Inelastic Neutron Scattering and Applications

Chun Loong, IPNS

A Short Course on Neutron Scattering in Earth Sciences
Dec 7-8, 2006
Hilton Garden Inn, Emeryville, CA
An Outline

The Technique of Inelastic Neutron Scattering (INS)
 Double differential cross section
 Instruments: Triple-axis vs. TOF chopper spectrometers

Applications of INS in Earth Sciences
 Lattice dynamics: phonon dispersion & density of states
 Magnetic scattering: rare-earth energy levels structures

Examples:
 Xenotime (RPO$_4$)
 Spinels
 Nanostructured bone minerals (hydroxyapatite)

Resources: 🌐Web, 📡software, 📖text, 📚review
What is Inelastic Neutron Scattering (INS)? Scattering processes which involve energy and momentum exchange between the neutron & the scatterer.

The double differential cross section:

$$\frac{d^2\sigma}{d\Omega dE} = \left(\frac{1}{N}\right) \frac{k_1}{k_0} \left(\frac{m_n}{2\pi\hbar^2}\right)^2 \left|\langle k_{i\xi}\mid V \mid k_{0\xi_0}\rangle\right|^2 \delta(E + E_{\xi_0} - E_{\xi_1})$$

$$= \frac{k_1}{k_0} S(\bar{Q}, E).$$

The scattering function, $S(\bar{Q}, E)$, depending on coherent or incoherent scattering, is related to respectively the inter-particle or self-particle space-time correlation functions of the scatterer under study.
What Does an INS Instrument Do?
Performs Accurate Measurements of $S(Q,E)$ in Absolute Units

In order to differentiate the net energy change for a scattering event, an *energy filter*, which selects neutrons with a narrow distribution of energies and/or spins over a collimated solid angle, has to be inserted in the incident or scattered beam, sometimes in both places.

- For fixed incident energy + variable scattered energies: *direct geometry*
- For variable incident energy + fixed scattered energy: *inverse geometry*
How to Define the Energy of a Neutron Beam? *Crystals & Choppers*

\[\lambda = 2d_M \sin \theta_M \]
\[\delta \lambda \sim \cos \theta_M \]
\[\delta \lambda / \lambda \sim \cot \theta_M \]

highest resolution
=> limit the \(\Delta l \Delta t \) spread
=> time focusing techniques

crystal (monochromator or analyzer)

dl1 dt

time-of-flight

chopper (velocity selector)
How INS Instruments Work? **Triple-Axis Spectrometers**

Bertrand N. Brockhouse’s original TAS (1959)

How Does a Triple-Axis Spectrometers Work?

\[\mathbf{Q} = \mathbf{k}_0 - \mathbf{k}_1 \]

\[\mathbf{Q} = \mathbf{G} + \mathbf{q}; \quad q = \text{reduced wavevector} \]

Scattering Triangle
Conservation of momentum & energy
\[\mathbf{Q} = \mathbf{k}_0 - \mathbf{k}_1 \]

\[E = \hbar \omega = \frac{\hbar^2}{2m_n} \left(k_0^2 - k_1^2 \right) = E_0 - E_1 \]

Operation Modes:
Fixed \(E_0 \) or \(E_1 \)
May keep \(\mathbf{Q} \) or \(E \) constant
How to Measure Phonons Using a Triple-Axis Spectrometer?

\[
\frac{\partial^2 \sigma_{coh}}{\partial \Omega \partial E_1} \propto \frac{k_1}{k_0} \sum_{\bar{q}, j} |F(\bar{Q}, \bar{q}, j)|^2 \left[n_j(\bar{q}) + \frac{1}{2} \pm \frac{1}{2} \right] \delta \left[E_0 - E_1 \mp E(\bar{q}) \right] \delta \left[k_0 - k_1 - \bar{G} - \bar{q} \right],
\]

