ow 
regions (i.e., wormholes) and Darcy fl ow dominant in the partially dissolved porous medium.

Figure 10. Snapshots of interfacial patterns of unstable dendritic growth obtained with the phase fi eld method 
of Xu and Meakin (2008) for precipitation under diffusion-limited conditions, at various simulation times  (di-
mensionless) :  a) t = 0.002 b) t = 0.004 c) t = 0.006 d) t = 0.008. [Reprinted from Xu Z and Meakin P (2011) 
Phase-fi eld modeling of two-dimensional solute precipitation/dissolution: Solid fi ngers and diffusion-limited 
precipitation. Journal of Chemical Physics, Vol. 134, 044137, Fig 3. with permission.]

ba
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UPSCALING OF SURFACE REACTIONS BY VOLUME AVERAGING

While numerical simulation of pore-scale processes can help explain biogeochemical 
behavior not easily predicted at larger scales, it can also be used to derive the parameters that 
apply to models at larger scales. For this purpose, the pore-scale problem, in which interfaces 
are resolved explicitly and thus the variation of medium properties is not continuous, needs 
to be upscaled to the Darcy-scale continuum, in which they vary continuously (Fig. 4). 
Homogenization by volume averaging is one of a number of upscaling methods. Volume 
averaging has been successfully used as an upscaling method for porous-media processes 
(Whitaker 1999; Golfi er et al. 2002; Wood et al. 2007). In particular, upscaling by volume 
averaging can be used to generate a mechanistic description of the effective parameters from 
the microscale representation of the physical and biogeochemical properties as well as the 
geometry of the pore space (Wood et al. 2007). 

In the approach of Wood et al. (2007), the pore-scale equations (5–6) are fi rst averaged 
over a representative control volume and then the pore-scale concentrations and velocities 
are decomposed into volume averages and deviations from these averages. As a result of 
this process, a macroscale mass balance equation is obtained that provides a continuum 
representation of the pore-scale processes. However, in this form the solution still depends 
on the concentration deviations, which are pore-scale quantities, through the hydrodynamic 
dispersion, macrodiffusion and the macroscale reaction rate terms. A closure problem for the 
concentration deviations needs to be posed to model their behavior. Golfi er et al. (2002) and 

Figure 11. (top) Example of dissolution patterns observed experimentally in the work of Golfi er et  al. 
(2002). (bottom) Porosity fi elds obtained with the multiscale direct simulation of Golfi er et  al. (2002): 
(a) face dissolution (b) conical wormhole (c) dominant wormhole (d) ramifi ed wormhole and (e) uniform 
dissolution. [Reprinted from Golfi er F, Zarcone C, Bazin B, Lenormand R, Lasseux D, Quintard M (2002) 
On the ability of a Darcy-scale model to capture wormhole formation during the dissolution of a porous 
medium. Journal of Fluid Mechanics, Vol. 457, p. 213–254, Figs. 9, 10 with permission.]
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Wood et al. (2007) assume that simple periodic unit cells (e.g., solid cubes or spheres) capture 
the essential features of the system for the computation of the effective rate. Substitution of 
the solution of the closure problem makes it possible to write the macroscopic equations as a 
function of averaged concentrations, now using effective parameters, e.g., Wood et al. (2007):

 * 1
,eff ,i

i i v i

c
c c A R

t


  

      


V D (21)

where ic   is the spatially averaged concentration of the reactant in the fl uid portion of the pore 
space ( ),  V  is an effective pore water velocity, defi ned as the intrinsic average of the fl uid 
velocity vector in the averaging volume ( ),u  *D  is the effective hydrodynamic dispersion 
tensor,   is the porosity, vA  is the surface area per unit volume of porous medium, and 

,effiR  is the macroscale effective reaction rate (specifi cally, the contribution of the rate of the 
microbially mediated reaction to the mass of reactant i). 

Essentially, the effective parameters contain the pore-scale information that has been 
averaged in the upscaling process. While Wood et  al. (2007) obtained a closure problem 
solution for the zero- and fi rst-order limits of the Michaelis–Menten reaction rate, it was not 
possible for the authors to use the nonlinear kinetics in Equation (8) for the solution of the 
closure problem without coupling the closure to the value of the macroscale concentration, ci

. 
This would have signifi cantly increased the complexity of the problem. Rather, they proposed 
the following semi-empirical nonlinear form for the macroscale effective reaction rate term:

,eff
,eff
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m im m
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R k

K c



 


(22)

where Km,eff is now an effective half-saturation constant for the reaction. 

