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¢ Why neutrons?
¢ Properties of neutron (esp. compared to X-rays)
¢ Consequences and applications

¢ Scientific opportunities
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* Electrically neutral - more penetrating than X-rays.

Neutrons act like both particles and waves
They have velocities, times of flight and diffract
Wavelength A = h/(mv)
Thermal neutrons: A ~ 1 A to 2 A
Cold neutrons: A ~ 3 A to 10 A
Neutrons interact with nuclei - point scattering, weak
Light atoms scatter neutrons as strongly as heavy atoms.
Slow: v ® 4000 m/s / (A / A) and E distribution easily shifted
®* Same source - large E-range = many apps
* Low energy, E = mv2/2 = 82 meV /(\2/A2)
* Neutron's mass ~ 'H - couple strongly with phonons
* Relative E-changes large (spectroscopy) -X-rays?
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* Electrically neutral - more penetrating than X-rays.

Neutrons act like both particles and waves
They have velocities, times of flight and diffract

Wavelength A = h/(mv)

Thermal neutrons: A ~ 1 A to 2 A

Cold neutrons: A ~ 3 A to 10 A
Neutrons interact with nuclei - point scattering, weak
Light atoms scatter neutrons as strongly as heavy atoms.
Slow: v ® 4000 m/s / (A / A) and E distribution easily shifted
®* Same source - large E-range = many apps
* Low energy, E = mv2/2 = 82 meV /(\2/A2)
* Neutron's mass ~ 'H - couple strongly with phonons
* Relative E-changes large (spectroscopy) -X-rays?
Neutrons have moments - interaction with unpaired electrons

®* Spin 1/2 -- same as unpaired electron - magnetism

MSA short course
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 Neutron — nucleus interactions
— Most probable interaction
— Short range - essentially point scattering
* Neutron — electron interactions
— Spin-spin interaction (requires unpaired electrons)

— Magnetic scattering
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* Neutron is absorbed - radiography

MSA short course
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@ Neutral - no interaction with Coulomb charge
@ Highly penetrating
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@ Neutral - no interaction with Coulomb charge
@ Highly penetrating
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@ Neutral - no interaction with Coulomb charge
@ Highly penetrating (except B, Cd, Gd, Hf ...)
@ Applications

@ light-weight machinable shielding (BN); opaque self collimating
anvils (c-BN); Imaging real rocks and parts

. Radiographic images of highly Absorbing
Neutrons penetrate deep Into matter Hf sphere falling in silicate melt

(Winkler et al, EJ Mineral., V14)

HP-GRC, June 29
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* Neutron is absorbed
— yielding a new isotope (stable or radioactive)

— to yield an excited nuclear state - Neutron
Activation Analysis

MSA short course
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ttp://www.ncnr.nist.gov/instruments/nactanal.htmi
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@ “Neutron fluorescence” - either delayed or prompt

¢ Instrumental NAA - measure concentrations of many
elements in single sample non-destructively

@ Especially art, acheological, botanical, geological
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@ “Neutron fluorescence” - either delayed or prompt

¢ Instrumental NAA - measure concentrations of many
elements in single sample non-destructively

@ Especially art, acheological, botanical, geological
¢ Expose sample + standards to neutrons.
¢ most elements become radioactive.

@ Wait or measure while sample in beam (prompt Yy -
“neutron fluorescence”)

¢ E of y allows ID of element
@ | o [element]
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ttp://www.ncnr.nist.gov/instruments/nactanal.html

@ “Neutron fluorescence” - either delayed or prompt

¢ Instrumental NAA - measure concentrations of many
elements in single sample non-destructively

@ Especially art, acheological, botanical, geological
¢ Expose sample + standards to neutrons.
¢ most elements become radioactive.

