SYNTHESIS AND STABILITY OF FERRI-DIOPSIDE

H. G. HUCKENHOLZ,¹ J. FRANK SCHAIRER, AND H. S. YODER, JR. Geophysical Laboratory, Carnegie Institution of Washington, Washington, D.C. 20008

Abstract

The solid solution of ferric iron in Na-free clinopyroxene was studied by crystallizing a series of compositions in the plane CaMgSi₂O₆-CaSiO₃-Fe₂O₃ prepared along the joins CaMgSi₂O₆-CaFe₂³⁺SiO₆, CaMgSi₂O₆-Ca₆Fe₂³⁺Si₃O₁₂, and CaMgSi₂O₆-Fe₂O₃, as well as some additional points in the plane. The stable phases obtained by the method of quenching at 1 atm are pseudowollastonite, hematite, and solid solutions of clinopyroxene, andradite, wollastonite, and magnetite. The maximum solid solution of the ferri-Tschermak's molecule (CaFe₂³⁺SiO₆) in diopside is 33% by weight at 1175°C and that of hematite in diopside, 7% at 1292°C. Andradite is stable only in the subsolidus region; it starts to decompose at 1137° \pm 5°C. Unit-cell parameters of the clinopyroxene and andraditic garnet solid solutions are given. Natural ferri-diopsides are found in igneous rocks that have undergone strongly oxidizing conditions. They contain small amounts of alkalis and have potassic affinities.

INTRODUCTION

The principal end members of the Ca-rich clinopyroxenes in alkali basalts and their derivatives are diopside $(CaMgSi_2O_6),$ hedenbergite $(CaFe^{2+}Si_2O_6),$ acmite $(NaFe^{3+}Si_2O_6)$, jadeite $(NaAlSi_2O_6)$, and Tschermak's "molecules." Compared with the first four, a larger degree of compositional complexity is found in the Tschermak's molecules; various combinations of the main divalent (Ca,Mg,Fe²⁺) and trivalent (Al,Fe³⁺) or even tetravalent (Ti⁴⁺) cations are possible. Such combinations as CaAl₂- ${\rm SiO}_6,\ {\rm CaTiAl_2O_6},\ {\rm and}\ {\rm probably}\ {\rm MgAl_2SiO_6}\ {\rm are}\ {\rm among}\ {\rm the}$ most common that occur in the Ca-rich clinopyroxenes of alkaline rocks. In most of those pyroxenes bearing Tschermak's molecules, a remarkable amount of Fe³⁺ is also present, especially when the Na₂O content is relatively small; that is, most of these clinopyroxenes have much higher amounts of ferric iron than that required to form acmite. This is demonstrated in a plot of Na₂O versus Fe₂O₃ in Figure 1. The presence of a ferri-Tschermak's molecule Ca-Fe³⁺Fe³⁺SiO₆ (abbreviated FTs) is inferred in which Fe³⁺Fe³⁺ occupies the sites of MgSi in the diopside structure. It was the purpose of this study to verify the inferred nature of Fe3+ substitution in diopside and determine its extent at 1 atmosphere.

EXPERIMENTAL PROCEDURES AND RESULTS

A series of compositions in the plane diopside (CaMg Si_2O_6)-wollastonite (CaSiO₃)-hematite (Fe₂O₃) in the quaternary system CaO-MgO-Fe₂O₃-SiO₂ (Fig. 2) were prepared along the joins diopside-ferri-Tschermak's molecule, diopside-andradite, and diopside-hematite, as well as some additional points in this plane. The data in the present investigation were obtained by means of the quenching method, first employed by Shepherd and Rankin (1909), and were collected at 1 atm pressure in the temperature range 1000° to 1500°C. The results are presented in three T-X diagrams and in four isothermal sections of the diwo-hem plane on the basis of 268 critical runs, compiled in Table 1. The products formed in the experiments were

identified by optical determinations and powder X-ray diffraction patterns, as well as by microprobe analyses. Phases encountered in the runs are glass, pseudowollastonite, hematite, and solid solutions of clinopyroxene, wollastonite, magnetite, and andradite, all of which are described briefly below.

Description of phases. Colorless to light-brown glasses are quenched from melts above liquidus temperatures when the bulk compositions of the mixtures have low contents of ferric iron. The color of the glass changes continuously to a darker brown when the iron content in the mixtures is increased. The first appearance of glass, *i.e.* the beginning of melting of a sample completely crystallized at 1050° C, can be determined in most cases by the temperature at which the sample begins to frit. This method of determining the solidus gives, of course, only an approximate location of the beginning of melting in the T-Xdiagrams.

FIG. 2. The quaternary system CaO-MgO-Fe₂O₃-SiO₂ and the plane wollastonite-diopside-(enstatite)-hematite (Fe₂O₃). Abbreviations for phases encountered: FTs, ferri-Tschermak's molecule; Andr, andradite; Kho, khoharite; Wo, wollastonite; Di, diopside; and En, enstatite.

Primary clinopyroxene forms stout, colorless to light-yellow prisms. At lower temperatures mosaic intergrowths of grains are obtained. The color of the clinopyroxenes depends on the amount of the ferri-Tschermak's molecule dissolved in the diopside structure; diopside₁₀₀FTs₀ is colorless, diopside_{80.9}FTs₁₀ light yellow, diopside_{30.9}FTs₂₀ yellow, and diopside_{88.9}FTs_{31.1} brownish yellow. Anomalous birefringence increases in the same order.

Crystals of pseudowollastonite and laths of a wollastonite solid solution crystallize as primary phases in the iron-poor portion of the di-wo-hem plane. The two phases can be distinguished by their optical properties. In the presence of iron, pseudowollastonite is colorless, optically positive, and highly birefringent, whereas the wollastonite solid solution has a slightly yellow color and is optically negative with very low birefringence.

Magnetite, which was identified in reflected light and by microprobe techniques, forms small octahedra in brown glasses when crystallized below the liquidus. Primary hematite occurs as rounded plates; hexagonal outlines are rare. Dark reddish brown absorption colors and strong anomalous birefringence may be detected in very thin plates.

Andradite appears as rounded grains showing very light-yellow colors. Faceted crystals were not observed, because several thorough grindings were necessary during the crystallizing period of at least 50 days at temperatures of 1050° or 1135°C for complete solution of all metastably formed wollastonites in the andradite. This procedure appears to inhibit the formation of completely euhedral crystals. All starting mixtures were treated in this way to accelerate equilibration. As a result, very finegrained intergrowths of phases were formed in polyphase assemblages under subsolidus conditions.

Oxidation state. The plane chosen for study is not strictly ternary mainly because ferrous iron is present in amounts which depend on the temperature and composition. Complex magnetite solid solution appears as a phase in the more iron-rich part of the system at temperatures higher than 1200°C. The composition
 TABLE 1. CRITICAL QUENCHING RESULTS FOR COMPOSITIONS