\(F(\bar{Q}, \bar{q}, j)\) ≡ Inelastic structure factor for one-phonon coherent scattering

\[
= \sum_{\kappa} \left[\frac{\hbar^2}{2m_\kappa E_j(\bar{q})} \right]^{1/2} b^\kappa e^{-W^\kappa(\bar{q})} e^{-i\bar{\Omega} \cdot \bar{x}^{(\kappa)}} \left[\bar{Q} \cdot \bar{e}(\kappa; \bar{q}, j) \right]
\]

Transmission of a single slit - A triangle of Γ_s in time

$$\Gamma_s = \sqrt{6} \frac{d}{2r\omega} \sigma_s(\beta),$$

$$\sigma_s^2(\beta) = \begin{cases}
\frac{1}{10} \left(\frac{5 - 128\beta^4}{3 - 8\beta^2} \right), & \text{for } 0 \leq \beta \leq \frac{1}{4} \\
\frac{8}{5} \left(\sqrt{\beta} - \beta \right) \left(\frac{4 + \sqrt{\beta}}{2 + \sqrt{\beta}} \right), & \text{for } \frac{1}{4} \leq \beta \leq 1 \\
\text{undefined}, & \text{for } \beta \geq 1
\end{cases}$$

$$\beta = \frac{r^2\omega}{d} \left(\frac{1}{v_{opt}^2} - \frac{1}{v} \right), \quad v_{opt} = 2\rho\omega.$$

Transmission of a slit package - A trapezoid of an overall with Γ
How Does a Chopper Spectrometers Work?

Incident neutron velocity \(v_i \) defined by chopper phasing relative to \(t_0 \) (source emission time)

\[
\text{time at sample} \equiv t_s = \frac{l_1 + l_2}{v_i},
\]

A scattered neutron reaching a detector at \((l_3, \phi, \theta)\) at arrival time \(t \) has a final speed \(v_f \)

\[
v_f = \frac{l_3}{t - t_s}, \quad \text{then}
\]

\[
E = E_0 - E_i = \frac{m_n}{2} \left(v_i^2 - v_f^2 \right), \quad \text{and} \quad \vec{Q} = \frac{m_n}{\hbar} \left(\vec{v}_i - \vec{v}_f \right)
\]

\[
Q_x = \frac{m_n}{\hbar} \left(v_i - v_f \sin \theta \cos \phi \right),
\]

\[
Q_y = -\frac{m_n}{\hbar} v_f \sin \theta \sin \phi,
\]

\[
Q_z = -\frac{m_n}{\hbar} v_f \cos \phi.
\]

How to Measure Phonons/Magnons Using a Chopper Spectrometer?

\[\vec{k}_0 \text{ is fixed by the chopper (direct geometry), } \vec{k}_i \text{ varies as shown for a detector at a scattering angle } \phi. \text{ In general, } \vec{Q} \text{ does not follow a symmetry direction in the reciprocal space for a crystal setting.} \]

If a chopper spectrometer is equipped with large detector banks covering a wide range of scattering angles, each detector locus will cut a dispersion surface at certain \(\vec{Q}, E \). The phonon dispersion can be reconstructed by resembling the proper data points from different detectors.

Applications of INS: 1. Lattice Dynamics of Minerals

Phonon Dispersion Relations

Phase velocity \(v_p = \frac{\omega}{q} \)

Group velocity* \(v_g = \frac{d\omega}{dq} \)

As \(q \to 0 \),
acoustic branch:
\[v_p = v_g = \sqrt{\frac{2K}{m_1 + m_2}} a = v_{\text{sound}} \]

optic branch:
\(v_g = 0 \)

⇒ non-propagating, localized mode

*The direction of group velocity is not parallel to the phonon wave vector in an isotropic medium.