@ Wait or measure while sample in beam (prompt Yy -
“neutron fluorescence”)

¢ E of y allows ID of element
@ | o [element]

@ Radiochemical NAA
@ Activation + separation of species of interest
¢ low background, remove interference

MSA short course
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Elements Determined Using Nuclear Analytical Methods

INAA /RNAA - PGAA - Both Potentially Measureable

Sc Ti Vv Cr | Mn| Fe | Co | Ni | Cu

In Sn | Sb | Te I Xe

Tl | Pb | Bi | Po | At | Rn

Cs | Ba| La| Hf | Ta| W | Re | Os Ir Pt | Au

Fr | Ra | Ac | 104 | 105 | 106 | 107 | 108 | 109

Ce | Pr | Nd | Pm Tb | Dy | Ho | Er | Tm | Yb | Lu

Th | Pa| U [ Np| Pu |Am |Cm | Bk | Cf | Es | Fm | Md | No | Lr

*NDP is used for surface analysis of B, Li, N, O.
Courtesy of Brian Toby, Argonne




Elements Determined Using Nuclear Analytical Methods

INAA /RNAA - PGAA - Both Potentially Measureable

Li* | Be

Sc Ti Vv Cr | Mn| Fe | Co | Ni | Cu

In Sn | Sb | Te I Xe

Tl | Pb | Bi | Po | At | Rn

Cs | Ba| La| Hf | Ta| W | Re | Os Ir Pt | Au

Fr | Ra | Ac | 104 | 105 | 106 | 107 | 108 | 109

Ce | Pr | Nd | Pm Tb | Dy | Ho | Er | Tm | Yb | Lu

Th | Pa| U [ Np| Pu |Am |Cm | Bk | Cf | Es | Fm | Md | No | Lr

*NDP is used for surface analysis of B, Li, N, O.
Courtesy of Brian Toby, Argonne
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Background: In 1998, percent levels of Cd were found
in a chemical fertilizer that was applied to farmland in
California. Many states proposed regulations limiting
levels of 10 elements shown above. Fertilizer
manufacturers and state regulators needed standards to
develop methods and validate analytical results.

Project: Material was donated by the industry. Sieved
fractions were analyzed by INAA and the decision was
made to jet mill the material. XRF and PGAA were used
to assess homogeneity of the final material.

Certification analyses underway in FY05. Certified or
reference values planned for 23 elements, 19 to be
Courtesy of Brian Toby, Argonne determined by nuclear methods

MSA short course
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¢ non-destructive analytical chemistry Detects ~1/3 of
periodic table

@ ppm sensitivity for hydrogen

Al Si
Example: Attempted H
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Courtesy of Brian Toby, Argonne EneraylkeV
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* Neutron is scattered (momentum change)
— Energy can be lost/gained (inelastic)
— No energy transfer (elastic)
Also

— Phase can be lost (incoherent) - no interference
(diffraction) effects

— Phase can be retained (coherent) - interference
between scattering centers - diffraction effects

STONY
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@ (O (scattering cross section)

@ Measure of the probability that an interaction of a given kind
will take place between a nucleus and an incident neutron

@ (elastic, inelastic for eg)
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@ (O (scattering cross section)

@ Measure of the probability that an interaction of a given kind
will take place between a nucleus and an incident neutron

@ (elastic, inelastic for eg)

¢ Difference between X-ray and neutron cross-sections (Ototal)
@ While the cross-section (probability of scattering) is positive
the atomic scattering length, b (o = 41Th?) can be negative
@ +ve b, scattered neutron 11/2 phase shifted (like X-rays)

@ Db is different for different isotopes, different nuclear spin
states

MSA short course
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@ Other differences

@ The nucleus is a point compared to electron cloud
¢ No dependence on scattering angle
@ the neutron interaction stay the same - and weak!

Electron
cloud

Nucleus -

MSA short course
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@ Other differences
@ The nucleus is a point compared to electron cloud
¢ No dependence on scattering angle
@ the neutron interaction stay the same - and weak!

Electron
cloud

Nucleus -
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@ Other differences
@ The nucleus is a point compared to electron cloud
¢ No dependence on scattering angle
@ the neutron interaction stay the same - and weak!

Electron
cloud

0
Nucleus

MSA short course

STONY
LIRS



< C C 0 U ) 0 - o 0
@ Other differences
@ The nucleus is a point compared to electron cloud
¢ No dependence on scattering angle
@ the neutron interaction stay the same - and weak!
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Electron
cloud

0
Nucleus

X-ray scattering factor

s1nod/A
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@ Other differences
@ The nucleus is a point compared to electron cloud
¢ No dependence on scattering angle
@ the neutron interaction stay the same - and weak!

