#### **Single-Crystal Neutron Diffraction: Present and Future Applications**

**Christina Hoffmann** 

**SNS** 

**Nancy Ross Virginia Tech** 



MSA Short Course, Neutron Scattering in Earth Sciences, 12/7-12/8/06

#### **Why Neutron Scattering?**



2



#### **Ewald Construction**

The origin of direct and reciprocal space are separated by placing the crystal at the center of a sphere of radius  $1/\lambda$ . The origin of reciprocal space is placed on the surface of the sphere where  $S_0$  (the incident beam) exits the sphere.





#### **Laue Geometry**

The Laue technique for collecting large amounts of data quickly.

Polychromatic radiation modifies the Ewald construction Multiple Ewald spheres, enscribe the shortest  $\lambda$  and the longest  $\lambda$ 









### **A TOF Laue SND Measurement**

- Mount a sample 
   sample sizes are > 1mm<sup>3</sup>
- Load sample

Sample environment: vacuum, cooling, heating, pressure, magnetic field, electric field

- Start measurement
  - Data collection time according to sample properties
     Scattering power, composition, crystal quality, crystal size
- Data collection
- Data reduction:
  - Peak search
  - UB matrix
  - Peak integration
  - Corrections for instrument specific parameters
    - detector efficiency, neutron spectrum, intrinsic background, sample environment
  - Corrections for sample specific parameters
    - Absorption and empirical extinction
    - ...
  - Produce output file for conventional data analysis package
    - GSAS, ShelX, JANA, FulProf, ...

# Let's do an Experiment at IPNS-SCD..

# This Experiment was done this Year in March..

**A Structure to Investigate** 





#### Yb14MnSb11

- Tetragonal with space group I41/acd
  - 1 Mn atom
  - 4 inequivalent Sb atoms
  - Sb (2) involved in Mn-Sb tetrahedra
- Ferromagnet regarded as a rare example of an underscreened Kondo lattice. (T<sub>c</sub> = 53 K)
- It is proposed a Mn<sup>2+</sup> (d5) configuration with the moment compensated by the antialligned spin of an Sb 5p hole.

V.O. Garlea[HFIR], G.L. Jones[HAMILTON], B. Collett[HAMILTON], W.C. Chen[NIST], T.R. Gentile[NIST], P.M.B. Piccoli[IPNS], M.E. Miller[IPNS], A.J. SchultzIPNS], H.Y. Yan[IUCF], X. Tong[IUCF], M. Snow[IUCF], B.C. Sales[HFIR], S.E. Nagler[HFIR], W.T. Lee[SNS], C. Hoffmann[SNS]

Mounting the Single Crystal Sample..

- Mount the single crystal on a sample pin for cryogenic, vacuum, or heating experiments to refine the nuclear atomic or molecular structure
- Mount the sample between permanent magnets to refine nuclear + magnetic structure

INDIANA UNIVERSITY

 Special mounting schemes for pressure, gas flow, larger magnetic fields,...

Sample wrapped with Al-foil between SmCo magnets

NIS

#### **The IPNS - SCD Instrument:**



- Tof Laue single crystal diffractometer (SCD)
- White beam (0.5 10 A)

VTX

- Two energy sensitive area detectors, centered at 75° and 123°
- Cryogenic sample environment with 4 K displex







#### Spin Dependent Neutron Absorption in Polarized <sup>3</sup>He





 $^{3}\text{He} + n \longrightarrow {}^{4}\text{He}^{*} \longrightarrow p + {}^{3}\text{H}$ 

VTX

#### 2006 Experiment at SCD, IPNS, Polarization Setup Special now but Standard in the Future The Incident Neutron Beam is Polarized by Installing a <sup>3</sup>He Neuron Spin Filter on the SCD Beam Path



# Mounting the Sample on the Instrument.



• The sample with the magnet is mounted on the displex



#### **Start a Data Collection**

 Use local software to set measurement time and number of crystal settings according to symmetry.





