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Why use neutrons to study magnetic 
materials?

Neutron has a magnetic moment.

Neutrons are scattered by the magnetic moments of atoms in the sample.

Coherent elastic scattering can be used to determine the magnetic structure 
(i.e. the magnitude and orientation of magnetic moments in the structure).

Inelastic scattering measures the forces between magnetic moments (i.e. the 
strength of the exchange interactions).
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Magnetic moment of the neutron

Magnetic scattering results from the dipole-dipole interaction between the 
magnetic moment of the neutron and the magnetic moment of an atom.

A neutron has a spin of 1/2 and generates a magnetic moment of γ = 
-1.913 μN, where μN is the nuclear magneton (1 μN = 5.05 x 10-27 Am2) .

This moment is 1000 times smaller than the magnetic moment of an 
electron (1 μB = 9.27 x 10-24 Am2).



Magnetic moment of an atom
µS = 2

√
S(S + 1)µB

µL =
√

L(L + 1)µB

A free atom has both a spin and an orbital 
contribution to its magnetic moment.

µJ = g
√

J(J + 1)µB

g = 1 +
J(J + 1) + S(S + 1)− L(L + 1)

2J(J + 1)

The total moment is defined by the quantum number 
J, where J = |L-S| for atoms with electron shells 
that are less than half filled and J = |L+S| for 

electron shells that are more than half filled.

µ = gMJµB

In a material with ordered magnetic moments, the 
projection, MJ, of J in a given direction of 

quantization takes one of 2J + 1 states between -J 
and +J.
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Form factor 
(magnetic equivalent 
of scattering length)
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(
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= 0.2696× 10−12cm

γ = neutron magnetic moment
e = electron charge
m = electron mass
c = speed of light
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Magnetic form factors
Neutrons are scattered by the magnetization density of an atom. Since the magnetic moment 

originates from the electrons, interference between neutrons scattered from different parts of the 
electron cloud causes the amplitude of magnetic scattering to decrease with increasing Q. 
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f(Q) = 〈j0〉 +
(

g − 2
2

)
〈j2〉

〈j0(s)〉 = Ae−as2
+ Be−bs2

+ Ce−cs2
+ D

〈j2(s)〉 = (Ae−as2
+ Be−bs2

+ Ce−cs2
+ D)s2

s = sin(θ)/λ

A, B, C, D, a, b, c are constants that can be found at:

http://www.ill.fr/dif/ccsl/ffacts/ffachtml.html

http://www.ill.fr/dif/ccsl/ffacts/ffachtml.html
http://www.ill.fr/dif/ccsl/ffacts/ffachtml.html


Comparison of nuclear and magnetic 
scattering

Table 1. Magnetic scattering amplitude
p (10-12 cm)

Atom or ion
Nuclear scattering 

amplitude
b (10-12 cm)

Effective spin quantum 
number

S
θ = 0 sinθ/λ = 0.25 Å-1

Cr2+ 0.35 2 1.08 0.45

Mn2+ -0.37 5/2 1.35 0.57

Fe (metal) 0.96 1.11 0.6 0.35

Fe2+ 0.96 2 1.08 0.45

Fe3+ 0.96 5/2 1.35 0.57

Co (metal) 0.28 0.87 0.47 0.27

Co2+ 0.28 2.2 1.21 0.51

Ni (metal) 1.03 0.3 0.16 0.1

Ni2+ 1.03 1.0 0.54 0.23
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Magnetic structure factor

M(Q) = p
nm∑

j=1

fj(Q)µje
iQ·rjMagnetic structure factor

M⊥(Q) = Q̂×M(Q)× Q̂
Magnetic interaction vector 

(component of M 
perpendicular to Q)

IM (Q) = M⊥(Q) · M∗
⊥(Q)Magnetic intensity

M2
⊥(Q) = sin2(α)M(Q)2

For simple structures, intensity 
is proportional to sin2(α)



Domain and Powder Averaging

(11̄0) (11
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Fig. 3

I110 ∝ sin2(α)

I11̄0 ∝ cos2(α)

Itot ∝ sin2(α) + cos2(α) = 1

In a powder diffraction pattern, all symmetry 
related planes contribute to the intensity of a 

given peak. This can limit the amount of 
information that can be obtained about the 

orientation of magnetic moments.