Electron
cloud

Nucleus

MSA short course

0

X-ray scattering factor
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As angle incre
scattering factor
decreases

s1nod/A
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@ Other differences
Q

Q

@ (Can’t be calculated; must be measured

@ Probability of coherent (phase retained, interference effects)
and incoherent (phase lost) varies with isotope (not just atom)

—\?2 — —\2
Gcoh:4n—(b) ’ Ginc:4ﬂ:{b _(b) }
@ Coherent scattering depends on correlation between positions
of nuclei, interference effects, Bragg, phonon scattering

(correlated motion)
@ Incoherent scattering does not give rise to interference effects

@ Useful in studies of diffusion (uncorrelated motion), since
it arises from correlations of the same nucleus at different
times.

MSA short course




Probability for coherent vs. incoherent scat STONY
changes with isotope BR‘\\\\‘K

Coherent Incoherent

Coherent Incoherent
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calculate this, exactly

d? k'
O | =2 Ng0,m)
dodE' )~ 4m k

1
SQ.0)=—— [G(r.0exp{(@ - r - wn)} dr dr

h :
o [ $0.0)expi(-i(Q-r - wr)} dO d

G(r,t)=

Origin O

G(r, 1) is the time-dependent pair-correlation function (where the atoms are)

S(Q, ) is the structure function, dynamical structure function, coherent scattering
function, also referred to as the scattering function or scattering law. By
inspection S(Q, o) is the Fourier transform of G(r, ¢) in space and time (dr d¢).

MSA short course
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d? k'
O | =2 Ng0,m)
dodE' )~ 4m k

h

G(r,t)= 27y

[s©

samical structure function, coherent scattering
4 e scattering function or scattering law. By
6 (,0 - ourier transform of G(r, ¢) in space and time (dr d?).
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(1) Z-dependence - Application: finding light elements BR‘\‘\‘K

52Ni
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Differences between X-ray and neutron cross-sect
(1) Z-dependence - Application: finding light elements

(suoulo9)a) s1010e4 bunolleas

Atomic Number(Z)
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“Neutrons act like waves
¢ Neutrons interact with nuclei & locate atoms more precisely.
¢ Light atoms scatter neutrons as strongly as heavy atoms.

@ bcoh independent of Z, sin@/A, can be -ve
¢ Diffraction, D/H contrast, precise positions, PDF

MSA short course
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@ Wave-like nature and Bragg (elastic) scattering
@ A=2dsin0 - Same formalism as X-ray scattering

¢ powder diffractometers, sample geometry similar -
just bigger _— _

——

MSA short course
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DETECTOR

COLLIMATION

X-RAY
TUBE




COLLIMATION

X-RAY
TUBE

MSA Short C O U1 S
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Modern neutron powder
e diffractometers use multiple
detector; neutrons come from weak
sources (cf. X-ray synchrotrons)

RADIAL .',ri:jf
SAMPLE :

COLLIMATION

NEUTRON

GUIDE OCHROMATOR
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Construction of a microstrip position-sensitive detector (printed circuit)

Anton Oed
Bruno Guerard
Pierre Convert
Thomas Hansen

Jacques
Torregrossa




0 U Jl ¢ U J DU 0 > ST‘\\&NY
BRA\SK

0 o U
STATE UNIVERSITY OF NEW YORK
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Applications of large fast detectors/det BR}\E\\\‘K

Complete diffraction pattern in 20 min. on small samples - at ambient or
in environmental (high P) cells

Incident neutrons

CaCu3GazM2012

recovered
from HP
synthesis

Byeon,, Lufaso, Parise, Woodward, Hansen
(2003) High-Pressure Synthesis and
Characterization of Perovskites with
simultaneous ordering of both the A- and B-
site Cations, (M = Sb, Ta) Chem. Materials, 15,
3798-3804

MSA short course
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@ Sites for H (or D) precisely determined