 ON THE JOIN DIOPSIDE-WOLLASTONITE-HEMATITE

Start- ing ma- terial ^a	т, °С	Time ^b	Products	Remarks
teriala				
			osition: di90w04.2hem5.8	$s(=di_{90}FTs_{10})$
xtl	1370	2 h	glass	
xtl	1365	2 h	cpx_{ss} +glass	small amounts of cpxss
xtl	1300	4 h	$cpx_{ss}+glass$	comp. of cpx_{ss} : $6 \pm 3\%$ FTs
xtl	1280	1 d	$cpx_{ss}+glass$	traces of glass
xtl	1270	1 d	cpxss	cpx _{ss} with voids
xtl	1155	7 d	cpxss	unit-cell parameters determined unit-cell parameters determined
xtl	1050	27 d	cpxss	unit-cen parameters determined
		Comr	osition: disowos,4hem11.	$_{6}(=di_{80}FT_{S20})$
xtl	1345	2 h	glass	.,
xtl	1340	2 h	cpxss+glass	
xtl	1240	19 h	cpxss+glass	comp. of cpx _{ss} : $17 \pm 2\%$ FTs
xtl	1200	16 d	cpxss	
xtl	1155	7 d	cpxss	unit-cell parameters determined
xtl	1050	45 d	cpxss	unit-cell parameters determined
xtl	900	54 d	cpx_{ss} +hem	
		~		
			osition: di75w010.5hem14	$f_{5}(=d_{175}F^{1}S_{25})$
xtl	1335	2 h	glass	small amounts of m
xtl	1330	3 h	cpx_{ss} +glass	small amounts of cpx _{ss}
xtl	1225	7 d	$cpx_{ss}+glass$	comp. of cpx_{ss} : $21 \pm 2\%$ FTs
xtl	1200	12 d 12 d	cpxss	traces of glass unit-cell parameters determined
xtl	1155 1125	12 d 12 d	cpx _{ss}	unit ten parameters determined
xtl xtl	1125	12 d 12 d	cpx_{ss} cpx_{ss} +hem	
xtl xtl	1050	12 d 12 d	cpx_{ss} +hem	very fine-grained hem
хu	1050	12 U	CDASS Helli	very line granied hem
		Compo	sition: diss. 9w013.1hem18	$d = dias PTs_{31,1}$
xtl	1320	2 h	glass	
xtl	1315	2 h	cpx _{ss} +glass	rare cpx ₂₅
xtl	1200	16 d	$cpx_{ss}+glass$	comp. of cpx_{ss} : $24 \pm 2\%$ FTs
xtl	1170	7 d	cpx_s	1 1 00 _ 70
xtl	1155	7 d	cpxss	unit-cell parameters determined
xtl	1150	27 d	cpxss	
xtl	1140	21 d	cpx_{ss} +hem	very rare hem
xtl	1050	67 d	cpx_{ss} +hem	
		~		
			position: di65w014.7hem20	$a_{3} = d_{165} F T S_{35}$
xtl	1310	3 h	glass	
xtl	1305	3 h	$cpx_{ss} + glass$	rare cpx _{ss}
xtl	1225	7 d	cpx _{ss} +hem+glass	traces of glass and hem
xtl	$1200 \\ 1175$	12 d 10 d	cpx_{ss} + hem + glass cpx_{ss} + hem + glass	glass in very small amounts
xtl	1175	27 d	cpx_{ss} + hem	glass in very sman amounts
			cpx_{ss} + hem	
xtl			cpass nem	
xtl	1050	12 d	cnx _{aa} +hem+andr _{ee}	traces of andres
			cpx_{ss} + hem + and r_{ss}	traces of $\operatorname{andr}_{\operatorname{ss}}$
xtl	1050	12 d 54 d		
xtl	1050	12 d 54 d	cpx _{ss} +hem+andr _{ss} tion: di _{59.3} wo _{17.2} hem _{28.5} glass	
xtl xtl	1050 900	12 d 54 d Composi	tion: $di_{59,3}wo_{17,2}hem_{28,5}$ glass $cpx_{ss}+glass$	
xtl xtl	1050 900 1295	12 d 54 d Composi 3 h	tion: dis9.3w017.2hem23.5 glass	
xtl xtl xtl xtl	1050 900 1295 1290	12 d 54 d Composi 3 h 4 h	tion: $di_{59,3}wo_{17,2}hem_{28,5}$ glass $cpx_{ss}+glass$	
xtl xtl xtl xtl xtl	1050 900 1295 1290 1270	12 d 54 d Composi 3 h 4 h 1 d	tion: di59.3W017.2hem23.5 glass cpxss+glass cpxss+mtss+glass	$(=di_{\$9,3}FT_{\$40,7})$
xtl xtl xtl xtl xtl xtl xtl	1050 900 1295 1290 1270 1250	12 d 54 d Composi 3 h 4 h 1 d 2 d	$\begin{array}{l} \text{tion: } d_{is9, sw017, 2}\text{hem}_{23,6}\\ glass\\ cpx_{ss}+glass\\ cpx_{ss}+mt_{ss}+glass\\ cpx_{ss}+mt_{ss}+glass\\ cpx_{ss}+mt_{ss}+glass\\ cpx_{ss}+mt_{ss}+hem \end{array}$	
xtl xtl xtl xtl xtl xtl xtl xtl xtl	1050 900 1295 1290 1270 1250 1225 1220	12 d 54 d Composi 3 h 4 h 1 d 2 d 2 d 4 d	$\begin{array}{l} \text{tion: } d_{is9,8} wo_{17,2} hem_{28,6} \\ glass \\ cpx_{ss}+glass \\ cpx_{ss}+mt_{ss}+glass \\ cpx_{ss}+mt_{ss}+glass \\ cpx_{ss}+mt_{ss}+glass \\ cpx_{ss}+mt_{ss}+hem \\ +glass \end{array}$	$(=di_{89,3}FT_{840,7})$
xtl xtl xtl xtl xtl xtl xtl xtl xtl xtl	1050 900 1295 1290 1270 1250 1225 1220 1215	12 d 54 d Composi 3 h 4 h 1 d 2 d 2 d 2 d 4 d 5 d	$\begin{array}{l} \text{tion: } d_{i\$9,\$} wo_{17,2} \text{hem}_{28,6} \\ \text{glass} \\ cpx_{ss} + glass \\ cpx_{ss} + mt_{ss} + glass \\ cpx_{ss} + mt_{ss} + glass \\ cpx_{ss} + mt_{ss} + hem \\ + glass \\ cpx_{ss} + hem + glass \end{array}$	(=di\$9,3FT\$40,7) hem in small amounts
xtl xtl xtl xtl xtl xtl xtl xtl xtl xtl	1050 900 1295 1290 1270 1250 1225 1220 1215 1175	12 d 54 d Composi 3 h 4 h 1 d 2 d 2 d 2 d 4 d 5 d 7 d	$\begin{array}{l} \text{tion: } d_{i\$9,\$} wo_{17,2} \text{hem}_{28,6} \\ glass \\ cpx_{ss} + glass \\ cpx_{ss} + mt_{ss} + hem \\ + glass \\ cpx_{ss} + hem + glass \\ cpx_{ss} + hem + glass \\ cpx_{ss} + hem + glass \\ \end{array}$	$(=di_{89,3}FT_{840,7})$
xtl xtl xtl xtl xtl xtl xtl xtl xtl xtl	1050 900 1295 1290 1270 1255 1220 1215 1175 1150	12 d 54 d Composi 3 h 4 h 1 d 2 d 2 d 4 d 5 d 7 d 7 d	$\begin{array}{l} \text{tion: } d_{is9, s} wo_{17, 2} hem_{23, 6} \\ glass \\ cpx_{ss} + glass \\ cpx_{ss} + mt_{ss} + glass \\ cpx_{ss} + mt_{ss} + glass \\ cpx_{ss} + mt_{ss} + has \\ cpx_{ss} + hem + glass \\ cpx_{ss} + hem \\ \end{array}$	(=di\$9,3FTS40.7) hem in small amounts very small amounts of glass
xtl xtl xtl xtl xtl xtl xtl xtl xtl xtl	1050 900 1295 1290 1270 1250 1225 1220 1215 1175 1150 1140	12 d 54 d Composi 3 h 1 d 2 d 2 d 4 d 5 d 7 d 7 d 21 d	$\begin{array}{l} \text{tion: } d_{i\$9,\$} wo_{17,2} \text{hem}_{28,6} \\ \text{glass} \\ cpx_{ss} + glass \\ cpx_{ss} + mt_{ss} + glass \\ cpx_{ss} + mt_{ss} + glass \\ cpx_{ss} + mt_{ss} + glass \\ cpx_{ss} + hem + andr_{ss} \\ \end{array}$	(=di\$9,3FT\$40,7) hem in small amounts very small amounts of glass very rare andr _{ss}
xtl xtl xtl xtl xtl xtl xtl xtl xtl xtl	1050 900 1295 1290 1270 1255 1225 1220 1215 1175 1150 1140 1100	12 d 54 d Composi 3 h 4 h 1 d 2 d 2 d 4 d 5 d 7 d 7 d 21 d 63 d	$\begin{array}{l} \text{tion: } d_{i\$9,\$} wo_{17,2} \text{hem}_{28,6} \\ \text{glass} \\ \text{cpx}_{ss} + \text{glass} \\ \text{cpx}_{ss} + \text{mt}_{ss} + \text{glass} \\ \text{cpx}_{ss} + \text{mt}_{ss} + \text{glass} \\ \text{cpx}_{ss} + \text{mt}_{ss} + \text{glass} \\ \text{cpx}_{ss} + \text{hem} + \text{m} \\ \text{cpx}_{ss} + \text{m} \\ \text{cpx}_{$	(=dis9,3FTS40,7) hem in small amounts very small amounts of glass very rare andr _{ss} rare andr _{ss}
xtl xtl xtl xtl xtl xtl xtl xtl xtl xtl	1050 900 1295 1290 1270 1250 1225 1220 1215 1175 1150 1140	12 d 54 d Composi 3 h 1 d 2 d 2 d 4 d 5 d 7 d 7 d 21 d	$\begin{array}{l} \text{tion: } d_{i\$9,\$} wo_{17,2} \text{hem}_{28,6} \\ \text{glass} \\ cpx_{ss} + glass \\ cpx_{ss} + mt_{ss} + glass \\ cpx_{ss} + mt_{ss} + glass \\ cpx_{ss} + mt_{ss} + glass \\ cpx_{ss} + hem + andr_{ss} \\ \end{array}$	(=di\$9,3FTS40,7) hem in small amounts very small amounts of glass very rare andr ₈₈ rare andr ₈₈ unit-cell parameters of cpx ₈ ;
xtl xtl xtl xtl xtl xtl xtl xtl xtl xtl	1050 900 1295 1290 1270 1250 1225 1220 1215 1175 1150 1140 11000 1050	12 d 54 d Composi 3 h 4 h 1 d 2 d 4 d 5 d 7 d 7 d 21 d 63 d 45 d	tion: dis9.3w017.2hem23.6 glass cpxss+glass cpxss+mtss+glass cpxss+mtss+glass cpxss+mtss+glass cpxss+mtss+glass cpxss+hem+glass cpxss+hem+glass cpxss+hem+glass cpxss+hem+andrss cpxss+hem+andrss cpxss+hem+andrss	(=dis9.3FTS40.7) hem in small amounts very small amounts of glass very rare andr _{ss} rare andr _{ss} unit-cell parameters of cpx _s ; determined