For cubic symmetry:

< sin2(α) >= 2/3

No orientation information can be obtained!

For tetragonal, hexagonal, trigonal symmetry, only 
the angle between the moments and the z axis can 

be determined.
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Classification and description of magnetic 
structures

Methods used for solving a magnetic structure using neutron 
diffraction are intrinsically linked to the formalism of how 
magnetic structures are described. 

It is essential to have a good grasp of this formalism before 
attempting to solve or refine magnetic structures.

Most Rietvelt refinement programs use this formalism to 
describe and refine magnetic structures.



Basis vectors and propagation vectors

Ψk
j = [u, v, w] + i[u′, v′, w′]

A basis vector is used to specify the magnetic 
moment on atom j in the ‘zeroth’ nuclear unit 

cell.

µjl = Ψk
j e−2πik·t

The magnetic moment on atom j within unit 
cell ‘l’ is related to that in the ‘zeroth’ unit cell 

via a propagation vector, k, in reciprocal 
space, and the lattice vector, t:

a

b

t =
  U

a
 +

 V
b

0

l

Ψk
j

−Ψk
j



ex
p(
−2

πi
k
· t)

=
−1

(11
0)

a

b

t =
  U

a +
 V

b

ex
p(
−2

πi
k
· t)

=
1

ex
p(
−2

πi
k
· t)

=
−1ex

p(
−2

πi
k
· t)

=
1

ex
p(
−2

πi
k
· t)

=
1

Basis Vector ! = [0 1 0]

Propagation vector k = (1/2 1/2 0)

For k = 0, the magnetic 
unit cell is the same size 
and shape as the nuclear 

unit cell. 

For k ≠ 0, the magnetic 
unit cell is larger than the 

nuclear unit cell.

e.g. for k = (0.5 0.5 0), 
periodicity of the structure 
normal to (110) is doubled.



Complex magnetic structures

If the basis vectors are complex, the magnetic structure must be described as the sum of +k and -k 
components, so that the magnetic moment on each atom is real.

µjl = Ψk
j [cos(−2πk · t) + isin(−2πk · t)] + Ψ-k

j [cos(2πk · t) + isin(2πk · t)]

Ψ-k
j = Ψk*

j = [u, v, w]− i[u′, v′, w′]

µjl = 2[u, v, w]cos(−2πk · t) + 2[u′, v′, w′]sin(−2πk · t)



Helical structures

µjl = 2[1, 0, 0]cos(−2πk · t) + 2[0, 1, 0]sin(−2πk · t)
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Representation analysis

The permitted basis functions for a given material are strictly defined by the 
symmetry of the paramagnetic structure.

Representational analysis can be used to determine the permitted basis 
functions for a given propagation vector.

Free software (e.g. BasIreps, SARAh) is available to do the hard work for you!

Greatly simplifies the task of solving/refining magnetic structures using 
neutron diffraction.
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You need just 3 pieces of information to determine all possible magnetic 

structures:

1. Crystallographic space group of paramagnetic phase (R-3c)

2. Propagation vector (k = 0)

3. Wyckoff sites of magnetic atoms:
                                                       Atom 1 at (0, 0, 0.3553)
                                                       Atom 2 at (0, 0, 0.1447)
                                                       Atom 3 at (0, 0, 0.6447)
                                                       Atom 4 at (0, 0, 0.8553)



Permitted basis functions
IR Atom 1

(0, 0, 0.3553)
Atom 2

(0, 0, 0.1447)
Atom 3

(0, 0, 0.6447)
Atom 4

(0, 0, 0.8553)

Γ1 [0 0 1] [0 0 -1] [0 0 1] [0 0 -1]

Γ2 [0 0 1] [0 0 -1] [0 0 -1] [0 0 1]

Γ3 [0 0 1] [0 0 1] [0 0 1] [0 0 1]