### **Start a Data Collection**

# First reflections on the detector







# **Polarization of the Neutrons**

The ratio of the (2 0 0) reflection between spin flips is 0.5:7.3 which results in [(7.3-0.5)/(7.3+0.5)] = 0.87,corresponding to the Neutron polarization P<sub>n</sub>.



-CoFe crystal in beam flipped 0of1

Converted to Q-

X Scale

Inverse Angstroms [ 0.997:24.78

# **Peak Search, UB Matrix**

#### Using ISAW at IPNS

- Available on the PNS web site to download
   Scoolage RNN Scoolage RNN Scoolage http://www.pns.anl.gov
- Mailing list available

Status Executing... FORM ERR

🛃 sta

VTX

|                                    |               |             | DataEct    |                                            | 1                                                |                          |          |
|------------------------------------|---------------|-------------|------------|--------------------------------------------|--------------------------------------------------|--------------------------|----------|
| Addified                           | AU            | annares     | DataSet    | Log   Session Log   System Props   Scripts |                                                  | Value                    |          |
| 3 8:M1_SCD06496                    | 🖢 Ini         | tial SC     | ID Pe      | eaks Wizard                                | MSampleRu                                        | uns\SCD06496.RUN         |          |
|                                    | File Vie      | w Project   | Director   | y Help<br>Form 1: FindMultiplePeaksForm    |                                                  |                          |          |
| .yov                               | <b>USE</b>    | R SPECIFIEI | D PARAM    | ETERS-                                     |                                                  |                          |          |
|                                    | 4             | Initia      | l SCD      | Peaks Wizard                               |                                                  |                          |          |
| able                               | File          | e View P    | roject Dir | ectory Help                                |                                                  |                          |          |
|                                    |               | _CONSTAN    | T PARAM    | Form 2: JBlind                             |                                                  |                          |          |
|                                    |               | 👙 Init      | ial S      | CD Peaks Wizard                            |                                                  |                          |          |
|                                    |               | File Viev   | v Projec   | t Directory Help                           |                                                  |                          |          |
|                                    |               |             | STANT PA   | Form 3: Jindex                             |                                                  |                          |          |
|                                    |               | de la       | itial      | SCD Peaks Wizard                           |                                                  |                          |          |
|                                    |               | File V      | iew Pr     | oiect Directory Help                       |                                                  |                          |          |
|                                    |               |             |            | Form 4: J                                  | Scalar                                           |                          |          |
|                                    |               | L L CC      | MSTANT     | itial SCD Peaks Wizard                     |                                                  |                          |          |
|                                    |               |             | File Vi    | iew Project Directory Help                 |                                                  |                          |          |
|                                    |               |             | -00        | For                                        | m 5: JLsqrs                                      |                          |          |
|                                    | _             |             |            | A Initial CCD Dealer Wisser                |                                                  |                          |          |
|                                    |               |             |            | Elle View Project Directory Help           | d _                                              |                          |          |
|                                    |               |             | ĥ          |                                            | Form 6: Jindex                                   |                          |          |
| E                                  | 6             |             | h          | CONSTANT PARAMETERS                        |                                                  |                          |          |
|                                    | P             |             |            | Peaks File                                 | Brows                                            |                          |          |
|                                    |               |             |            | Matrix file                                | C:/Program Files/ISAW//SampleRups Brows          |                          |          |
|                                    |               |             | (          | Restrict Runs                              |                                                  |                          |          |
|                                    |               |             | _RI        | Delta h<br>Delta k                         | 0.2                                              |                          | Save     |
|                                    |               |             | l I        | Delta I                                    | 0.2                                              |                          | Clear    |
| DR: Parameter SCD Calibration File | e is invalid. |             |            | Update peaks file?<br>Append to log file?  |                                                  |                          | -        |
|                                    |               | Deer        |            | RESULTS-                                   |                                                  |                          |          |
|                                    |               | Rese        |            | IndexJ log file                            | C/Program Files/ISAW/SampleRuns Brows            | ise                      |          |
|                                    |               |             |            |                                            |                                                  |                          | -        |
| rt 📄 🙁 🥶 🐌 🌌 🖻                     | ) 🔎 🍂         | 0           | Rese       |                                            |                                                  | 2 🕅 🕅 5 🔜 🥔 🛄 ₫ 8        | 3:23 AM  |
|                                    |               |             | nest       |                                            |                                                  | s/                       | CHC      |
|                                    |               |             |            | Boost                                      | Indou Drowrooc                                   |                          | CIC      |
|                                    |               |             |            | Reset All Wiza                             | annex Progress<br>rd Progress: 0 of 6 Forms done | Do All SPALLATION NEUTRO | N SOURCE |
|                                    |               |             |            | First Form Back On                         | e Forward One Last F                             | Form                     | -        |
|                                    |               |             |            |                                            |                                                  |                          |          |