xtl xtl xtl xtl xtl xtl xtl xtl xtl xtl	1050 900 1295 1290 1270 1255 1225 1220 1215 1175 1150 1140 1100	12 d 54 d Composi 3 h 4 h 1 d 2 d 2 d 4 d 5 d 7 d 7 d 21 d 63 d	$\begin{array}{l} \text{tion: } d_{i\$9,\$} wo_{17,2} \text{hem}_{28,6} \\ \text{glass} \\ \text{cpx}_{ss} + \text{glass} \\ \text{cpx}_{ss} + \text{mt}_{ss} + \text{glass} \\ \text{cpx}_{ss} + \text{mt}_{ss} + \text{glass} \\ \text{cpx}_{ss} + \text{mt}_{ss} + \text{glass} \\ \text{cpx}_{ss} + \text{hem} + \text{m} \\ \text{cpx}_{ss} + \text{m} \\ \text{cpx}_{$	(=di\$9,3FT\$40,7) hem in small amounts very small amounts of glass very rare andr ₈₅ rare andr ₈₅ unit-cell parameters of cpx ₈ ;
xtl xtl xtl xtl xtl xtl xtl xtl xtl xtl	1050 900 1295 1290 1270 1250 1225 1220 1215 1175 1150 1140 11000 1050	12 d 54 d Composi 3 h 4 h 1 d 2 d 2 d 2 d 4 d 7 d 7 d 21 d 63 d 63 d 45 d	tion: dis9.3w017.2hem23.5 glass cpxss+glass cpxss+mtss+glass cpxss+mtss+glass cpxss+mtss+glass cpxss+mtss+glass cpxss+hem+glass cpxss+hem+glass cpxss+hem+glass cpxss+hem+andrss cpxss+hem+andrss cpxss+hem+andrss	(=di _{\$9,3} FTs _{40,7}) hem in small amounts very small amounts of glass very rare andr _{ss} rare andr _{ss} unit-cell parameters of cpx _{st} determined very rare andr _{ss}
xtl xtl xtl xtl xtl xtl xtl xtl xtl xtl	1050 900 1295 1290 1250 1255 1220 1215 1175 1150 1140 1100 1050 900	12 d 54 d Composi 3 h 4 h 1 d 2 d 2 d 4 d 5 d 7 d 21 d 63 d 45 d 54 d Compo	tion: dis9.3w017.2hem23.5 glass cpxss+glass cpxss+mtss+glass cpxss+mtss+glass cpxss+mtss+glass cpxss+mtss+glass cpxss+hem+glass cpxss+hem+glass cpxss+hem+glass cpxss+hem+andrss cpxss+hem+andrss cpxss+hem+andrss cpxss+hem+andrss cpxss+hem+andrss cpxss+hem+andrss cpxss+hem+andrss	(=di _{\$9,3} FTs _{40,7}) hem in small amounts very small amounts of glass very rare andr _{ss} rare andr _{ss} unit-cell parameters of cpx _{st} determined very rare andr _{ss}
xtl xtl xtl xtl xtl xtl xtl xtl xtl xtl	1050 900 1295 1290 1270 1250 1225 1220 1215 1150 1140 1050 900 \$ 1295	12 d 54 d Composi 3 h 4 h 1 d 2 d 2 d 2 d 2 d 4 d 5 d 7 d 7 d 21 d 63 d 45 d 63 d 45 d	tion: $d_{is0,sw017,2hem_{28,6}}$ glass $cpx_{ss}+glass$ $cpx_{ss}+mt_{ss}+glass$ $cpx_{ss}+mt_{ss}+glass$ $cpx_{ss}+mt_{ss}+glass$ $cpx_{ss}+mt_{ss}+hem$ +glass $cpx_{ss}+hem+glass$ $cpx_{ss}+hem+glass$ $cpx_{ss}+hem+andr_{ss}$ $cpx_{ss}+hem+andr_{ss}$ $cpx_{ss}+hem+andr_{ss}$ $cpx_{ss}+hem+andr_{ss}$ $cpx_{ss}+hem+andr_{ss}$ $cpx_{ss}+hem+andr_{ss}$ $cpx_{ss}+hem+andr_{ss}$ $cpx_{ss}+hem+andr_{ss}$ $cpx_{ss}+hem+andr_{ss}$ $cpx_{ss}+hem+andr_{ss}$ $cpx_{ss}+hem+andr_{ss}$ $cpx_{ss}+hem+andr_{ss}$ $cpx_{ss}+hem+andr_{ss}$ $cpx_{ss}+hem+andr_{ss}$	(=di\$9.3FT\$40.7) hem in small amounts very small amounts of glass very rare andr ₅₈ rare andr ₅₈ unit-cell parameters of cpx ₅₄ determined very rare andr ₅₈ (=di\$5.6FT\$44.5)
xtl xtl xtl xtl xtl xtl xtl xtl xtl xtl	1050 900 1295 1290 1270 1250 1225 1220 1215 1175 1150 1140 1100 1050 900 \$ 1295 \$ 1290	12 d 54 d Composi 3 h 4 h 1 d 2 d 2 d 4 d 4 d 5 d 7 d 2 1 d 63 d 45 d 54 d Compo 2 h 2 h	tion: $d_{is0, s}wo_{17, 2}hem_{23, 6}$ glass $cpx_{ss}+glass$ $cpx_{ss}+mt_{ss}+glass$ $cpx_{ss}+mt_{ss}+glass$ $cpx_{ss}+mt_{ss}+glass$ $cpx_{ss}+mt_{ss}+hem$ +glass $cpx_{ss}+hem+glass$ $cpx_{ss}+hem+aldr_{ss}$ $cpx_{ss}+hem+andr_{ss}$ $cpx_{ss}+hem+andr_{ss}$ $cpx_{ss}+hem+andr_{ss}$ $cpx_{ss}+hem+andr_{ss}$ $cpx_{ss}+hem+andr_{ss}$ $cpx_{ss}+hem+andr_{ss}$ $cpx_{ss}+hem+andr_{ss}$ $cpx_{ss}+hem+andr_{ss}$ $cpx_{ss}+hem+andr_{ss}$ $cpx_{ss}+hem+andr_{ss}$ $cpx_{ss}+hem+andr_{ss}$ $cpx_{ss}+hem+andr_{ss}$	(=di _{\$9,3} FTs _{40,7}) hem in small amounts very small amounts of glass very rare andr _{ss} rare andr _{ss} unit-cell parameters of cpx _{st} determined very rare andr _{ss}
xtl xtl xtl xtl xtl xtl xtl xtl xtl xtl	1050 900 1295 1290 1270 1250 1255 1220 1215 1175 1175 1175 1175 900 900 \$ 1295 \$ 1290 \$ 1290 \$ 1200	12 d 54 d Composi 3 h 4 h 1 d 2 d 2 d 4 d 5 d 7 d 21 d 63 d 45 d 54 d Compo 2 h 2 h 2 h 1 d	tion: $d_{is0,s}wo_{17,2}hem_{23,6}$ glass $cpx_{ss}+glass$ $cpx_{ss}+mt_{ss}+glass$ $cpx_{ss}+mt_{ss}+glass$ $cpx_{ss}+mt_{ss}+glass$ $cpx_{ss}+hmt_{ss}+hem$ +glass $cpx_{ss}+hem+glass$ $cpx_{ss}+hem+andr_{ss}$ $cpx_{ss}+hem+andr_{ss}$ $cpx_{ss}+hem+andr_{ss}$ $cpx_{ss}+hem+andr_{ss}$ $cpx_{ss}+hem+andr_{ss}$ $cpx_{ss}+hem+andr_{ss}$ $cpx_{ss}+hem+andr_{ss}$ $cpx_{ss}+hem+andr_{ss}$ $cpx_{ss}+hem+andr_{ss}$ $cpx_{ss}+hem+andr_{ss}$ $cpx_{ss}+hem+andr_{ss}$ $cpx_{ss}+hem+andr_{ss}$	(=dis0.3FTS40.7) hem in small amounts very small amounts of glass very rare andr _{ss} rare andr _{ss} unit-cell parameters of cpx _s ; determined very rare andr _{ss} (=dis0.8FTS44.8) rare mt _{ss}
xtl xtl xtl xtl xtl xtl xtl xtl xtl xtl	1050 900 1295 1290 1270 1250 1255 1220 1215 1175 1175 1175 1175 900 900 \$ 1295 \$ 1290 \$ 1290 \$ 1200	12 d 54 d Composi 3 h 4 h 1 d 2 d 2 d 4 d 4 d 5 d 7 d 2 1 d 63 d 45 d 54 d Compo 2 h 2 h	$ \begin{array}{l} \text{tion: } d_{i\$0,\$} wo_{17,2} \text{hem}_{28,6} \\ \text{glass} \\ cpx_{ss} + mt_{ss} + glass \\ cpx_{ss} + hem + glass \\ cpx_{ss} + hem + glass \\ cpx_{ss} + hem + andr_{ss} \\ cpx_{ss} + bem + $	(=di\$9,3FT\$40,7) hem in small amounts very small amounts of glass very rare andr ₅₈ rare andr ₅₈ unit-cell parameters of cpx ₅₁ determined very rare andr ₅₈ (=di\$5,6FT\$44,5)
xtl xtl xtl xtl xtl xtl xtl xtl xtl xtl	1050 900 1295 1290 1270 1250 1255 1220 1215 1175 1175 1175 1175 900 900 \$ 1295 \$ 1290 \$ 1290 \$ 1200	12 d 54 d Composi 3 h 4 h 1 d 2 d 2 d 4 d 5 d 7 d 21 d 63 d 45 d 54 d Compo 2 h 2 h 2 h 1 d	tion: $d_{is0,s}wo_{17,2}hem_{23,6}$ glass $cpx_{ss}+glass$ $cpx_{ss}+mt_{ss}+glass$ $cpx_{ss}+mt_{ss}+glass$ $cpx_{ss}+mt_{ss}+glass$ $cpx_{ss}+hmt_{ss}+hem$ +glass $cpx_{ss}+hem+glass$ $cpx_{ss}+hem+andr_{ss}$ $cpx_{ss}+hem+andr_{ss}$ $cpx_{ss}+hem+andr_{ss}$ $cpx_{ss}+hem+andr_{ss}$ $cpx_{ss}+hem+andr_{ss}$ $cpx_{ss}+hem+andr_{ss}$ $cpx_{ss}+hem+andr_{ss}$ $cpx_{ss}+hem+andr_{ss}$ $cpx_{ss}+hem+andr_{ss}$ $cpx_{ss}+hem+andr_{ss}$ $cpx_{ss}+hem+andr_{ss}$ $cpx_{ss}+hem+andr_{ss}$	(=dis9.3FTS40.7) hem in small amounts very small amounts of glass very rare andr _{s8} rare andr _{s8} unit-cell parameters of cpx ₈ ; determined very rare andr _{s8} (=dis8.8FTS44.8) rare mt ₈₈