¢ H(D) in topaz and topaz-OH
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3. Komatsu et al (2006) submitted
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Light element sensitivity: finding H(D)'in %Eﬁgﬁ

STATE UNIVERSITY OF NEW YORK

@ Sites for H (or D) precisely determined
@ H(D) in topaz and topaz-OH
¢ Even in small samples H-positions easily determined

1.0

1. Parise, Cuff, Moore (1980) Min Mag , 43, 943
2. Chen, Lager, Kunz et al. (2005) Acta Cryst., 61, 1253
3. Komatsu et al (2006) submitted

MSA short course



Light element sensitivity: finding H(D) %Eﬁg%

@ Sites for H (or D) precisely determined
@ H(D) in topaz and topaz-OH
¢ Even in small samples H-positions easily determined

New positions revealed by
recent ambient (2) and high

pressure work (3) 2

1. Parise, Cuff, Moore (1980) Min Mag , 43, 943
2. Chen, Lager, Kunz et al. (2005) Acta Cryst., 61, 1253
3. Komatsu et al (2006) submitted
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LiMoN» X-7A data capillary, Si(111), A=0.71 22A, Ge(111) analyser, 1x7 mm slits, Kevex detector
| | | | | X-ray structure
o . N (MoN sheets)

.
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LiMoN,, H4S Vanadium tube, Si(111), A=1.3585, graphite analyser, 20-40'-40'-20" sollar slits
| | | | | | | | | | | |

ol foo ¢+ LiMoO, Neutron
8 < |
o &

Eider, Doerrer, DiSalvo, Parise, Duyomard, Tarascon, (1992) New Nitride - LiMoN,. Chem. Mater. 4, 928

MSA, Dec 7, 200
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LiMoN» X-7A data capillary, Si(111), A=0.71 22A, Ge(111) analyser, 1x7 mm slits, Kevex detector
I I I I I

Lirevealed in
Neutron Structure

LiMoO, X-ray

2

1

counts x 10

LiMoN,, H4S Vanadium tube, Si(111), A=1.3585, graphite analyser, 20-40'-40'-20" sollar slits
| | | | | | | | | | | |

o Lo ¢ LiMoO, Neutron

-

3
|
|

1

Counts x10
|

= =

EIder, Doerrer, DiSalvo, Parise, Duyomard, Tarascon, (1992) New Nitride - LiMoN,. Chem. Mater. 4, 928
MSA, Dec 7, 200
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LiMoN» X-7A data capillary, Si(111), A=0.7122A, Ge(111) analyser, 1x7 mm slits, Kevex detector
I I I I

Lirevealed in
Neutron Structure

LiMoO, X-ray

2

counts x 10

LiMoN H4S Vanadium tube, Si(111), A=1.3585, graphite analyser, 20'-40'-40'-20" sollar slits
| | | | | | | | | | | |

o Lo ¢ LiMoO, Neutron

-

3
|
|

1

Counts x10
5
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EIder, Doerrer, DiSalvo, Parise, Duyomard, Tarascon, (1992) New Nitride - LiMoN,. Chem. Mater. 4, 928

MSA, Dec 7, 200




LiMoN» X-7A data capillary, Si(111), A=0.7122A, Ge(111) analyser, 1x7 mm slits, Kevex detector

LiMoO, X-ray

2

counts x 10

LiMoN H4S Vanadium tube, Si(111), A=1.3585, graphite analyser, 20'-40'-40'-20" sollar slits

o Lo ¢ LiMoO, Neutron

-

3
|

1

Counts x10
5

STONY
BRA\SK

STATE UNIVERSITY OF NEW YORK

Lirevealed in
Neutron Structure
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Eider, Doerrer, DiSalvo, Parise, Duyomard, Tarascon, (1992) New Nitride - LiMoN,. Chem. Mater. 4, 928

MSA, Dec 7, 200
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Differences in scattering power for isotopes STONY
(2) Null scattering BR‘\\\\‘K
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Why Neutrons ? glgg\\\\gg

€ Neutrons are electrically neutral & more penetrating than X-rays.
@ tomography, radiography of real rocks and parts
€ Neutrons act like particles
€ waveguides, gavitational effects
@Neutrons act like waves
@Neutrons interact with nuclei & locate atoms more precisely.
¢ Light atoms scatter neutrons as strongly as heavy atoms.
@¢ beoh independent of Z, sinB/A, can be -ve

@ Diffraction, D/H contrast variation, precise positions, PDF
€ Neutrons have a moment, & can determine magnetic structures.