19

- 8 ×

## Integration, Corrections, Data Reduction

| ← 11 Modified<br>← 11 SCD064<br>← 11 SCD064<br>← 11 SCD064 | 6.RUN<br>SCD06496<br>SCD06496                      | Attribute Value<br>9:H1_SCD06496<br>C:Program Files\\SAW\SampleRuns\\SCD06496.RUN |   |
|------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------|---|
|                                                            | 🖢 Daily SCD Peaks Wiza                             | ard 📃 🗆 🔀                                                                         |   |
|                                                            | File View Project Directory Help                   | тя                                                                                |   |
|                                                            | -CONSTANT PARAMETERS                               | Form 4: IntegrateMultiRunsForm                                                    |   |
|                                                            | Paul Data Data                                     |                                                                                   |   |
|                                                            | Peaks File Output Path                             | C/Program Elies/ISAW/SampleRuns/ Browse 0.00000000000000000000000000000000000     |   |
|                                                            | Experiment name                                    |                                                                                   |   |
|                                                            | SCD Calibration File                               | C/Program Files/ISAW/SampleRuns Browse                                            |   |
|                                                            | SCD Calibration File Line to Use                   |                                                                                   |   |
|                                                            | USER SPECIFIED PARAMETERS                          |                                                                                   |   |
|                                                            | Run Numbers                                        |                                                                                   |   |
|                                                            | Centering Type                                     |                                                                                   |   |
|                                                            | Amount to Increase Slice Si                        | Size By 1                                                                         |   |
|                                                            | Minimum d-spacing                                  | 0.0                                                                               |   |
|                                                            | Append to File?                                    |                                                                                   |   |
|                                                            | Integrate 1 peak method<br>Box Delta x (col) Banne | Maxi losigi                                                                       |   |
|                                                            | Box Delta y (row) Range                            | -2.2                                                                              |   |
|                                                            | RESULTS-                                           |                                                                                   |   |
|                                                            | Internated Deaks File                              | Browsea                                                                           |   |
|                                                            | Reset                                              | IntegrateMultiRunsForm Progress Do                                                |   |
|                                                            | Reset All W                                        | Wizard Progress: 0 of 4 Forms done Do All                                         |   |
|                                                            | First Form Back                                    | k One Forward One Last Form                                                       |   |
|                                                            |                                                    |                                                                                   |   |
| Status                                                     |                                                    |                                                                                   |   |
| Executing                                                  |                                                    |                                                                                   |   |
| FORM ERROR: Par<br>Executing                               | neter SCD Calibration File is invalid.             |                                                                                   | - |
| FORM ERROP: Par                                            | meter SCD Calibration File is invalid              |                                                                                   |   |
|                                                            |                                                    |                                                                                   |   |
|                                                            |                                                    |                                                                                   |   |
|                                                            |                                                    |                                                                                   | • |

20

# **Data Analysis & Results**

 Data at 70 K for a GSAS refinement of the nuclear structure confirms previously solved structure