xtl xtl xtl xtl xtl xtl xtl xtl xtl xtl	1050 900 1295 1290 1270 1250 1255 1220 1215 1175 1175 1175 1175 900 900 \$ 1295 \$ 1290 \$ 1290 \$ 1200	12 d 54 d Composi 3 h 4 h 1 d 2 d 2 d 4 d 5 d 7 d 21 d 63 d 45 d 54 d 54 d Compo 2 h 2 h 1 d 2 d	tion: dis9.3w017.2hem23.6 glass cpxss+glass cpxss+mtss+glass cpxss+mtss+glass cpxss+mtss+glass cpxss+mtss+glass cpxss+hem+glass cpxss+hem+glass cpxss+hem+andrss cpxss+hem+andrss cpxss+hem+andrss cpxss+hem+andrss cpxss+hem+andrss cpxss+hem+andrss cpxss+hem+andrss cpxss+hem+andrss cpxss+hem+andrss dass cpxss+hem+andrss cpxss+hem+andrss cpxss+hem+andrss dass mtss+glass cpxss+hem+glass cpxs+hem+glass cpxss+hem+glass cpxs+glass	(=dis9.3FTS40.7) hem in small amounts very small amounts of glass very rare andr ₈₈ rare andr ₈₈ unit-cell parameters of cpx ₈ , determined very rare andr ₈₈ (=dis8.3FTS44.5) rare mt ₈₈ wo ₈₈ in traces
xtl xtl xtl xtl xtl xtl xtl xtl xtl xtl	1050 900 1295 1290 1270 1250 1225 1175 1150 1140 1050 900 \$ 1295 \$ 1290 \$ 1290 \$ 1295 \$ 1290 \$ 1295 \$ 1290 \$ 1295	$\begin{array}{c} 12 \ d\\ 54 \ d\\ \end{array}$	tion: $d_{is0,s}wo_{17,2}hem_{23,6}$ glass $cpx_{ss}+glass$ $cpx_{ss}+mt_{ss}+glass$ $cpx_{ss}+mt_{ss}+glass$ $cpx_{ss}+mt_{ss}+glass$ $cpx_{ss}+hms_{ss}+glass$ $cpx_{ss}+hem+glass$ $cpx_{ss}+hem+glass$ $cpx_{ss}+hem+andr_{ss}$ $cpx_{ss}+hem+andr_{ss}$ $cpx_{ss}+hem+andr_{ss}$ $cpx_{ss}+hem+andr_{ss}$ $cpx_{ss}+hem+andr_{ss}$ $cpx_{ss}+hem+glass$ $cpx_{ss}+hem+glass$ $cpx_{ss}+hem+glass$ $cpx_{ss}+hem+glass$ $cpx_{ss}+hem+glass$ $cpx_{ss}+hem+glass$ $cpx_{ss}+hem+glass$ $cpx_{ss}+hem+glass$ $cpx_{ss}+hem+glass$ $cpx_{ss}+hem+glass$ $cpx_{ss}+hem+glass$ $cpx_{ss}+hem+glass$ $cpx_{ss}+hem+glass$ $cpx_{ss}+hem+glass$ $cpx_{ss}+hem+glass$ $cpx_{ss}+hem+glass$	(=dis9.3FTS40.7) hem in small amounts very small amounts of glass very rare andr ₈₈ rare andr ₈₈ unit-cell parameters of cpx ₈ , determined very rare andr ₈₈ (=dis8.3FTS44.5) rare mt ₈₈ wo ₈₈ in traces
xtl xtl xtl xtl xtl xtl xtl xtl xtl xtl	1050 900 1295 1290 1270 1250 1225 1220 1215 1175 1150 1140 1100 1050 900 \$ 1295 \$ 1290 \$ 1290 \$ 1290 \$ 1295 \$ 1290 1175	12 d 54 d Composi 3 h 1 d 2 d 2 d 4 d 4 d 4 d 4 d 4 d 4 d 4 d 5 d 7 d 7 d 2 1 d 63 d 45 d 54 d 54 d 2 h 1 d 2 d 2 h 7 d 7 d 2 h 1 d 2 d 2 d 2 d 2 d 4 h 5 d 4 h 5 d 4 h 6 h 6 h 6 h 6 h 7 d 7 d 2 d 2 d 2 d 2 d 2 d 2 h 6	tion: dis9,3w017,2hem23,6 glass cpxss+glass cpxss+mtss+glass cpxss+mtss+glass cpxss+mtss+glass cpxss+mtss+glass cpxss+hem+glass cpxss+hem+glass cpxss+hem+aldrss cpxss+hem+andrss cpxss+andrss cpxss+hem+andrss cpxss+andrss cpxss+andrss cpxss+bm+andrss cpxs+bm+andrss	(=dis9.3FTS40.7) hem in small amounts very small amounts of glass very rare andr ₈₈ rare andr ₈₈ unit-cell parameters of cpx ₈ , determined very rare andr ₈₈ (=dis8.3FTS44.5) rare mt ₈₈ wo ₈₈ in traces
xtl xtl xtl xtl xtl xtl xtl xtl xtl xtl	1050 900 1295 1290 1270 1250 1225 1220 1215 1175 1150 1140 1100 1050 900 \$ 1295 \$ 1290 \$ 1290 \$ 1295 \$ 1290 \$ 1295 \$ 1290 100 100 100 100 100 100 100 100 100 1	12 d 54 d Composi 3 h 1 d 2 d 4 d 4 d 5 d 7 d 2 l 4 d 6 3 d 54 d Compo 2 h 2 h 1 d 2 d 4 5 d 7 d 2 l 4 5 d 7 d 2 l 4 5 d 7 d 2 l 4 5 d 7 d 2 d 4 5 d 7 d 7 d 7 d 2 d 4 5 d 7	tion: dis0.3w017.2hem23.5 glass cpxss+flass cpxss+flass cpxss+mtss+glass cpxss+mtss+glass cpxss+mtss+glass cpxss+hetss+glass cpxss+hem+glass cpxss+hem+glass cpxss+hem+andrss cpxss+hem+andrss cpxss+hem+andrss cpxss+hem+andrss cpxss+hem+andrss cpxss+hem+andrss cpxss+hem+andrss cpxss+hem+andrss cpxss+hem+andrss cpxss+hem+andrss sition: dis0.5w019hem25.5 glass mtss+glass cpxss+hem+glass cpxss+hem+glass cpxss+hem+glass cpxss+hem+glass cpxss+hem+glass cpxss+hem+glass cpxss+hem+glass cpxss+hem+glass cpxss+hem+glass cpxss+hem+glass cpxss+hem+glass cpxss+hem+glass cpxss+hem+glass cpxss+hem+glass cpxss+hem+glass cpxss+hem+glass cpxss+hem+glass	(=dis9.3FTS40.7) hem in small amounts very small amounts of glass very rare andr ₈₈ rare andr ₈₈ unit-cell parameters of cpx ₈ , determined very rare andr ₈₈ (=dis8.3FTS44.5) rare mt ₈₈ wo ₈₈ in traces
xtl xtl xtl xtl xtl xtl xtl xtl xtl xtl	1050 900 1295 1290 1270 1250 1225 1220 1215 1175 1150 1140 1100 1050 900 \$ 1295 \$ 1290 \$ 1290 \$ 1290 \$ 1295 \$ 1290 1175	12 d 54 d Composi 3 h 1 d 2 d 2 d 4 d 4 d 4 d 4 d 4 d 4 d 4 d 5 d 7 d 7 d 2 1 d 63 d 45 d 54 d 54 d 2 h 1 d 2 d 2 h 7 d 7 d 2 h 1 d 2 d 2 d 2 d 2 d 4 h 5 d 4 h 5 d 4 h 6 h 6 h 6 h 6 h 7 d 7 d 2 d 2 d 2 d 2 d 2 d 2 h 6	tion: dis9,3w017,2hem23,6 glass cpxss+glass cpxss+mtss+glass cpxss+mtss+glass cpxss+mtss+glass cpxss+mtss+glass cpxss+hem+glass cpxss+hem+glass cpxss+hem+aldrss cpxss+hem+andrss cpxss+andrss cpxss+hem+andrss cpxss+andrss cpxss+andrss cpxss+bm+andrss cpxs+bm+andrss	$(=di_{$9,3}FTs_{$40,7})$ hem in small amounts very small amounts of glass very rare andr _{\$8} rare andr _{\$8} unit-cell parameters of cpx _{\$1} determined very rare andr _{\$8} $(=di_{$8,5}FTs_{$44,5})$ rare mt _{\$8} wo _{\$8} in traces $s(=di_{$1.6}FTs_{$48,4})$
xtl xtl xtl xtl xtl xtl xtl xtl xtl xtl	1050 900 1295 1290 1270 1250 1225 1220 1215 1175 1150 1140 1100 1050 900 \$ 1295 \$ 1290 \$ 1290 \$ 1295 \$ 1290 \$ 1295 \$ 1290 100 100 100 100 100 100 100 100 100 1	12 d 54 d Composi 3 h 1 d 2 d 4 d 4 d 5 d 7 d 2 l 4 d 6 3 d 54 d Compo 2 h 2 h 1 d 2 d 4 5 d 7 d 2 l 4 5 d 7 d 2 l 4 5 d 7 d 2 l 4 5 d 7 d 2 d 4 5 d 7 d 7 d 7 d 2 d 4 5 d 7	tion: dis0.3w017.2hem23.5 glass cpxss+flass cpxss+flass cpxss+mtss+flass cpxss+mtss+flass cpxss+mtss+flass cpxss+hetss+flass cpxss+hem+glass cpxss+hem+glass cpxss+hem+andrss cpxss+hem+andrss cpxss+hem+andrss cpxss+hem+andrss cpxss+hem+andrss cpxss+hem+andrss cpxss+hem+andrss cpxss+hem+andrss cpxss+hem+andrss cpxss+hem+andrss cpxss+hem+andrss sition: dis0.5w019hem25.5 glass cpxss+hem+glass cpxss+hem+glass cpxss+hem+glass cpxss+hem+glass cpxss+hem+glass cpxss+hem+glass cpxss+hem+glass cpxss+hem+glass cpxss+hem+glass cpxss+hem+glass cpxss+hem+glass cpxss+hem+glass cpxss+hem+glass cpxss+hem+glass cpxss+hem+glass cpxss+hem+glass cpxss+hem+glass	(=dis0.3FTS40.7) hem in small amounts very small amounts of glass very rare andrss rare andrss unit-cell parameters of cpxs; determined very rare andrss (=dis5.6FTS44.5) rare mtss woss in traces s(=dis1.6FTS48.4) comp. of mtss:
xtl xtl xtl xtl xtl xtl xtl xtl xtl xtl	1050 900 1295 1290 1270 1250 1225 1175 1150 1140 100 1050 900 \$ 1295 \$ 1290 \$ 1200 \$ 1295 \$ 1290 \$ 1200 \$ 1295 \$ 1290 \$ 1290 100 100 100 100 100 100 100 100 100 1	12 d 54 d Composi 3 h 4 h 1 d 2 d 2 d 4 d 3 d 7 d 7 d 21 d 63 d 45 d 63 d 45 d 63 d 45 d 2 h 1 d 2 d 2 h 4 h 1 d 2 d 4 h 4 h 1 d 2 d 4 h 4 h 4 h 4 h 4 h 4 h 4 h 4 h 4 h 4 h	tion: dis0, 3w017, 2hem23,6 glass cpxss+mtss+glass cpxss+mtss+glass cpxss+mtss+glass cpxss+mtss+glass cpxss+mtss+glass cpxss+hem+glass cpxss+hem+glass cpxss+hem+andrss cpxs+bm+andrss cpxs+andrss cpxs+bm+andrss cpxs+andrss cpx+andrs	(=dis0.3FTS40.7) hem in small amounts very small amounts of glass very rare andrss rare andrss unit-cell parameters of cpxss determined very rare andrss (=dis5.6FTS44.5) rare mtss woss in traces s(=dis1.6FTS48.4) comp. of mtss:

SYNTHESIS OF FERRI-DIOPSIDE

TABLE 1—(Continued)

TABLE 1—(Continued)

Start- ing ma- terialª	Т, ℃	Time	^b Products	Remarks	Start- ing ma- terial ^a	т, °С	Time ^b	Products	Remarks
xtl	1215	7 d	cpxss+mtss+hem	And Annual and Annual Annua	xtl	1200) 14 d	ope here	
xtl	1200	7 d	+glass		xtl xtl	1160 1155) 14 d	cpx_{ss} + hem + wo_{ss} cpx_{ss} + hem + wo_{ss} cpx_{ss} + hem + wo_{ss}	
xtl	1175	2 d	+glass cpx_{ss} + hem + wo_{ss}		xtl	1150		$+andr_{ss}$ $cpx_{ss}+hem+andr_{ss}$	andr _{ss} in very rare amounts
xtl xtl	1150 1050		+glass cpx _{ss} +hem+andr _{ss}		xtl glass	1135 1050	7 d	cpx_{ss} + hem + and r_{ss} cpx_{ss} + hem + and r_{ss} cpx_{ss} + hem + and r_{ss}	and rss $a = 12.054 \pm 0.004$ Å and rss $a = 12.054 \pm 0.004$ Å
хu	1030	27 0	${\rm cpx}_{\rm ss}{\rm +hem}{\rm +andr}_{\rm ss}$				Com	position: diowo42.1hem5	
		Com	position: di43wo34hem33	(=di ₄₃ FTs ₅₇)	glass	1390		glass	$7.9(=010F I S_{100})$
xtl	1350	2 h			glass	1380		hem+glass	
xtl xtl	$1345 \\ 1340$	2 h 2 h	mt_{ss} +glass	very rare mt _{ss}	xtl	1300			
xtl	1340		mt_{ss} +glass mt_{ss} +glass	comp. of mt _{ss} :	xtl	1290 1275		hem+pwo+glass	small amounts of pwo and glas
	2000	0 11	*	$(Mg_{0,31}Ca_{0,03}Fe_{2,66})O_4$	xtl xtl	1160		hem+pwo hem+pwo	
xtl	1250	2 d	$mt_{ss}+glass$	traces of hem and cpx _{ss}	xtl	1150		$hem + pwo + andr_{ss}$	
xtl	1235	3 d	$cpx_{ss}+mt_{ss}+hem$	1 55	xtl	1145		hem+pwo+andrss	
			+glass		xtl	1135		hem+andrss	and $r_{ss} a = 12.052 \pm 0.004 \text{ Å}$
xtl	1225	7 d	$cpx_{ss}+mt_{ss}+hem$ +glass		glass	1050		$hem + and r_{ss}$	and rss $a\!=\!12.055\!\pm\!0.004$ Å
xtl xtl	$1200 \\ 1160$	7 d 7 d	cpx_{ss} + hem + glass	mt _{ss} and wo _{ss} in traces		1200	Comp	osition: di90w06.9 hem3.	1 (=di90 andr10)
xtl	1150	14 d	cpx_{ss} + hem + wo_{ss} cpx_{ss} + hem + $andr_{ss}$		xtl xtl	1380 1375		glass	No. No. 000-0
glass	1050	27 d	cpx_{ss} + hem + and r_{ss}	and $r_{ss} a_0 = 12.051 \pm 0.008$ Å	glass	1375		$cpx_{ss}+glass$ $cpx_{ss}+glass$	rare cpx _{ss}
			1-001-003	and 33 av 12:001 ± 0:000 H	xtl	1270		$cpx_{ss} + wo_{ss} + glass$	traces of woss and glass
5		Com	position: di30wo29.5hem4	$0.5(=di_{30}FT_{S70})$	xtl	1250		$cpx_{ss} + wo_{ss} + gaass$	traces or woss and glass
glass	1410		glass		glass	1050		cpx _{ss} +wo _{ss}	
glass	1405	2 h	$mt_{ss}+glass$	very rare mt _{ss}					
xtl	1380	2 h	$\rm mt_{ss}+glass$	comp. of mt_{ss} :		1000	Comp	osition: disowo13.7hem6.	$3(=di_{s0}FTs_{20})$
xtl	1325	2 h	$mt_{ss}+glass$	(Mg0.26Ca0.03Fe2.71)O4 comp. of mtss:	xtl xtl	1365 1360		glass	
			111058 B1055	$(Mg_{0,29}Ca_{0,02}Fe_{2,69})O_4$	xtl	1275	2 h 1 d	$cpx_{ss}+glass$ $cpx_{ss}+glass$	small amounts of cpx_{ss}
tl	1310	2 h	mt _{ss} +hem+glass	(11280.2000.021 02.00) 04	xtl	1250		$cpx_{ss} + wo_{ss} + glass$	woss in large amounts; glass in
tl	1250	2 d	mt_{ss} +hem+glass				- 4	opiess 11088 51035	traces
tl	1235	2 d	mt_{ss} +hem+cpx _{ss}	cpx _{ss} in traces	xtl	1200	7 d	$cpx_{ss} + wo_{ss}$	
-41	1225	7 .1	+glass		glass	1050	60 d	$cpx_{ss} + wo_{ss}$	
ctl	1225	7 d	$cpx_{ss}+mt_{ss}+hem$ +glass				0		
ctl	1200	7 d	cpx _{ss} +hem+wo _{ss}	woss in traces	xtl	1345	Comp 2 h	osition: di70wo20.6hem9.	$_{4}(=di_{70} and r_{30})$
		····	+glass	woss in traces	xtl	1340	2 h	glass cpx _{ss} +glass	traces of cpx _{ss}
tl	1160	14 d	cpx_{ss} + hem + wo_{ss}		xtl	1270	1 d	$cpx_{ss} + wo_{ss} + glass$	lots of cpx_{ss} ; traces of wo_{ss}
tl	1150	14 d	cpx_{ss} + hem + and r_{ss}		xtl	1250	2 d	$cpx_{ss} + wo_{ss} \pm glass$	trace of glass
rtl	1135 1050	7 d	cpx_{ss} + hem + and r_{ss}	and $r_{ss} a = 12.053 \pm 0.003$ Å	xtl	1200	7 d	$cpx_{ss} + wo_{ss}$	
glass	1050	86 d	$cpx_{ss} + hem + andr_{ss}$	$andr_{ss} a = 12.053 \pm 0.004 \text{ Å}$	glass	1050	71 d	$cpx_{ss} + wo_{ss}$	
		Com	osition: di20w033.7hem46	a (=diasFTsee)			Compo	ition di se l	
glass	1415	2 h	glass	1.8(- 41201 1 380)	xtl	1320	2 h	sition: dis5.6w030,4hem14(glass	$= dl_{55,6} andr_{44,4}$
	1410	2 h	mt _{ss} +glass	very rare mt _{ss}	xtl	1315	$\frac{2}{2}$ h	glass	one grain of cpx _{ss}
	1360	1 d	mt_{ss} +glass		xtl	1310	2 h	$cpx_{ss} + glass$	small amounts of cpx_{ss}
	1350	1 d	mt_{ss} +hem+glass		xtl	1275	1 d	$cpx_{ss}+glass$	
	1250 1237	2 d 3 d	mt_{ss} +hem+glass		xtl	1265	1 d	$cpx_{ss}+wo_{ss}+glass$	very small amounts of woss
LI	1257	5 U	$cpx_{ss}+mt_{ss}+hem$ +glass		xtl xtl	1250 1200	2 d	$cpx_{ss} + wo_{ss} + glass$	small amounts of glass
tl	1225	2 d	cpx _{ss} +mt _{ss} +hem	woss in very small amounts	xtl	1200	7 d 14 d	$cpx_{ss} + wo_{ss}$ $cpx_{ss} + wo_{ss} + glass$	wome many transmission of 1
			+glass	ss	xtl	1140	14 d	$cpx_{ss} + wo_{ss} + glass$ $cpx_{ss} + wo_{ss}$	very rare traces of hem
tl	1200	7 d	$cpx_{ss}{+}hem{+}wo_{ss}$		xtl	1130	14 d	$cpx_{ss} + wo_{ss} + andr_{ss}$	
tl	1175	7 d	+glass cpx _{ss} +hem+wo _{ss}	glass in traces	glass	1050	78 d	$cpx_{ss} + wo_{ss} + andr_{ss}$	$\mathrm{andr}_{\mathrm{ss}}\;a\!=\!12.052\!\pm\!0.005$ Å
.1	11/0		+glass		~		Compo	sition: di46.1w026.9hem17	$(= di_{46,1} and r_{53,9})$
	1160 1150	14 d	cpx _{ss} +hem+wo _{ss}			1295	2 h	glass	
	1130	14 d 14 d	cpx_{ss} + hem + and r_{ss} cpx_{ss} + hem + and r_{ss}	and $r_{12} = 12.052 \pm 0.005$	glass	1290	2 h	$cpx_{ss} + glass$	
	1050	82 d		and $r_{ss} a = 12.053 \pm 0.005 \text{ Å}$ and $r_{ss} a = 12.053 \pm 0.003 \text{ Å}$	glass glass	$1270 \\ 1200$	7 d 7 d	$cpx_{ss} + glass$	two open of house
			A -DO I I WANCE SS			1200	7 d 7 d	$cpx_{ss}+wo_{ss}+glass$ $cpx_{ss}+wo_{ss}+hem$	traces of hem traces of glass
			osition: di15w035.8hem49	$_{2}(=di_{15}FTs_{85})$	0.000		, u	+glass	tracto UI glass
	1400	2 h	glass						
	1390 1380		mt _{ss} +glass			10		sition: di36.5w043.5hem20	$(= di_{36,5} and r_{63,5})$
	1370		mt_{ss} +glass mt_{ss} +hem+glass		xtl	1270		glass	11
tl i			mt_{ss} + hem + glass	traces of pwo	xtl xtl	$1265 \\ 1260$	4 h 6 h	woss+glass	small amounts of woss
	1250		mt _{ss} +hem+pwo		xtl	1200		$cpx_{ss}+wo_{ss}+glass$ $cpx_{ss}+wo_{ss}+glass$	small amounts of $\mathrm{cpx}_{\mathrm{ss}}$
tl	1250 1240	2 d			xtl	1210	1 d	$cpx_{ss} + wo_{ss} + glass$ $cpx_{ss} + wo_{ss} + hem$	
tl		2 d	+glass						
tl : tl :	1240	Compo	osition: di10w027.9hem52.	$_{1}(=di_{10}FT_{s_{90}})$	xtl	1160	14 d	+glass	
tl : tl :	1240	Compo 2 h	psition: di10w027.9hem52. glass	$_{1}(=di_{10}FT_{S90})$	xtl	1160 1150		+glass cpx _{ss} $+$ wo _{ss} $+$ hem	
ass ass	1240 1385 1380	Compo 2 h 3 h	osition: di10w027.9hem52. glass hem+glass		xtl xtl		14 d	+glass $cpx_{ss}+wo_{ss}+hem$ $cpx_{ss}+wo_{ss}+andr_{ss}$	and $r_{ss} a = 12.056 \pm 0.004 \text{ Å}$
ass 1 ass 1 ass 1	1240 1385 1380 1275	Compo 2 h 3 h 1 d	position: di10w027.9hem62. glass hem+glass hem+glass	$1(=di_{10}FT_{S_{90}})$ traces of pwo	xtl xtl	1150	14 d 71 d	+glass $cpx_{s\epsilon}+wo_{ss}+hem$ $cpx_{ss}+wo_{ss}+andr_{ss}$ $cpx_{ss}+wo_{ss}+andr_{ss}$	
tl ass ass il il 1	1240 1385 1380 1275 1250	Compo 2 h 3 h 1 d 2 d	osition: di10w027.9hem62. glass hem+glass hem+glass hem+pw0+glass		xtl xtl glass	1150 1050	14 d 71 d Composi	+glass $cpx_{sc} + wo_{ss} + hem$ $cpx_{ss} + wo_{ss} + andr_{ss}$ $cpx_{ss} + wo_{ss} + andr_{ss}$ tion: di25,3w049,1hem22,6	
tl tl tl lass t lass t tl t tl t tl t	1240 1385 1380 1275	Compo 2 h 3 h 1 d 2 d 2 d	position: di10w027.9hem62. glass hem+glass hem+glass		xtl xtl glass glass	1150	14 d 71 d Composi 2 h	+glass $cpx_{ss} + wo_{ss} + hem$ $cpx_{ss} + wo_{ss} + andr_{ss}$ $cpx_{ss} + wo_{ss} + andr_{ss}$ tion: di25,3w049,1hem22,6	

TABLE 1—(Continued)

TABLE 1—(Continued)