€ Neutrons can study atom dynamics & the forces between atoms.

MSA short course
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Contrast variation: bconerent ~ =4 fm: b2~ 6 fm: bO= bH20~ .3 fm, bP2%~ 17 fm Bresk

H»O Liquid

D>0O

Hydrogenous particles

Less Hydrogenous particles
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Hydrogenous particles

Less Hydrogenous particles
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Mostly deuterated particles
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@ Applications
@ Deriving partial G(r) by choosing appropriate isotopes
LiNio.sMno 50 - site disorder of ALL metals over sites (Not HP)

(a) (b}

Figure 2. (3) A view of the honeycomb ordering found in the ab planes
of LixMnOz along the c-axis. Each 11 atom (in vellow) in the Li'Mn layers

NaFeO, strueture, space group R3m, a = b= 2.8874 A c=142825 A,

Breger, Dupre, Chupas,Lee, Proffen, Parise, Grey (2005), JACS, 127, 7529

MSA, Dec 7, 200
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@ Applications
@ Deriving partial G(r) by choosing appropriate isotopes

Determined experimentally (note
Gy = 4mrlp() — i == [ 0IS(©) — sin @d0  this is G(r) not g(r) and its
neutrons - it can be negative)

G.(r) = —ZZ[E&?— Ty 3*] Arpy Determined from model

Breger, Dupre, Chupas,Lee,Proffen,Parise,Grey (2005), JACS, 127, 7529

MSA, Dec 7, 200 6———_—_—_ e
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@ Applications
@ Deriving partial G(r) by choosing appropriate isotopes

Determined experimentally (note
Gy = 4mrlp() — i == [ 0IS(©) — sin @d0  this is G(r) not g(r) and its
neutrons - it can be negative)

G.(r) = —ZZ[E&?— 7 3*] Arpy Determined from model

Now, if bi and/or b; is zero, the partial
(contributions from atom pair involving i),
disappears. How do we play this game?

Breger, Dupre, Chupas,Lee,Proffen,Parise,Grey (2005), JACS, 127, 7529

MSA, Dec 7, 200 6—————_—_—_—_—_—_—_—_—_—_—_—— e
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@ Applications
@ Deriving partial G(r) by choosing appropriate isotopes

Ni-O

1 G(r) of
7LiNio.sMnos0O2 (blue)

7LiZERONip.5Mno.502 (g reen)

6LiNio.sMno 502 (red)

bris= 2; bri; = -2
bni.ss = 14; bni-s2 =-9

| | I | I | 1 1 | |
0 2 4 6 8 10 12 14 an = -4

Breger, Dupre, Chupas,Lee,Proffen,Parise,Grey (2005), JACS, 127, 7529
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G(r) of
7LiNio.sMnos0O2 (blue)

7LiZERONip.5Mno.502 (g reen)

6LiNio.sMno 502 (red)

bris= 2; bri; = -2
bni.ss = 14; bni-s2 =-9
an = -4

Breger, Dupre, Chupas,Lee,Proffen,Parise,Grey (2005), JACS, 127, 7529
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SUMMARY

» X-rays scattered by * Neutrons scattered by
electrons nucleus

* Cross-section  Cross-sections
increases with # of “random” (function of
electrons isotope)

» Cross-section - Cross-section
decreases with Q independent of Q

[Q=47sin6/\]
* Energy: 0.007 eV to
 Energy: 5,000eV to 0.2 eV

100,000 eV

MSA short course




X-ray scattering vs. neutrc

SUMMARY

More penetrating; larger
samples needed.

Good for light elements
(usually).