- Unpolarized neutron beam
- Above phase transition







# **Data Analysis & Results**

**Reflection Selection rules :** 

Mn (8a): 2h + l = 4nSb (32g): h + k + l = 2n

| h | k | 1  | +      | -<br> - | <u>λ(Å)</u> | Q(Å-1) | +/ -  | (2h+l)/4 |         |
|---|---|----|--------|---------|-------------|--------|-------|----------|---------|
| 6 | 0 | 0  | 293.3  | 222.6   | 5.18        | 2.26   | 1.317 | 3        | Mn & Sb |
| 8 | 0 | 0  | 1315.8 | 920.7   | 2.43        | 3.02   | 1.429 | 4        | Mn & Sb |
| 6 | 1 | -1 | 223.8  | 306.8   | 4.67        | 2.31   | 0.729 | 2.75     | Sb      |

Polarized neutron diffraction data (47 reflections)

→ MaxEnt reconstructions of spin density distribution

 → maximum entropy magnetization density reconstruction reveals the presence of a magnetic moment on the Sb site with opposite sign with respect to the Mn moment Projection of the spin density in Yb14MnSb11 along the *c*-axis.



#### **Data Presentation and Publication..**

#### Polarized neutron diffraction study of the ferromagnetic semiconductor Yb14 MnSb11

#### INDIANA UNIVERSITY NIST

- 505 V. O. Garlea <sup>1</sup>, G. L. Jones <sup>2</sup>, B. Collett <sup>2</sup>, W. C. Chen <sup>35</sup>, T. R. Gentile <sup>3</sup>, P. M. B. Piccoli <sup>4</sup>, M. E. Miller <sup>4</sup>, A. J. Schultz <sup>4</sup>, Hamilton -H. Y. Yan <sup>5</sup>, X. Tong <sup>5</sup>, M. Snow <sup>5</sup>, B. C. Sales <sup>1</sup>, S. E. Nagler <sup>1</sup>, W. T. Lee <sup>1</sup>, C. Hoffmann <sup>1</sup>

10ak Ridge National Laboratory, Oak Ridge, TN, 2 Hamilton College, Clinton, NY, 3 NIST Center for Neutron Research, Gaithersburg, MD <sup>4</sup> Intense Pulsed Neutron Source, Argonne, IL , <sup>5</sup> IUCF, Indiana University, Bloomington, IN Polarized neutron diffraction provides the spatial distributions of magnetization as well as the direction of the magnetization vector on an atomic scale in a wide range of materials of fundamental and technological importance. Recent advances in the development of <sup>3</sup>He spin filters have made it possible to

We report the results of a test experiment carried out using a polarized <sup>3</sup>He filter installed at the Single-Crystal Diffractometer (SCD) instrument at the Intense Pulsed Neutron Source (IPNS). The goal of the experiment was to determine the distribution of the spin density in the MnSb, tetrahedra of the Zintl semiconductor Yb., MnSb.,

polarize neutrons efficiently at neutron spallation sources.

#### **Experimental Details**

0

· compact system to continuously polarize a <sup>3</sup>He spin filter by spin-exchange optical pumping • <sup>3</sup>He Spin Filter polarizes broad energy range of neutrons with minimal effect

on beam divergence NMR coils are used to quickly flip the <sup>3</sup>He polarization with 0.01% loss



• 2.2 bar of <sup>3</sup>He, 60 mbar of N<sub>2</sub>, drop of Rb Parameters: size: length ~ 31 cm. O.D. ~ 28 cm • beam size = 9mm

• T. = approx. 88%

0.8

0.6

0.2

0.0

E 0.4

- 2 double paned fused silica windows ~ 4mm total

- 2 dielectric mirrors on fused silica ~ 2mm total

- Cell windows ~ 3mm total

P, and T, vs. wavelength

(P<sub>He</sub> ~ 61%)

Measurements using CoFe (200) millection

os = 61 %



 $T_0(\lambda) = T_s e^{-n\sigma_s X}$  $T_n = T_0 \cosh(P_{n_e} n \sigma_0 \lambda l)$ 

 $P_{*} = \tanh(P_{ne}n\sigma_{o}\lambda l) = 1$ 

T. = transmission I = cell length P<sub>n</sub> = neutron polarization λ = neutron wavelengt P<sub>ne</sub> = 'He polarization n = number density of n = number density of "He

• The achieved 61% <sup>3</sup>He polarization corresponds to P, = 94% at \lambda= 3.47 Å, confirmed by measuring the ratio between spin-flips of the (200) reflection of the CoFe crystal standard.