			TABLE 1—(Conti	nued)				IABLE I-(Conta	inuea)
Start- ing ma- terial ^a	т, ℃	Time ^b	Products	Remarks	Start- ing ma- terial ^a	т, °С	Time ^b	Products	Remarks
glass	1240	12 h	woss+cpxss+glass	lots of we	xtl	1155		woss+hem	$(= andr_{97}kho_3)$
glass glass	1235 1230	1 d 1 d	$wo_{ss}+cpx_{ss}+glass$ $wo_{ss}+cpx_{ss}+hem$ +glass	lots of wo_{ss}	xtl	1135	28 d	$cpx_{ss} + andr_{ss}$	cpx _{ss} in very rare amounts; andr _{ss} $a = 12.051 \pm 0.003$ Å
		Comp	osition: di20w054.shem25.	-(-discandres)	glass	1050	64 d	$cpx_{ss}+andr_{ss}+hem$	and $r_{ss} a = 12.055 \pm 0.004 A$
xtl	1295		glass	2(— 0120an0180)				sition: di14.1w054.1hem31	$_{8}(= andr_{90}kho_{10})$
xtl	1290		pwo+glass		glass	$1270 \\ 1265$		glass pwo+glass	× •
xtl xtl	1255 1250	12 h 1 d	pwo+glass pwo+wo _{ss} +hem	traces of hem	glass glass	1205		pwo + hem + glass	hem in traces
			+glass		xtl	1240	1 d	pwo+hem+glass	
xtl xtl	$1240 \\ 1225$	1 d 7 d	wo_{ss} + hem + glass wo_{ss} + cpx _{ss} + hem	traces of cpx _{ss}	xtl xtl	$1160 \\ 1145$	14 d 14 d	$cpx_{ss}+wo_{ss}+hem$ $cpx_{ss}+hem+andr_{ss}$	
AU			+glass		xtl	1135	14 d	cpx_{ss} +hem+and r_{ss}	and $r_{ss} a_0 = 12.051 \pm 0.003$ Å
xtl	1200	14 d	$cpx_{ss}+wo_{ss}+hem$ +glass		glass	1050	127 d	cpx_{ss} + hem + and r_{ss}	and $r_{ss} a_0 = 12.055 \pm 0.004 \text{ A}$
xtl	1160	14 d	cpx _{ss} +wo _{ss} +hem					Composition: di95	wo₀hem₅
xtl	1150	14 d	cpx _{ss} +wo _{ss} +andr _{ss}	and $r = 12.051 \pm 0.002$ Å	xtl xtl	1292 1250	1 d 1 d	cpx _{ss} cpx _{ss}	
xtl glass	$1135 \\ 1050$	14 d 57 d		and $r_{ss} a = 12.051 \pm 0.002$ Å and $r_{ss} a = 12.053 \pm 0.004$ Å	xtl	1200	3 d		
51435	1000				xtl	1175	3 d	cpxss	
a	1200		position: di10w061.7hem28	a.3(=di10andr90)	xtl	1155	7 d	cpxss	hem in very rare traces; unit- cell parameters of cpx _{ss} de-
xtl xtl	$1320 \\ 1315$		$_{ m pwo+glass}$	rare pwo					termined
xtl	1275	12 h	pwo+glass	traces of hem	xtl	1100		cpx _{ss} +hem	very small amounts of hem
xtl	$1270 \\ 1230$	12 h 2 d	pwo + hem + glass pwo + hem + glass	traces of woss	xtl	1050	46 d	cpx_{ss} +hem	hem in very small amounts; unit-cell parameters of cpx _{ss}
$_{\rm xtl}$	1230	2 d 3 d	wo_{ss} + hem + glass	glass in traces					determined
xtl	1200	14 d	$cpx_{ss} + wo_{ss} + hem$	glass in traces				Composition: di90wo	achemic .
xtl	1160	14 d	+glass cpx _{ss} $+$ wo _{ss} $+$ hem		xtl	1292	1 d	cpx _{ss} +mt _{ss} +glass	00000000000
xtl	1145	14 d	$cpx_{ss}+wo_{ss}+hem$		xtl	1250	1 d	cpx_{ss} +hem	
- 41	1125	14 4	$+ and r_{ss}$	and $r_{ss} a = 12.052 \pm 0.005$ Å	xtl glass	$1150 \\ 1050$	7 d 61 d	cpx_{ss} +hem cpx_{ss} +hem	
xtl glass	$1135 \\ 1050$	99 d	$cpx_{ss} + wo_{ss} + andr_{ss}$ $cpx_{ss} + wo_{ss} + andr_{ss}$	and $r_{ss} a = 12.054 \pm 0.003$ Å	B1000	1000	or a		
8						1205	2 4	Composition: di67.1wo	18.9hem14
***1	1330		position: diswoss.1hem29 glass	$0.9(=dl_5andr_{95})$	xtl xtl	1325 1320	2 h 2 h	glass cpx _{ss} +glass	
xtl xtl	1325	3h	pwo+glass	lots of pwo	xtl	1250	1 d	$cpx_{ss}+glass$	
xtl	1280	3 h	pwo+hem+glass	rare hem	xtl xtl	$1175 \\ 1150$	7 d 7 d	cpx _{ss} +wo _{ss} cpx _{ss} +wo _{ss}	
xtl	1210	3 d	$pwo+hem+wo_{ss}$ +glass		glass		60 d	$cpx_{ss} + wo_{ss}$ $cpx_{ss} + wo_{ss}$	traces of andr _{ss}
xtl	1200	14 d	$pwo+hem+wo_{ss}$					C	how -
xtl xtl	$1175 \\ 1160$	14 d 14 d		traces of cpx ₃₅	xtl	1250	3 d	Composition: di70wc cpx _{ss} +glass	linem16
xtl	1150	14 d	hem + woss $hem + woss$ + cpx_{ss}		\mathbf{xtl}	1175	7 d	cpxss	traces of glass
	44.45	14 3	+andrss	traces of hem	xtl	1155	7 d	cpxss	unit-cell parameters of cpx _{ss} determined
xtl	1145	14 a	$hem + wo_{ss} + cpx_{ss}$ + and r_{ss}	traces of nem	glass	1050	61 d	cpxss	unit-cell parameters of cpxss
xtl	1140		$wo_{ss} + cpx_{ss} + andr_{ss}$						determined
xtl xtl	$1135 \\ 1050$	14 d 125 d	woss+cpxss+andrss woss+cpxss+andrss	and rss $a\!=\!12.054\!\pm\!0.003$ Å				Composition; di63.2w01	8.1hem18 7
лu	1000				xtl	1250	3 d	$cpx_{ss}+glass$	
- 41	1245		position: diowo68.6hem31 glass	$1.4(=d_{10}andr_{100})$	xtl xtl	$1175 \\ 1155$	7 d 7 d	cpx_{ss} +glass cpx_{ss}	few grains of hem; unit-cell
xtl xtl	$1345 \\ 1340$		pwo+glass	pwo in moderate amounts	A.C.	1100			parameters of cpxss deter-
xtl	1295		pwo+glass	glass in small amounts	xtl	1050	10 d	cpx_{ss} +hem+and r_{ss}	mined
xtl xtl	$1290 \\ 1160$	1 d 28 d	pwo+hem pwo+hem	corroded andrss in very small		1050	10 0	cpass nem andres	
11.04				amounts	^a xtl	=crysta	lline mat	erial prepared at 1050	°C; products as listed in table for
glass	$1160 \\ 1155$	28 d 28 d	pwo+hem pwo+hem+andr _{ss}	no andr _{ss} andr _{ss} in traces; not corroded				eviations of the phase	es present are given in the text.
xtl glass	1155	28 d	pwo+hem+andr _{ss}	andr _{ss} in traces; not corroded	^b h =	hours; c	d = days.		
xtl	1150	14 d	$pwo+hem+andr_{ss}$	$andr_{ss} a_0 = 12.045 \pm 0.002$ Å					
xtl	1140	14 d	pwo+hem+andr _{ss} pwo+hem+andr _{ss}	wo _{ss} in traces hem in traces	of th	e nhas	es ther	efore cannot be e	xpressed solely in terms of
glass xtl	1140 1135	14 d 14 d	andr _{ss}	traces of woss and hem					ould properly be treated as
glass	1135	14 d		very rare traces of woss and a	quate	rnarv.	Howey	ver, the amount of	ferrous iron present in the
al	1125	56 d	andrss	few grains of hem and $r_{ss} a = 12.053 \pm 0.003$ Å	runs	crystal	lized a	t 1050° and 1155°	C (Table 2) is less than 5
glass glass	$1135 \\ 1050$	136 d	andrss	and $r_{ss} a = 12.057 \pm 0.004$ Å; few	perce	nt of t	he tota	l iron (expressed a	s Fe ₂ O ₃). Hence these com-
				grains of hem	positi	ons lie	very c	ose to the di-wo-h	em plane. Starting mixtures
glass glass	900 800	42 d 42 d	andr _{ss} wo _{ss} , hem and glass	large amounts of wo _{ss} and hem no andr _{ss} formed	queno	hed fr	om a te	emperature of 1500	°C contain 10 to 20 percent
giass	. 000	-12 U			FeO	in the	liquid	. Isopleths of app	proximately constant FeO/
	1015	0.1	Composition: diowo	73hem27	Fe_2O_3	(total) were	constructed in the	plane di-wo-hem from the
glass glass	$1315 \\ 1300$	2 d 3 d	pwo +glass pwo +glass		analy	tical d	ata ava	ailable for tempera	atures of 1050°, 1155°, and
FIGSS		3 d	pwo+hem		1500°	C (Fig	g.3).I	t can be seen that	the amount of ferrous iron
glass	1250	c. c.							
	1230 1135 1050	28 d 130 d	$pwo+wo_{ss}+andr_{ss}$ $wo_{ss}+andr_{ss}$	mo_{ss} in very rare amounts and r_{ss} $a = 12.058 \pm 0.005$ Å				rease of both the s's molecule.	andradite component and

TABLE 2. FEO CONTENTS OF CHEMICALLY ANALYZED
Compositions on the Join di-wo-hem at
Temperatures of 1050°, 1155°, and 1500°C

C	ompos	ition	9	% FeO a	t	FeO/Fe	e2O3 (tota	al Fe) at
di	wo	$hem (=Fe_2O_3)$	1050°	1155°	1500°	1050°	1155°	1500°
90	4.2	5.79	0.28		0.90	0.049		0.155
80	8.4	11.58	. 30	0.53	1.92	.026	0.046	.166
75	10.5	14.47	. 30	0.74	2.40	.021	.051	.166
68.9	13.1	18.00	. 35	1.15	2.80	.019	.064	.156
65	14.7	20.27	.25		2.60	.012		.128
59.3	17.2	23.50	. 30		2.16	.013		.134
55.5	19	25.50			3.40			.133
51.6	20.4	28.00	.27		3.75	.010		.134
43	34	33.00	. 32		4.50	.010		.136
30	29.5	40.53	. 22			.005		
20	33.7	46.32	.16			.003		
10	37.9	52.11	.10		5.20	.002		.099
0	42.1	57.90	.10			.002		
90	6.9	3.14	.28		0.65	.089		.205
80	13.7	6.29	.34		0.84	.054		.133
70	20.6	9.43	.20		1.50	.021		.159
55.6	30.4	14.00	.21		1.60	.015		.114
46.1	36.9	17.00			2.40			.141
36.5	43.5	20.00	.18			.009		
28.3	49.1	22.57			2.56			.113
20	54.8	25.15	.20		2.96	.008		.118
10	61.7	28.30	.14		3.00	.005		.106
5	65.1	29.87	.13			.004		
0	68.6	31.44	.15			.005		
4.2	64.3	31.54	.20		3.40	.006		.108
14.1	54.1	31.76	.15		3.50	.005		.110
95	0	5.00	.24	0.40	1.00	.048	.080	.200
90	0	10.00			2.10			.210
67.1	18.9	14.00	. 30		1.76	.021		.126
70	15	15.00	.26		2.50	.017		.166
63.2	18.1	18.75		0.58			.031	

FIG. 3. The diopside-wollastonite-hematite plane with curves of approximately constant FeO/Fe_2O_3 ratios at various temperatures. The ratios give an estimate of the departure of a mixture from ideal Di-Wo-Hem compositions within the Di-Wo-Hem-Mt tetrahedron and in partial measure the degree of deviation from ternary relationships at temperatures of 1050°, 1155°, and 1500°C.

only in the presence of a liquid, and $\mathrm{andr}_{\mathrm{ss}},$ only in the subsolidus region.

The join diopside—ferri-Tschermak's molecule. The stable phases crystallizing at atmospheric pressure on the join di-FTs (Fig. 4) are clinopyroxene solid solution (cpx_{ss}) , wollastonite solid solution (wo_{ss}) , pseudowollastonite (pwo), andradite solid solution $(andr_{ss})$, magnetite solid solution (mt_{ss}) , and hematite (hem). Magnetite_{ss} is stable

The maximum stable solid solution of ferri-Tschermak's molecule in diopside is greater than 31.1 and less than 35.0 weight percent and is believed to be close to 33 weight percent at 1175°C. The extent of solid solution was estimated from unit-cell parameters of pyroxenes along the join di-FTs that had been held for several days at 1050° or

Fig. 4. Temperature versus composition plot of data obtained on the join diopside—ferri-Tschermak's molecule at 1 atmosphere. Abbreviations for phases encountered: cpx_{ss} , clinopyroxene solid solution; mt_{ss} , magnetite solid solution; hem, hematite; pwo, pseudowollastonite; wo_{ss} , wollastonite solid solution; and $andr_{ss}$, and radite solid solution.