Comparison of results of a direct numerical simulation of pore-scale reactive transport 
(taken as ground truth) with the macroscopic, upscaled version suggested that the variance 
of the concentration fi eld had a dramatic impact on the effective reaction rate (Fig. 12). As a 
result, the accuracy of Equation (22) as a predictor of the effective reaction rate decreased as 
the variance increased. These discrepancies occurred mostly because of the errors induced by 
the proposed average of the nonlinear term; more specifi cally because the order of averaging 
operations cannot be interchanged for nonlinear processes such as Michaelis–Menten kinetics.

SUMMARY AND OUTLOOK

Applications of direct numerical simulation of pore-scale processes in subsurface 
materials are growing in part due to the computational advantages of well-established 
computational fl uid dynamics (CFD) methods, e.g., Bijeljic et al. (2011a,b), Zaretskiy et al. 
(2012), Blunt et al. (2013). Availability of high-level, open-source libraries such as OpenFOAM 
(OpenFOAM 2015) or Chombo (Adams et al. 2014; Colella et al. 2014) have also facilitated 
implementation of models into new simulation capabilities. In reactive systems, the ability to 
calculate the heterogeneous reaction rates at the fl uid–solid interfaces makes DNS a suitable 
tool to mechanistically model processes that are not captured by models at larger scales, 
especially when well-mixed assumptions are made. In this chapter, selected applications to 
evaluate transport limitations to reactive surfaces and to capture the evolution of both the 
surface area and the pore space have been reviewed.

Explicit representation of reactive interfaces as they evolve remains, however, a signifi cant 
challenge for direct numerical simulation approaches. The level-set and the phase-fi eld 
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method have been successfully applied to dissolution–precipitation reactions in rather simple 
computational domains (Li et al. 2010; Xu and Meakin 2011). In these simulations, a single 
mineralogy is assumed. However, natural reactive systems are characterized by physical and 
mineralogical heterogeneity at a variety of different scales. As a result, reactive interfaces are 
often discontinuous and diffuse, e.g., Noiriel et al. (2009) and Deng et al. (2013). In multiscale 
problems, direct numerical simulation has typically been performed using continuum methods 
rather than strictly using pore-scale methods. In these methods, however, surface reactions (as 
well as transport processes) are not explicitly calculated at the interface and are upscaled from 
the pore scale. Upscaling of strongly coupled non-linear processes is not straightforward and 
the solution of macro- and micro-scale problems is coupled. Applying the same conceptual 
model for the reaction rate expression (e.g., Eqn. 8) at the pore scale and at the Darcy scale 
with averaged quantities is in general not warranted. 

In this context, pore-scale modeling has the potential to challenge the conceptual models 
that are routinely applied at the Darcy scale, in particular for heterogeneous reactions. 
To accomplish this objective, however, direct numerical simulation needs to be able to 
incorporate the physical and mineralogical heterogeneity of the subsurface environments 
at different scales that are captured by advanced characterization techniques, e.g., Landrot 
et al. (2012). Further, methods developed for the evolution of pore spaces, such as those of 
Li et al. (2010) and Xu and Meakin (2011), need to be applied to complex subsurface porous 
media, as characterized by these advanced techniques. It is ultimately the combination of 
new microscopic characterization, experimental, and modeling approaches that presents the 
opportunity to provide mechanistic explanations for many of the long-standing questions in 
geochemistry in porous media.

Figure 12. Comparison of results obtained from an upscaled model using an empirical macroscale nonlin-
ear Michaelis–Menten-type kinetic rate (Eqn. 22) with results obtained from a direct numerical pore scale 
simulation: (Top)  The approximation  proposed by Wood et al. (2007) is sensitive to the size of the variance 
of the concentration fi eld. (Top and bottom) The empirical equation (Eqn. 22) becomes a more accurate 
predictor of the macroscale reaction rate (as determined by direct numerical simulation) as the concentra-
tion variance decreases. [Reprinted from Wood BD, Radakovich K, Golfi er F (2007) Effective reaction at 
a fl uid–solid interface: Applications to biotransformation in porous media. Advances in Water Resources, 
Vol. 30, p. 1630–1647, Fig. 6 with permission.]
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