Sb (2) involved in Mn-Sb tetrahedra · Ferromagnet regarded as a rare example of an underscreened Kondo lattice. (T<sub>c</sub> = 53 K)

Yb14MnSb11

1 Mn atom

Tetragonal with space group I4,/acd

4 inequivalent Sb atoms

. It is proposed a Mn2\* (d5) configuration with the moment compensated by the anti-alligned spin of an Sb 5p hole.



grown by Sn flux technique · custom made permanent magnet arrangement to apply a magnetic field of approximately 0.4 T at low temperatures of 6 K at the sample position

#### Neutron diffraction results

ISAW program: data visualization and integrating peaks

Neutron diffraction measurements at T = 70 K, above the transition temperature, confirmed the nuclear structure of Yb14MnSb11 (hk0) slice view



Mn & Sh Mn & St 2.75 Sb

Polarized neutron diffraction data (47 reflections) → MaxEnt reconstructions of spin density distribution



→ maximum entropy magnetization density reconstruction reveals the presence of a magnetic moment on the Sb site with opposite sign with respect to the Mn moment





Selected reflections:

### II. Applications of Single Crystal Neutron Diffraction in Earth Sciences

- Water in minerals
- Cation site partitioning
- Atomic displacement parameter analysis
- Magnetic structures
- Charge density distributions
- Quantitative diffuse scattering





### Water in Hydrous Minerals



- Beryl Al<sub>2</sub>Be<sub>3</sub>Si<sub>6</sub>O<sub>18</sub>
- Space Group: P6/mcc.







Gatta et al. (2006) determined topological configuration of the channel content in alkalipoor beryl  $AI_{1.93}Fe_{0.03}Be_{2.94}Si_{5.93}O_{18}$ .  $(Na_{0.03}\cdot 0.26H_2O)$ :

- Crystal size: 1.1 x 1.3 x 2.0 mm<sup>3</sup>
- SV28 beam-line at the DIDO reactor Forschungszentrum Juelich, Germany







2.5

Topological configuration of water molecules into the channel of the alkali-poor beryl, viewed down [100] (left) and down [001] (right):



#### **Dense Hydrous Magnesium Silicates** (DHMS)

**OH-chondrodite** 



2

# Wadsleyite (β-Mg<sub>2</sub>SiO<sub>4</sub>)

Stable in the Earth's transition zone (400 km depth)







#### Size of high *P-T* phases and neutron fluxes are merging ...



Steve Jacobsen (Geophysical Laboratory) Daniel Frost (Bayerisches Geoinstitut) Joseph Smyth (University of Colorado)



e.g. hydrous wadsleyite: (containing ~1 wt% H<sub>2</sub>O)



#### Hydrous wadsleyite: Single crystal ND



SXD instrument at ISIS *M. Gutmann* 



#### Mounting a wadsleyite crystal onto the SXD goniometer at ISIS



Screenshot: SXD2001/Matthias Gutmann

2



Neutron diffraction from single-crystal wadsleyite Crystal volume is ~0.25 mm<sup>3</sup>





#### **Atomic Displacement Parameters**

" ADPs are still regarded by many scientists as unreliable, since in many of the earliest structure determinations, ADPs often became repositories for much of the error in the structure refinement...." (Sales et al. 1999)

Why neutrons?

- X-ray diffraction yields information on the time- and volumeaveraged electron- charge distribution in the crystal.

