MSA Short Course Neutron Scattering in Earth Sciences

Acknowledgements:

Mineralogical Society of America

DOE-BES

Lujan Center, LANSCE

Spallation Neutron Source

COMPRES-NSF

Thursday

7:30 a.m. Registration and continental breakfast

10:25 Coffee break

12:00 – 1:00 Buffet lunch

3:00 Coffee break

6:30 Reception with cash bar

7:30 Banquet

Friday

7:30 a.m. Continental breakfast

9:50 Coffee break

12:00 – 1:00 Buffet lunch

3:00-3:15 Coffee break

5:00 Adjourn

Dedicated to James D. Jorgensen 1948-2006

Texture Analysis with Neutron Diffraction

Rudy Wenk Dept. Earth and Planetary Science, UC Berkeley

- What are textures?
- Representation of textures.
- How do textures form ?
- Texture measurements with neutron diffraction
 - Monochromatic
 - TOF
 - HIPPO
- Texture calculations
 - Pole figures
 - Rietveld

Applications

- Phase transformations / Variant selection
 - Iron (bcc fcc)
 - Ice
 - Quartz (trigonal hexagonal)
- Geological applications

 Mechanical twinning in quartz: a paleopiezometer

Representation of Preferred Orientation

- Orientation Distribution Function (ODF)
- Pole Figures
- Inverse Pole Figures

(100) indicated by location of boats (010) indicated by color and heading

CALCITE PURE SHEAR 400 C K433 006

Orientation sphere to define three Euler angles

How do textures form?

- Growth (Topotaxy, epitaxy, temperature gradient, stress field, magnetic field etc.)
- Deformation (Slip, twinning, grain shape)
- Recrystallization
- Phase transformations

Rigid particles in viscous matrix: Jeffery 1923, March 1932

Compression $\varepsilon_i = \rho_i^{-1/3} - 1$

Compaction $\varepsilon_c = \rho_{max}^{-1/2} - 1$

Crystal rotations during deformation by slip

Cold-rolled titanium

Mika and Dawson, Acta Mater. 47, 1999.

Upper Bound Theories (compatibility)

Homogeneous deformation: grain boundaries remain intact

Lower Bound Theories (equilibrium)

Favorably oriented grains deform first: grains overlap, gaps form

Recrystallization: Modification of Texture

Strain energy is reduced by:

- **Growth** of relatively undeformed grains by grain boundary migration.
- **Nucleation** of new domains in highly deformed regions.

Texture measurements

Neutron scattering

Neutron

Monochromatic

Bragg's Law:

- 1) 2 d sin θ = n λ ,
- 2) reflection on lattice planes

GPPD-IPNS: Kappa Goniometer

0001 Pole figure of calcite measured at GKSS

Quartzite 0001: U-stage – Neutron diffraction

Calcite marble: X-ray – Neutron diffraction

ILL D1B

ILL D1B, stack of spectra, limestone

Neutron TOF

Dubna

UCMRD (University of California Materials Research Diffractometer) or HIPPO (High Pressure Preferred Orientation) at the Lujan Center at LANSCE

HIPPO Pole Figure Coverage

HIPPO: Stacks of diffraction spectra for deformed limestone Relative intensity differences indicative of texture

Simultaneous analysis of 384 spectra (48 detectors x 8 rotations) with the Rietveld method

140 deg bank

90 deg bank

40 deg bank

150 deg bank

90 deg bank

40 deg bank

HIPPO Automatic Sample Changer

Rietveld Analysis with MAUD

(Materials Analysis Using Diffraction by Luca Lutterotti)

How to get ODF?

- from individual orientations
- from pole figures
- from diffraction spectra

Conventional method: from pole figures to ODF

New approach: from diffraction spectra to ODF

Limestone Standard: Refining 256 Spectra Simultaneously for Texture and Structure with the Rietveld Method (MAUD)

Lutterotti et al. 2002

What influences the spectrum?