* Born-von Kármán model with identical force constants from nearest-neighbor interaction

http://fermi.la.asu.edu/ccli/applets/phonon/phonon.html
Phonon Density of States (DOS), \(g(\omega) \)

\[g(\omega)d\omega = \text{number of vibrational frequencies between } \omega \text{ and } \omega + d\omega \]

For \(r \) atomic constituents in \(N \) unit cells, total degrees of freedom is \(3rN \),

\[\int g(\omega)d\omega = \sum_i f_i(\omega)d\omega = 3rN \]

\(f_i(\omega) \) is the partial phonon DOS of atomic constituent \(i \)

Cutoff frequency

Phonon gap
Phonon DOS & Thermodynamic Properties

\[F = U + \int \left[\frac{1}{2} \hbar \omega + k_B T \ln \left(1 - e^{-\frac{\hbar \omega}{k_B T}} \right) \right] g(\omega) d\omega \]

\[S = k_B \int \left[(n + 1) \ln(n + 1) - n \ln(n) \right] g(\omega) d\omega, \quad n = \left(e^{\frac{\hbar \omega}{k_B T}} - 1 \right)^{-1} \]

\[C_V = k_B \int \left(\frac{\hbar \omega}{k_B T} \right)^2 \left(\frac{e^{\frac{\hbar \omega}{k_B T}}}{e^{\frac{\hbar \omega}{k_B T}} - 1} \right)^2 g(\omega) d\omega \]

\[P = -\frac{\partial F}{\partial V} = -\frac{\partial U}{\partial V} + \frac{1}{V_0} \sum_i \gamma_i \int (n + \frac{1}{2}) \hbar \omega g(\omega) d\omega = P_s - P_{\text{phonon}}, \quad \text{Mie-Gruneisen equation of state} \]

\[\gamma_i = \frac{\partial \ln \omega_i}{\partial \ln V} = \text{Gruneisen parameter for the } i^{\text{th}} \text{ phonon mode} \]

\[\alpha_V(T) = \frac{\partial V}{V \partial T} = \frac{1}{B V_0} \sum_i \gamma_i C_{V_i}(T) \approx \frac{1}{B V_0} - \gamma C_V(T) \]

Melting occurs at \(T_m \) above which \(P_{\text{phonon}} > P_s \)

Phonons & Mechanical Properties: The Continuum Limit

Returning to the example of a diatomic chain:
At long-wavelength ($q \rightarrow 0$) limit, lattice to continuum implies
elastic wave equation for the acoustic mode:
\[\rho \frac{\partial^2 u}{\partial t^2} = Y \frac{\partial^2 u}{\partial x^2}, \quad \text{where} \]
\[\rho = \frac{m_1 + m_2}{2a^3}, \quad \text{and} \quad Y = \frac{K}{a} = \text{Young's modulus} \]

For the optic mode, if atoms carry a charge Q, the polarization induced by an electric field E is
\[P = \left(\frac{Q^2}{2K - m\omega^2} + \chi \right) E \]
and the dielectric function is
\[\varepsilon = 1 + \chi + \frac{Q^2}{2K - m\omega^2} \]
\[\Rightarrow \text{resonance at} \quad \omega_0 = \sqrt{\frac{2K}{m}} \quad \text{in the infrared region.} \]

Likewise for elastic, electro-elastic, and electro-mechanical properties.

Important References

Texts and Review Articles

Bibliography & Compilation of Phonon Spectra

Prerequisite for Phonon Experiments Using INS

1. Prepare your samples: single crystals (the larger the better) for phonon dispersion and/or polycrystalline sample (the purer the better) for DOS measurements

2. Go to a reliable, high-flux neutron source, see for example
 [link: http://www.neutron.anl.gov/]

3. Gain access to a world-class neutron spectrometer: Triple-axis and/or chopper instrument

4. Check the neutron coherent scattering cross sections of the constituent elements, Beware of incoherent scattering and absorption/resonance. See, for example,
 [link: http://www.ncnr.nist.gov/resources/n-lengths/]

5. Better (necessary for single-crystal experiments) do a group theoretical analysis of the neutron spectrum for the crystal structure under study and develop an initial lattice dynamics model to calculate the inelastic structure factor. Software available, for example, [L. Warren and T. G. Worlton, "Improved version of group-theoretical analysis of lattice dynamics", Comp.Phys. Commu. 8 71-84 (1974) and J. L. Warren and T. G. Worlton, "Group-theoretical analysis of lattice vibrations", ibid, 3 88-117 (1972).
 [Collaborative Computational Project 5: http://www.ccp5.ac.uk/]