Γ4 [0 0 1] [ 0 0 1] [0 0 -1] [0 0 -1]

Γ5

ν1 Re: [1.5 0 0]
Im: [-0.87 -1.73 0]

Re: [0 0 0]
Im: [0 0 0]

Re: [-1.5 0 0]
Im: [0.87 1.73 0]

Re: [0 0 0]
Im: [0 0 0]

ν2 Re: [0 1.5 0]
Im: [1.73 0.87 0]

Re: [0 0 0]
Im: [0 0 0]

Re: [0 -1.5 0]
Im: [-1.73 -0.87 0]

Re: [0 0 0]
Im: [0 0 0]

ν3 Re: [0 0 0]
Im: [0 0 0]

Re: [0 1.5 0]
Im: [1.73 0.87 0]

Re: [0 0 0]
Im: [0 0 0]

Re: [0 -1.5 0]
Im: [-1.73 -0.87 0]

ν4 Re: [0 0 0]
Im: [0 0 0]

Re: [1.5 0 0]
Im: [-0.87 -1.73 0]

Re: [0 0 0]
Im: [0 0 0]

Re: [-1.5 0 0]
Im: [0.87 1.73 0]

Γ6

ν1 Re: [1.5 0 0]
Im: [-0.87 -1.73 0]

Re: [0 0 0]
Im: [0 0 0]

Re: [1.5 0 0]
Im: [-0.87 -1.73 0]

Re: [0 0 0]
Im: [0 0 0]

ν2 Re: [0 1.5 0]
Im: [1.73 0.87 0]

Re: [0 0 0]
Im: [0 0 0]

Re: [0 1.5 0]
Im: [1.73 0.87 0]

Re: [0 0 0]
Im: [0 0 0]

ν3 Re: [0 0 0]
Im: [0 0 0]

Re: [0 1.5 0]
Im: [1.73 0.87 0]

Re: [0 0 0]
Im: [0 0 0]

Re: [0 1.5 0]
Im: [1.73 0.87 0]

ν4 Re: [0 0 0]
Im: [0 0 0]

Re: [1.5 0 0]
Im: [-0.87 -1.73 0]

Re: [0 0 0]
Im: [0 0 0]

Re: [1.5 0 0]
Im: [-0.87 -1.73 0]

Magnetic ordering 
transition is driven by 

one irreducible 
representation (IR).

The magnetic structure 
is a linear combination 
of the permitted basis 
functions for the active 

IR.





Magnetic neutron diffraction patterns
(a) k = 0

(e.g. ferromagnetic)

x

y

(b) k = (0, 1/2, 0)
(e.g. commensurate antiferromagnetic)

(c) k = (0, k, 0)
(e.g. Single-k incommensurate 

antiferromagnetic)

(d) k = (k, 0, 0), (0, k, 0)
(e.g. Multi-k or Multi-domain 

incommensurate antiferromagnetic)

Fig. 9



Example: Magnetite (k = 0)



Example: MnO k = (.5 .5 .5)



Example: Cr2O3-Fe2O3 (k ≠ 0)
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Polarised neutron diffraction

For k = 0 structures, it is often difficult to separate the nuclear 
and magnetic scattering signals.

Limited orientational information due to domain or powder 
averaging for certain symmetries.

Some structures cannot be resolved unambiguously using 
unpolarised neutrons.



Experimental Setup
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Spin flip (sf) and non spin flip (nsf)
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Spin flip (sf) and non spin flip (nsf)

σ++ = |F + M⊥,z|2

σ−− = |F −M⊥,z|2

σ+− = |M⊥,x + iM⊥,y|2

σ−+ = |M⊥,x − iM⊥,y|2

Diffracted spin

Inc
ide

nt 
sp

in
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Conclusions
Neutron diffraction is a powerful tool for studying magnetic structures.

Structure solution/refinement is made easy using the basis vector/
propagation vector formalism.

Representational analysis can be used to predict the possible range of 
magnetic structures.

There are limits to the information that can be obtained using unpolarised 
neutrons and powdered samples.

Most of these can be overcome using polarisation analysis.
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