Composition	Crystallized at T (°C)	a, Å ^b	b, Å ^b	$c, m \AA^b$	β , degrees ^b	V, Å ^{3b}
diopside	subsolidus	9.745(1)	8.925(1)	5.248(1)	105.87(1)	439.08(7)
(Clark et al., 1962)						
Di ₉₀ FTs ₁₀	1050	9.762(3)	8.928(3)	5.259(2)	105.84(3)	440.99(21)
	1155	9.761(2)	8.928(1)	5.269(2)	105.87(1)	441.57(18)
$Di_{80}FTs_{20}$	1050	9.773(2)	8.916(2)	5.286(2)	105.90(2)	443.47(14)
	1155	9.776(3)	8.922(2)	5.276(3)	105.90(3)	442.58(39)
$\mathrm{Di}_{75}\mathrm{FTs}_{25}$	1155	9.781(3)	8.915(2)	5.293(2)	105.88(2)	443.94(28)
Di _{68.9} FTS _{31.1}	1155	9.788(4)	8.911(2)	5.308(2)	105.90(3)	445.24(29)
$Di_{70}Wol_{4,1}FTs_{25,9}$	1050	9.789(2)	8.920(2)	5.298(1)	105.86(2)	445.01(13)
$Di_{69}Wo_5FTs_{26}^{a}$	1050	9.80(1)	8.91(1)	5.31(1)	105.9(1)	445.7(8)
Di _{63 2} Wo' _{4.5} FTs _{32.3}	1155	9.801(3)	8.912(3)	5.319(4)	105.87(3)	446.85(26)
$Di_{95}Hem_5$	1050	9.753(3)	8.929(2)	5.260(2)	105.97(3)	440.36(16)
1,1AD11,01110	1155	9.758(2)	8.928(2)	5.263(1)	105.92(2)	440.96(10)

TABLE 3. UNIT-CELI	PARAMETERS OF	DIOPSIDE ANI	o Ferri-Diopside	Solid Solution

a Estimated clinopyroxene composition. Crystallized from a DI_{59.3}WO_{17.2}HEM_{23.5} bulk composition in the cpx_{ss}+hem+andr_{ss} phase assemblage.

^b Plus-and-Minus error in last place(s) given in parentheses.

1155°C. Least-squares refinement of data obtained from powder X-ray diffraction charts (CuK α ; $\lambda = 1.5418$ Å) was carried out with a program written by Charles W. Burnham at the Geophysical Laboratory for the IBM 7094 digital computer. The reflections measured were (150), (510), (132), (240), (041), (421), (331), (330), (311),(221), (202), (131), (311), (310), (221), (220), and (021) using silicon as an internal standard. Table 3 and Figure 5 show the results, together with data obtained by Coleman (1962) on synthetic pyroxenes containing up to 10 mole percent FTs. There is a substantial increase of a, c, and V, but a decrease of b from diopside to $di_{68.9}$ FTs_{31.1}. The angle β remains essentially constant. Coleman's data reveal the same tendencies in cell constants; however, they show greater variance than the data obtained in the present study.

The substitution of $Fe^{3+}Fe^{3+}$ for MgSi within the range of stable solid solution along the join di-FTs at 1155°C expands the cell volume V by about 14 percent.¹ Comparison of the average tetrahedral distances of Si-O (1.61 Å; taken from *International Tables for X-Ray Crystallography*, Vol. 3, 1962) and Fe³⁺-O (1.86 Å) and the octahedral distances of Mg-O (2.07 Å) and Fe³⁺-O (2.01 Å) shows the more marked difference for tetrahedral substitution by Fe³⁺. In short, substitution of Fe³⁺ considerably expands the tetrahedra and slightly shrinks the octahedra. The substitution of Fe³⁺ for Mg within the octahedra results in a minor decrease of *b*, whereas the expansion of the tetrahedra is revealed not only in *c* but also in *a*. The increase of *c* is caused only by the substitution of Fe³⁺ for Si. On the

¹The increase in cell volume suggests that the end-member composition of the ferri-Tschermak's molecule is not likely to crystallize as a pyroxene even at high pressures. Preliminary runs were carried out on the pure FTs composition at 20 kb and 1300°C in solid-media pressure apparatus through the courtesy of Professor W. Schreyer, and the phases obtained were andradite_{ss} + hematite and small amounts of magnetite.

other hand, the change of *a* is produced by a contraction of the octahedra as well, and the expansion of the tetrahedra in this direction is very much larger than the contraction of the octahedra because two expanded $(Si,Fe^{3+})_2O_6$ chains of the diopside structure are involved. The FeO contents in the range of the stable solid solution are small (Table 2) and should cause no measurable change in the cell dimension.

The angular separation of certain pairs of reflections can be used to determine the composition of ferri-diopside solid solution along the join di-FTs, as well as in certain portions of the di-wo-hem plane. The most sensitive angular separation is that of $2\theta(240)-2\theta(041)$; the intensity of these reflections is low, however, and the technique cannot be applied in polyphase assemblages. Another angular separation, $2\theta(22\bar{1})-2\theta(202)$, is useful, except in the range di₁₀₀FTs₀ to di₉₀FTs₁₀, where the determinative curve passes through a minimum and where the hematite content is higher. The (11 $\bar{2}0$) reflection of hematite at 35.5° 2θ coincides with the (221) reflection of the ferridiopside solid solution (Fig. 6).

The clinopyroxene_{ss} formed at solidus temperatures in compositions between 20 percent (at 1000°C) and 33 percent (at 1175°C) FTs breaks down with the cooling to a clinopyroxene_{ss} + hematite. These particular clinopyroxene solid solutions must lie off the join di-FTs in the more wollastonite-rich part of the di-wo-hem plane, as can be seen from an inspection of the isothermal sections at 1050°, 1137°, and 1157°C (Figs. 9, 10, and 11). The clinopyroxene_{ss} in coexistence with hematite was examined by X-rays with the reflection pairs described above. The values are slightly different from those extrapolated from clinopyroxenes that lie directly on the join without hematite.

The cpx_{ss} + hem assemblage is replaced by cpx_{ss} + hem + and r_{ss} at compositions greater than 35 to 44 weight percent at 1000° and 1175°C, respectively. The clinopy-

roxene_{ss} occurring in the three-phase assemblage cannot lie on the join di-FTs. On the basis of cell determinations and inspection of the corresponding isothermal sections, the pyroxene compositions were found to be $di_{69}wo_{16}hem_{15}$ at $1050^{\circ}C$, $di_{66}wo_{17}hem_{17}$ at $1137^{\circ}C$, and $di_{62}wo_{19}hem_{19}$ at $1157^{\circ}C$. These pyroxene solid solutions may also be expressed as $di_{69}wo_5FTs_{26}$, $di_{66}wo_5FTs_{29}$, and $di_{62}wo_5FTs_{33}$; or as $di_{69}FTs_{20}andr_{11}$, $di_{66}FTs_{24}andr_{19}$, and $di_{62}FTs_{27}$ $andr_{11}$. That is, either wollastonite or andradite may be considered as solid solutions in those diopsides in addition to the ferri-Tschermak's molecule. Unit-cell param-

FIG. 5. Unit-cell parameters within the range of stable solid solution along the join diopside—ferri-Tschermak's molecule. The clinopyroxene solid solutions were crystallized at 1050° C (squares) and 1155° C (circles), respectively. Crosses represent Coleman's data (1962).

FIG. 6. Change of angular separations of $2\theta(240)-2\theta(041)$ and $2\theta(221)-2\theta(202)$ within the range of stable solid solution along the join diopside—ferri-Tschermak's molecule.

eters were measured for clinopyroxenes with the compositions $di_{70}wo_{4.1}FTs_{25.9}~(=di_{70}FTs_{21.1}andr_{8.9}),~di_{69}wo_5FTs_{26}~(=di_{69}FTs_{20}andr_{11}),~and~di_{63.2}wo_{4.5}FTs_{32.3}~(=di_{63.2}FTs_{27.2}andr_{9.6}).$ The expansion of the unit cells of these particular clinopyroxenes appears to be slightly favored if Mg is replaced by Ca in addition to the substitution of Fe³⁺Fe³⁺ for MgSi (Table 3).

The coexisting garnet in the three-phase assemblage $cpx_{ss} + hem + andr_{ss}$ is almost pure andradite and has a cell edge similar to that of the end member on the join diopside-andradite (Fig. 7), because the very limited replacement of Ca by Mg does not effect a measurable change in *a*. At temperatures above 1157°C, $cpx_{ss} + hem + andr_{ss}$ is no longer stable and is replaced by $cpx_{ss} + hem + wo_{ss}$. Wollastonite coexisting with diopside on the join CaMgSi₂O₆-CaSiO₃ has a composition wo₉₃di₇ at that temperature according to Schairer and Bowen (1942).

The liquidus phases on the join diopside-ferri-Tschermak's molecule are clinopyroxene, magnetite, and hematite. With powder X-ray diffraction and electron microprobe techniques it is possible to define the composition of the primary phases that crystallize near liquidus temperatures. Primary hematite contains traces of Mg and Ca, and even the ferrous iron content, which cannot as yet be demonstrated by electron microprobe analysis, must be low. Phillips and Muan (1960) reported the very limited solid solution of magnetite in hematite of 1 percent at about 1400°C in air. The primary magnetites consist of solid solutions of Fe²⁺Fe₂³⁺O₄ (magnetite) and MgFe₂³⁺O₄ (magnesioferrite), including a small amount of $CaFe_{2}^{3+}O_{4}$. The total iron determined as Fe₂O₃ by electron microprobe analyses was partitioned into Fe3+ and Fe2+ as required for electrostatic balance in the magnetite formula. Bulk compositions $\mathrm{di}_{51.6}\mathrm{FTs}_{48.4},\ \mathrm{di}_{43}\mathrm{FTs}_{57},\ and\ \mathrm{di}_{30}\mathrm{FTs}_{70}$ form magnetite solid solutions + liquid and the magnetite has

FIG. 7. Temperature versus composition plot of data obtained on the join diopside-andradite at 1 atmosphere. Abbreviations as in Figure 4.

the composition $(Mg_{0.52}Ca_{0.04}Fe_{2.44})O_4$ at 1290°C, $(Mg_{0.31}Ca_{0.03}Fe_{2.66})O_4$ at 1300°C, $(Mg_{0.26}Ca_{0.03}Fe_{2,71})O_4$ at 1325°C, and $(Mg_{0.29}Ca_{0.02}Fe_{2.69})O_4$ at 1380°C. It can be seen that the Mg content of the magnetite_{ss} increases with increase of the CaMgSi₂O₆ component in the bulk composition. This is due to the relative relationship of the solid solution series magnesioferrite-magnetite and diopside —ferri-Tschermak's molecule in the CaO-MgO-Fe₂O₃— FeO-SiO₂ system. The two series are essentially parallel, and tie lines from magnetite_{ss} to liquid intersect the join di-FTs at a high angle on the di-wo-hem plane. Therefore, an increase of Mg in the bulk composition will increase the Mg content in the magnetite_{ss} as well.

Primary clinopyroxeness coexisting with liquid has a composition of about $di_{94}FTs_6$ at 1300 °C. The liquid leaves the join di-FTs at a temperature of $1288^\circ \pm 3^\circ C$ and moves to the region of the di-wo-hem plane poorer in total iron than that join. At temperatures between 1288° and 1175°C the composition of the primary clinopyroxenes, therefore, being slightly enriched in ferric iron, must lie off the join di-FTs, as one can see by an inspection of the isothermal (pseudoternary) section at 1250°C (Fig. 12). The divergence in composition from ideal di-FTs clinopyroxene solid solutions is trifling. The compositions of the primary clinopyroxenes were determined by the angular separation of $2\theta(240) - 2\theta(041)$ in order to fix the approximate location of the solidus in the diopside-rich part of the di-FTs join (Fig. 4). The compositions were found to be di₈₃FTs₁₇ at 1240°C, di₇₉FTs₂₁ at 1225°C, di₇₆FTs₂₄ at 1200°C.