- Instrumental features (wavelength etc.)
- Crystal structure (lattice, atomic positions)
- Microstructure (size, strain)
- Texture (ODF)

Cycle 3: previous + texture

Pole figures for round robin limestone standard

HIPPO Limestone standard, e-WIMV 10 deg

ILL D20 Limestone standard, e-WIMV 10 deg

HIPPO measured in 20 minutes, ILL in 4 hours

Two approaches 1) Harmonic Method (Fourier approach) Termination errors, odd coefficients 1) Direct Methods (Tomography) WIMV, Entropy etc.

ECAP aluminum

L=14

L=16

WIMV

Data Quality

Comparison with other techniques (neutron-electron)

Internal consistency (observed-recalculated)

Round Robin

Round Robin limestone

Advantages of neutrons

Low absorption / high penetration: bulk samples (not surfaces) large samples (coarse grained) environmental stages High spectral resolution: low symmetry materials (e.g. minerals, HTS, Pu) Composites (rocks, metal matrix etc.) Scattering power: Be, D, D₂O, AI-Si

D20-ILL

11ID-C APS

Neutron Diffraction for Texture and Strain Analysis

Texture

- Geesthacht (monochromatic)
- ILB Saclay (monochromatic)
- ILL D1B, D19 and D20 (monochromatic, banana)
- •IPNS GPPD (TOF)
- LANSCE HIPPO (TOF)
- Dubna SKAT (TOF)
- ISIS SXD (TOF)

Strain

- Chalk River (monochromatic)
- Dubna EPSILON (TOF)
- IPNS GPPD (TOF)
- LANSCE SMARTS (TOF)
- ISIS ENGIN-X (TOF)
- Geesthacht (monochromatic)

bcc – fcc – bcc

Fe

Phase transformations in iron

Kurdjumov-Sachs 1934:

{110}<111> bcc {111}<110> fcc

{110} is the densest packed plane in bcc, {111} is close-packed plane in fcc, <111> (bcc) and {110} fcc are closest-packed directions

Burgers 1934:

{110}<111> bcc {0001}<11-20> hcp

{110} is the densest packed plane in bcc, {0001} is close-packed plane in hcp, <111> (bcc) and {11-20} hcp are closest-packed directions

Wenk, H.-R., Huensche, I. and Kestens, L. (2006). Mater. Trans. (in press)

ULC steel, in situ neutron diffraction with HIPPO (LANSCE) Wenk , Huensche, Kestens Trans. Mat. 2006

NCD at Lujan

Bennett, Wenk, Durham and Stern (1997) Phil Mag. A76

Quartz

trigonal – hexagonal – trigonal **Texture Memory**

Low quartz (α), trigonal

High quartz (β), hexagonal

Young's modulus for quartz

Sci 293 Quartzite mylonite: Texture memory

Mechanical Dauphiné twinning in quartz

Quartz in compression (Tullis, 1970)

Inverse Young's modulus for quartz

Quartz (Novaculite): IPF before and after heating to 650C, no texture memory

Geological applications Mechanical twinning in Quartz

d [Angstrom]

Modeling Dauphiné twinning: A paleo piezometer (Pehl & Wenk, 2005).

In SITU Stressing

SMARTS, ENGIN-X

ENGIN-X, ISIS

I=N {(1+m) F_{h0l}^{2} +(1-m) F_{0hl}^{2} }

 $100\% = N (F_{h0l}^2 + F_{0hl}^2)$

30%

20%

10%

0%

1

102 - 012

2

3

4

T (°C)

5

6

7

8

■ I202 %

□ 1022 %

Neutron Diffraction

Main advantages:

- Low absorption (bulk samples, good statistics vs. EBSD, environmental cells: P, T, σ)
- High spectral resolution for composites and low symmetry compounds, no defocusing (Rietveld method)

Main disadvantages:

- Weak scattering
- Complex data processing
- Limited access

Conclusions

- Neutron diffraction an increasingly used method for quantitative texture analysis.
- Neutron diffraction for in situ experiments p, T, σ .
- Time-resolved experiments to investigate kinetics.
- Neutron diffraction to determine residual strain.
- An exciting prospect for students in earth sciences.