- Neutron diffraction instead yields information on the position of the atomic nuclei and their thermal motion and is therefore the preferred primary technique to measure reliable adp's.





### Spodumene, LiAlSi<sub>2</sub>O<sub>6</sub>

- ADP (B<sub>eq</sub>) for Li in spodumene larger than that at M2 in other pyroxenes.
- The presence of significant zero-point motion is in agreement (diopside, albite, anorthite, pyrope)

Tribaudino et al. (2003)







### **Anion Disorder in KCaF**<sub>3</sub>

- fast ion conductor at high T
- High-T SND, D9 at ILL







- The F- ions show a large degree of anisotropy in their vibrational envelopes and appear to vibrate towards a saddle point, at the centre of a cube face, between two neighboring K+ ions.
- Vacancy migration mechanism involves the F ion jumping to a next nearest neighbor site in the (100) plane





#### **Other applications of ADPs**

 Sales et al. (1999) showed for large classes of clathrate-like compounds, the room temperature ADP data reported as part of crystal structure determinations can be used to estimate the Debye temperature, velocity of sound, mean free path of phonons, lattice thermal conductivity, heat capacity, and the Einstein frequency of the rattler.





### **Diffuse Scattering**









M.G. Tucker, D.A. Keen & M.T. Dove (2000-2001)

- Deviations from average structure
- e.g. disordered materials
  - thermally induced disorder
  - disorder resulting from defect impurities
  - structure of short range magnetically ordered systems
- Incommensurate structures





#### Benzil

- Welberry et al. (2003) TOF Laue on  $C_{14}D_{10}O_2$
- Phonon and diffuse scattering modes overlap but can be deconvoluted using high Q data from SND



40





#### **Overall Structure Interpretation of PZN**





Conventional data analysis & refinement Monte Carlo data analysis & refinement

To correctly describe the real structural features modulated structure analysis of diffuse scattering

## **Relaxor Ferroelectric PbZn<sub>1/3</sub>Nb<sub>2/3</sub>O<sub>3</sub> => PZN**

PZN-8PT T=200 K



#### Analysis Results - Global and Local Pattern

- MC Simulation
- Modeling

100

VTX

000



110

⇒Deriving the modeling results spanned several years

⇒Disordered part of structure influences properties



43

#### **New Horizons**

- Faster structures (<< 1 day)</li>
- More complex structures
- Smaller crystals (<<1 mm3)</li>
- More parametric (*T*,*P*,*H*,*E*,...) studies
- More quantitative diffuse scattering





# **Moving forward**





#### The Single Crystal TOPAZ Beamline at SNS



#### Sample Positioning, Environment, Detectors



## You can teach robots anything....

#### Acknowledgements

#### TOPAZ-SCD Instrument Support

- -IDT and Executive team: Bob Bay, Art, Schultz, Tom Koetzle, Thomas Proffen, Bryan Chakoumakos, Heinz Nakotte, Bo Iversen
- Jack Thomison, Larry Davis, Mark Overbay, Bob Dearstone,
- -Lou Santodonato (SEnv), Bill McHargue (chopper), Phil Ferguson, Franz Gallmeier (neutronics), Steve Miller, Pete Petersen (data-analysis)
- Detector Development (in collaboration w/ SNAP)
  - -Ron Cooper, John Richards, Rick Riedel
- Super Mirror Focusing Guide
  - -Alexandru Stoica, Hal Lee, Xun-Li Wang
- Micro Focusing KB- Mirror (Spearheaded by SNAP team)
  - -Group of Gene Ice, Cam Hubbard, Chris Tulk
- •<sup>3</sup>He Polarizer Development

-Gordon Jones, Freddie Dias, Brian Collett, Paula Piccoli, Martha Miller, Art Schultz, "Tony" Xin Tong, Hai Yan Yan, Mike Snow, Hal Lee, Tom Gentile, Wang Chun Chen

Management, Project Support, QA, etc.
 Project Funding