Good high “angle” data --
provides more accuracy

Right range for diffusion &
atom vibrations (BIGGER
% change upon interaction)

MSA short course
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Neutrons scattered by
nucleus

Cross-sections
“random” (function of
isotope)

Cross-section
independent of Q

Energy: 0.0071 eV to
0.2eV
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Elastic Scattering Inelastic Scattering

Coherent
Scattering

Incoherent
Scattering

Much of the impact of neutron scattering related to inelastic -
especially phonons and spectroscopic studies

MSA short course
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Types of neutron scattering BRQ\\\\‘K

Elastic Scattering Inelastic Scattering

Coherent Diffraction Phonons, magnons...
Scattering (structural studies) (collective excitations)

periodic and interference
effects

Incoherent QENS Neutron Spectroscopies

Scattering (diffusion, low barrier (atomic vibrations)
motion)

Much of the impact of neutron scattering related to inelastic -
especially phonons and spectroscopic studies

MSA short course




STONY
g P ‘ ( ‘ BRAWSK

STATE UNIVERSITY OF NEW YORK

Addresses questions of the directions and
time-dependence of atomic motions.

periodic, correlated or uncorrelated (diffusion for eg)?
Etc.

Elastic line
< Magnetic scattering—>
Intramolecular modes
Lattice modes “ \ 2
Neutron Compton
scattering
Quasielastic
scattering
A /
Energy | | | | | |
transfer (cm™) 10° 10 107 10° 10* 10°
Timescale (s) 107-10"" 10" 10" 10 10 10°'e

MSA, Dec 7, 200
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STATE UNIVERSITY OF NEW YORK

Addresses questions of the directions and
time-dependence of atomic motions.

periodic, correlated or uncorrelated (diffusion for eg)?
Etc.

Elastic line
<M tic ¢
8 Infrared and Raman
Intramolecular modes
Lattice modes “ \ 2
Neutron Compton
scattering
Quasielastic
scattering
A /
Energy | | | | | |
transfer (cm™) 10° 10 107 10° 10* 10°
Timescale (s) 107-10"" 10" 10" 10 10 10°'e

MSA, Dec 7, 200
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Inelastic scattering in Real & BRE\®K

The neutron changes both energy and momentum when
inelastically scattered by moving nuclei

Sample -

E.=E,-E, Q=ki-k,

These equations define the accessible energy and momentum
transfers: limit of energy transfer = neutron energy and
momentum is conserved; this is a huge range and covers wide
variety of phenomena

MSA short course
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@ Excitation or absorption of one quantum of lattice vibrational
energy (phonon)

@ Various models for atomic motions in liquids and glasses

@ Various models of atomic & molecular translational & rotational
diffusion

Rotational tunneling of molecules
Magnons and other magnetic excitations such as spinons

@ Inelastic neutron scattering reveals details of the shapes of
interaction potentials

MSA short course
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Vibrational spectroscopyv

Complementary to infrared and Raman.
No selection rules:- interaction is with

nucleus not electrons.




Vibrational spectroscopy

Complementary to infrared and Raman.

No selection rules:- interaction is with
nucleus not electrons.

Intensities straightforward to calculate:-

Since the neutron scattering law is DIRECTLY
calculable, computational techniques are the natural
partner to neutron spectroscopy

S(Q,») = observed intensity of transition at energy ®, ¢
= inelastic cross-section,

Q = momentum transfer,

Uo = amplitude of vibration for the mode at energy

®

Ur = total amplitude of motion. 40




Vibrational spectroscopyv

Complementary to infrared and Raman.
No selection rules:- interaction is with

nucleus not electrons.

Intensities straightforward to calculate:-
Since the neutron scattering law is DIRECTLY
calculable, computational techniques are the natural

partner to neutron spectroscopy
$(0,0)=00°U, exp(-Q°U;)
S(Q,») = observed intensity of transition at energy ®, ¢
= inelastic cross-section,
Q = momentum transfer,
Uo = amplitude of vibration for the mode at energy
®
Ur = total amplitude of motion.