Incorporate as much as possible data from Raman, IR, Brillouin-scattering, ultrasonic measurements, etc.
Monazite and Xenotime: Rare-Earth Orthophosphates RPO_4^-

Key Collaborators:

J. C. Nipko, *Colorado State Univ.*
L. A. Boatner, *Oak Ridge National Lab.*
M. Loewenhaupt, *Tech. Univ. Dresden, Germany*
M. Braden, W. Reichardt, *Forschungszentrum Karlsruhe, Germany*

Chemistry

High melting points (>2000°C)
Not attacked by water, organic solvents and common acids
Resistant to radiation damage
- High-temperature components, Medium for nuclear waste storage

Optics

High density, Mohr hardness ~5.5
Rare-earth activated luminescence
- Phosphors, Lasers, Scintillators

Magnetism

Antiferromagnetic phase transitions
Cooperative Jahn-Teller effects
Magnetoelectric effects
Rare-earth spin-lattice coupling
- Magnetic refrigerants, Sensors

Zircon-type Structure of Nonmagnetic LuPO$_4$ Xenotime

Body-centered tetragonal structure $I4_1/amd$ \(Z=2 \)

36 phonon branches along each direction
LuPO$_4$ Lattice Dynamics: Group Theoretical Analysis

- LuPO$_4$ Crystal (D$_{4h}$)
- PO$_4^{3-}$ Site Symmetry (D$_{2d}$)
- Free PO$_4^{3-}$ Molecule (T$_d$)

Energy (meV)

- B$_1g$
- A$_2u$
- E$_g$
- A$_{1g}$
- E$_u$
- B$_{2g}$

Description of Mode
- antisymmetric P-O bond stretch
- symmetric P-O bond stretch
- antisymmetric O-P-O bond bend
- symmetric O-P-O bond bend
- translation-like or rotation-like
Single-Crystal, Triple-Axis Measurements of Phonon Dispersion Curves

LuPO$_4$ Room Temperature

- Neutron
- IR & Raman
- Shell-Model Calc.

Energy (meV)

- A$_1$
- A$_2$
- B$_1$
- B$_2$

Reduced Wavevector

Acoustic
- A$_{2u}$
- 17.8 meV
- B$_{1g}$
- 33.8 meV
- A$_{2u}$

- 39.6 meV
- B$_{1g}$
- 78.4 meV
- A$_{2u}$
- 85.1 meV
- B$_{1g}$

- 131.6 meV
- A$_{2u}$
- 131.7 meV
- B$_{1g}$

Example 1
Polycrystalline, Chopper Spectrometer TOF Measurements of Phonon DOS
Magnetic INS: The Ground-State Wavefunction of a Magnetic Ion

Magnetic Scattering

\[S(Q, E) = \frac{(\gamma r_0)^2}{4} g_j^2 \left(1 - e^{-\frac{E}{kT}} \right)^{-1} \chi''(Q, E, T) \]

\[\propto f^2(Q) \sum_{i,j} e^{i\mathbf{q} \cdot (\mathbf{R}_i - \mathbf{R}_j)} \int_{-\infty}^{+\infty} dt e^{-\frac{iE_t}{\hbar}} \langle J_i^\alpha(0) J_j^\alpha(t) \rangle \]

Dipole Approximation of Crystal-Field Transitions of Non-interacting Rare-Earth Ions in a Crystalline Host

\[S(Q, E) = f^2(Q) e^{-2W(Q)} \sum_{n,m} \frac{\exp(-E_n/kT)}{Z} \langle n|J_\perp|m \rangle^2 \delta(E_n - E_m - E) \]

Excitation & de-excitation Observed magnetic-scattering

![Diagram](image)
Crystal-Field Excitation Spectra of \(\text{TbPO}_4 \)

Crystal Structure:
tetragonal zircon (I4\(_1\)/amd)
2 f.u./p.c.

R-ion site point-group symmetry:
\(D_{2d} \)

\(E_0 = 4 \text{ meV} \)
\(T = 4 \text{ K} \)

\(E_0 = 20 \text{ meV} \)

\(E_0 = 60 \text{ meV} \)

\(T_N = 2.2 \text{ K} \)

\(T_D = 2.3 \text{ K} \)

Tb sub-lattice
Crystal-Field Level Structure of TbPO$_4$: The Magnetic Properties

The magnetic INS measurement enables a characterization of the rare-earth ground- and excited states wavefunctions in terms of a handful of crystal-field parameters. The model can then be applied for calculations of the magnetic properties of the material, e.g., susceptibility and magnetic specific heat.

![Graph of TbPO$_4$ magnetic properties](image-url)

- T_N's = 2.28 and 2.15 K
- Specific heat (J/mole K)
- χ (emu/mole)
Anomalous 4f-Electron Phonon Interaction in YbPO$_4$

The coupling of the Yb$^{3+}$ crystal-field states with the E_g phonon is very strong, with strengths much larger than those of any previously reported systems such as CeAl$_2$, LnF$_3$, LiTbF$_4$ and Ln(OH)$_3$. The line widths change drastically with temperature.

E_g crystal field state

Yb$^{3+}$ crystal field state

Example 1

The data suggest a large fluctuating component associated with the monopole term whereby coupling of the crystal field states, particularly the upper Γ_6 and Γ_7 doublets, with phonons of comparable strengths and energies. The coupling to the monopole term does not require the compatible symmetry of specific phonon modes (such as in the case for CeAl$_2$), and was observed throughout the Brillouin zone as long as the phonon energies and CF transition strengths are comparable.
Spinels: From Gahnite (ZnAl₂O₄) to Nanostructured Li(H)Mn₂O₄ Adsorbent

Approach:

Synthesis of novel n-MnO₂ adsorbents, electron microscopy (SEM, TEM), x-ray spectroscopy (EDX & XPS), chemical analysis (ICP) - H. Koyanaka, CRMD/CNRS, Orleans University, France

First-principle molecular-dynamics simulations - C. Fang, University of Uppsala, Sweden

INS - C.-K. Loong, Argonne, USA

The classic spinel structure:

(e.g., MgAl₂O₄) Cubic Fd3m, Z=2; 42 phonon branches

Where are the Hydrogen Atoms in HMn$_2$O$_4$?

A proton prefers the tetrahedral 8a cavity site but moves to one of the neighboring oxygen, breaking the local symmetry.

Fang & de Wijs (05)
Bone Minerals: Nanotechnology in Our Body

Apatite?
Evidence for the Lack of OH Ions in Bone Crystals as Compared to Hydroxyapatite (HAp) Ca_{10}(PO_4)_6(OH)_2

Approach:

Preparation of deproteinized bone apatite Crystals - M. J. Glimcher et al., *Harvard Medical School, USA*

Synthesis of hydroxyapatite powders, Fourier-transform infrared spectroscopy, chemical analysis - C. Rey, *CIAIMAT-ENSCT, Toulouse, France*

Proton solid-state NMR - Y. Wu, *Harvard Medical School, USA*

Neutron inelastic scattering & SANS - C.-K. Loong, *Argonne, USA*

Concluding Remarks

- INS is capable of accounting for the detailed atomic/molecular motions and electronic/magnetic excitations -- individual or collective -- within a many-body system (e.g., minerals).

- Since microscopic motions or excitations may occur in vastly different time and length scales, typically ps to ms and sub-nm to μm, the technique of INS necessitates an as wide as possible coverage in the energy (E) and wavevector (Q) space with good resolutions. *In situ* measurements under extreme sample environments (e.g., high T, high P) are highly desirable.

- INS is often flux-limited because of the weak intensity but this situation will be improved in the advent of new-generation high-flux neutron sources such as SNS.

- Interpretation of INS data can be a challenge facing experimentalists. Researchers nowadays have to apply methods of theoretical modeling and simulations that require high degree of sophistication and substantial amount of computing resources.

- Don’t worry, instrument scientists at neutron facilities will be glad to help you.