Model for Dihydrogen Rotation

|
| Librational Motion

Potential Energy

B =

!
|
I
!
|

oo
W-H, Axis

-@

P-W-P Axis

>/ Barrier Height
First-Excited State
/> "Energy Levels

N Ground-State Wave
. / Function

360° ]
Ground-State Energy Levels

(-B82/82¢ + 1/2 Vacos2¢0 )y =E vy

Ej= BJ? if V2=0

~ Planar Rotation of Molecular Hydrogen

Molecular Hydrogen Complexes

v

TORSIONAL
TRANSITIONS

W=

Energy E/B

(J=2)
TUNNEL
* SPLITTING

1578
1 (788 cm'")
W=1)
[/ ; ! l : :
10 15 20 25
(J=0)
Barrier Height V4 /B

Energy level scheme differs appreciably
from that for 3-D rotation

Deduce chemical binding of H,?




Rotational Tunneling Spectroscopy

i 26 %0

- Barrier Height V (B)
Rotational energy levels for
unrestricted 3D rotation of H,




Rotational Tunneling Spectroscopy

Model for Dihydrogen Rotation

I Librational Motion
o C
RS =
'

- Barrier Height V (B)

Rotational energy levels for
unrestricted 3D rotation of H,




Rotational Tunneling Spectroscopy

Model for Dihydrogen Rotation /

'
I Librational Motion

R e};.‘—’—"‘f“

TORSIONAL
TRANSITIONS

Energy E/B

Barrier Height

? 7 J C / =

G und-State Ene! gyLeI

TUNNEL
SPLITTING

(- B 82829 + 12 Va

1 cos2¢0 )y =E vy
20 30 Ej= BJ? if V=0
- Barrier Height V (B)

Rotational energy levels for
unrestricted 3D rotation of H,

Barrier Height V4 /B

Restricted 2D rotation of H,,




Rotational Tunneling Spectroscopy

Model for Dihydrogen Rotation /

I Librational Motion
. o o C
R =
'

TORSIONAL
TRANSITIONS

Energy E/B

TUNNEL
SPLITTING

- Barrier Height V (B) e ’
Rotational energy levels for
unrestricted 3D rotation of H,

(J=0)
Barrier Height V4 /B

Restricted 2D rotation of H,,

Energies typically range between 0.025- 30 meV
- How do we measure this?




Rotational Tunneling Spectroscopy

/ /
TORSIONAL
TRANSITIONS

TUNNEL
* SPLITTING

(788 cm")
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1
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0
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EnergieS typically range between 0.025- 30 meV
- How do we measure this?

Restricted 2D rotation of H,,
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http://www.pns.anl.gov/intranet
http://www.pns.anl.gov/intranet

It’s not just surface area:

hydrogen uptake in porous systems.

Paul M. Forster
Juergen Eckert
Jong-San Chang
Anthony K. Cheetham

John B. Parise.

— & *
\\'t ’:/'L

International Symposium on Materials Issues in Hydrogen Production and Storage, August 25, 2006




QENS Data

— 5x Loading
—— 4x Loading
—— 3x Loading
—— 2x Loading
—— 1x Loading
—— Unloaded
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Energy Transfer (meV)

P. M. Forster, J. Eckert, A. K. Cheetham




e Neutrons have distinct advantages over all length scales of
interest to earth and material scientists

e TImaging and scattering
e Focusing and detector development (and new sources)
e Tncrease neutrons on sample
e Smaller single crystals/powder samples
e New environmental equipment designs (P, T, s,¢) measurements
e Prospect of
e Work on "real” rocks and cores, slurries, in situ pilot plant studies
e Under variety of conditions

STONY
BRAWSK
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Energy & Wavevector Transfers accessible to Neutron Scattering
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BRA\SK

STATE UNIVERSITY OF NEW YORK
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http://www.mrl.ucsb.edu/~pynn/Lecture_6_Inelastic.pdf
http://www.mrl.ucsb.edu/~pynn/Lecture_6_Inelastic.pdf
http://www.mrl.ucsb.edu/~pynn/Lecture_6_Inelastic.pdf
http://www.mrl.ucsb.edu/~pynn/Lecture_6_Inelastic.pdf

STONY
Future LIRS

@ Smaller samples
@ higher through-put

MSA short course