The join diopside-andradite. The stable phases crystallizing on the join diopside-andradite (Fig. 7) are clinopyroxene_{ss}, wollastonite_{ss}, pseudowollastonite, hematite, and andradite_{ss}. The phases present in the diopside-rich part of the diagram are clinopyroxene_{ss} and wollastonite_{ss}. Immediately below the solidus near pure diopside some solid solution of andradite in diopside has been assumed but not demonstrated with the data at hand. On the basis of cell parameters, the clinopyroxene_{ss} must lie between the joins di-FTs and di-andr within the di-wo-hem plane (Figs. 9, 10, and 11). The assemblage $cpx_{ss} + wo_{ss}$ in the region from $andr_{40}$ to $andr_{49}$ is replaced at lower temperatures by $cpx_{ss} + wo_{ss} + andr_{ss}$. And $r_{ss} + wo_{ss}$, and $andr_{97}$ and $andr_{99}$, respectively, at the lowest temperatures investigated.

At temperatures above 1157°C and radite is not a stable phase, and there is a change in the mineral assemblages to pseudowollastonite + hematite, pseudowollastonite + wollastonite_{ss} + hematite, wollastonite_{ss} + hematite, and hematite + clinopyroxene_{ss} + wollastonite_{ss}. As in the di-FTs join, there is a small field in which an and radite solid solution is stable in the presence of hematite and either wo_{ss} or pwo, or both, from 1137° to 1157°C.

Garnet crystallizing from the andradite bulk composition has a unit-cell parameter of 12.057 \pm 0.004 Å at 1050° C, 12.053 ± 0.003 Å at 1135° C, and 12.045 ± 0.002 Å at 1150°C (Table 4), determined with the use of reflections (642), (640), (611), (521), (510), (422), (420), and (400) with silicon as an internal standard. The shrinkage of the unit-cell parameters from 12.057 to 12.045 is probably caused by ubiquitous ferrous iron forming a skiagite molecule of ${\rm Fe_3}^{2+}{\rm Fe_2}^{3+}{\rm Si_3O_{12}}$ composition, in which Fe²⁺ substitutes for Ca. The amount of ferrous iron, determined by the methods of Shapiro and Brannock (1962). is 0.15 percent in andradite stable at 1050°C and has increased to 0.25 percent in andradite formed at 1135°C. Above $1137^{\circ}C \pm 5^{\circ}C$ the garnet starts to decompose, and because pseudowollastonite and hematite can incorporate only small amounts of the ferrous iron present in the mixture (0.31 percent FeO at 1150°C), the remainder enters the andradite structure, resulting in markedly different cell sizes of garnet stable above and below 1137°C. Andradite

SYNTHESIS OF FERRI-DIOPSIDE

Phase assemblage	<i>a</i> , Å	Crystallized at T (°C)	Remarks
andr _{ss}	12.057 ± 0.004	1050ª	Crystallized from a glass of andradite bulk composition, con- taining 0.15% FeO after treatment.
andr _{ss}	12.053 ± 0.003	1135	Crystallized from a glass of andradite bulk composition con- taining 0.25% FeO after treatment.
$andr_{ss}+pwo+hem$	12.045 ± 0.002	1150	Breakdown assemblage from the andradite bulk composition; the mixture contains 0.31% FeO after treatment.
$andr_{ss}+hem$	12.055 ± 0.004	1050	Andradite crystallized from the ferri-Tschermak's molecule bulk composition; the mixture contains 0.10% FeO after treatment.
$andr_{ss}$ +hem	12.052 ± 0.004	1135	Andradite crystallized from the ferri-Tschermak's molecule bulk composition.
$andr_{ss} + wo_{ss}$	12.058 ± 0.005	1050	Andradite from the wo73hem27 bulk composition.
$andr_{ss} + hem + cpx_{ss}$	12.054 ± 0.002	1050	Average of 6 andradites crystallizing in that phase assemblage; khoharite in andradite about 1%; the mixtures contain 0.10 to 0.32% FeO after treatment.
$andr_{ss}+hem+cpx_{ss}$ and $andr_{ss}+cpx_{ss}$	12.052 ± 0.002	1135	Average of 5 and radites crystallizing in that phase assemblage; khoharite in and radite about 2%.
$andr_{ss} + wo_{ss} + cpx_{ss}$	12.054 ± 0.002	1050	Average of 5 andradites crystallizing in that phase assemblage; khoharite in andradite about 1%; the mixtures contain 0.13 to 0.21% FeO after treatment.
$\mathrm{andr}_{\mathrm{ss}}\!+\!\mathrm{wo}_{\mathrm{ss}}\!+\!\mathrm{cpx}_{\mathrm{ss}}$	12.052 ± 0.001	1135	Average of 2 andradites crystallizing in that phase assemblage; khoharite in andradite about 2%.

TABLE 4. UNIT-CELL PARAMETER OF ANDRADITES CRYSTALLIZED ON THE JOIN DI-WO-HEM

^a Duration of treatment listed in Table 1.

itself breaks down completely to pwo + hem at 1157° \pm 5°C.

The range of substitution of Mg for Ca in andradite and its effect on the cell dimensions were investigated by studying two compositions on the join andradite-khoharite (the theoretical garnet of $Mg_3Fe_2^{3+}Si_3O_{12}$ composition on the join enstatite-hematite if the di-wo-hem plane were extended to $MgSiO_3$ composition). There is very limited solid solution of khoharite in andradite: about 1 percent at $1050^{\circ}C$ and 2 percent at $1137^{\circ}C$. The substitution does not cause a measurable change in the cell edge of the garnet; however, the average *a* of andradites crystallizing in the andr_{ss} + hem + cpx_{ss}, andr_{ss} + cpx_{ss}, and andr_{ss} + wo_{ss} + cpx_{ss} assemblages is slightly smaller compared with those crystallizing on the join wollastonite-hematite (Table 4).

The unit-cell parameter of the pure andradite end member obtained in this study is higher than those reported (see Table 5) by Skinner (1956) and Ernst (1966) and lower than those given by Swanson et al. (1960), Geller et al. (1964), and Ito and Frondel (1967). Natural garnet of almost pure andradite composition from Val Malenco near Sondria, northern Italy, has a unit-cell parameter of 12.061 Å. Its structure has been determined recently by Quareni and Pieri (1966). The reasons for the differences in cell size are not as yet well understood; however, the crystallizing techniques and conditions of formation will have considerable influence. The effects of water (hydrogarnet), oxidation state (skiagite), and temperature on cell dimension are evident. The conditions of formation of the garnets described in the previous studies are not sufficiently well defined for a valid comparison of cell dimensions. Evidence

for a cell size smaller than that proposed by Geller (1967) may be deduced from andradite solid solutions crystallizing on the join andradite–Ti-garnet (Huckenholz, 1969). The cell parameter of the andr₄₆Ti-gar₅₄ end member stable at 1100°C is 12.250 Å. The decrease of the unit-cell parameter is 0.038 Å per 10 weight percent andradite, and cell sizes indicated for pure andradite are smaller than that given by Geller (1967).

TABLE 5. UNIT-CELL PARAMETER OF ANDRADITES FROM PREVIOUS STUDIES

Reference	a, Å	Remarks
Skinner (1956)	12.048	Synthesized in solid-media pressure apparatus by the Norton Company from oxide mixtures of andradite bulk composition at unstated temperature and pressure. $n = 1.887$.
Swanson et al. (1960, p. 22)	12.059	Synthesized hydrothermally at 850° and 20,000 psi in a cold-seal pressure vessel. Prepared from a gel of nitrates of ferric iron and calcium and ethyl orthosilicate. $n = 1.887$.
Geller <i>et al.</i> (1964)	12.067	Synthesized dry from oxides at 1 atmosphere by means of a lithium molybdate flux (W. Bonner, personal communication, 1969).
Ernst (1966)	12.040 ± 0.010	Average of 4 andradites synthesized hydro- thermally from a ferrotremolite bulk compo- sition; the oxygen fugacities were defined by hematite-magnetite and hausmannite-man- ganosite buffers. Detailed data are:
		T, °C P, bars log f02 Time, hr a, Å 620 500 -13.7 316 12.036 594 3010 -14.5 362 12.040 514 2990 -17.5 2423 12.040 548 1990 -18.2 2420 12.045
Ito and Frondel (1967)	12.06 ± 0.01	Synthesized from a gel of andradite bulk com- position at 1050°C for about 7 hours.
Quareni and de Pieri (1966)	12.061	Natural specimen of almost pure andradite composition from Val Malenco near Sondria, northern Italy.

FIG. 10. Isothermal section of the diopside-wollastonite-hematite join at 1137°C.

stitution along the join diopside-hematite can be expressed in two parts as $2Fe^{3+}$ for MgSi, demonstrated on the join diopside—ferri-Tschermak's molecule, as well as $2Fe^{3+}$ for CaSi. The unit-cell parameters were determined for the di₉₅hem₅ composition (Table 3). The data for *a*, *b*, *c*, and *V* correspond very closely to those obtained on the join di-FTs. The angle β , however, appears to be slightly increased, probably owing to the occupation of Ca by Fe³⁺ in the diopside structure.

Isothermal Sections at 1050°, 1137°, 1158°, and 1250°C of the di-wo-hem Plane

The results of the thermal studies outlined previously are shown graphically in four isothermal sections. The 1050° , 1137° , 1158° , and 1250° C sections have been chosen to illustrate the change in the phase relationships and the variations of clinopyroxene and garnet solid solutions.

Isothermal section at 1050°C (Fig. 9). The stable phases at 1050°C are cpx_{ss} , hem, wo_{ss} , and $andr_{ss}$. In the di-rich portion of the plane, cpx_{ss} + hem as well as cpx_{ss} + wo_{ss} coexist. The phase assemblages in the wo-rich portion are wo_{ss} + $andr_{ss}$ and hem + $andr_{ss}$. The largest range of compositions is represented by the assemblage hem + cpx_{ss} + $andr_{ss}$. It is separated from the wo_{ss} + cpx_{ss} + $andr_{ss}$ assemblage by a narrow two-phase field of cpx_{ss} + $andr_{ss}$.

Isothermal section at 1137°C (Fig. 10). In the isothermal section at 1137°C a small field of pwo + wo_{ss} + andr_{ss} appears on the wo-andr join in addition to those phase assemblages encountered in the section at 1050°C. The range of stable solid solution of clinopyroxene has expanded to $di_{66}wo_{17}hem_{17}$; the khoharite component in the andradite_{ss} has increased to about 2 percent.

FIG. 11. Isothermal section of the diopside-wollastonite-hematite join at 1158°C.

Isothermal section at $1158^{\circ}C$ (Fig. 11). At a temperature of $1158^{\circ}C$ garnet is no longer stable, and all assemblages with andradite and its solid solutions are replaced by other phases. The assemblage $\operatorname{andr}_{ss} + \operatorname{cpx}_{ss}$, with wo_{ss} or with hem, is changed to hem + $\operatorname{cpx}_{ss} + \operatorname{wo}_{ss}$. The assemblages hem + andr_{ss}, wo_{ss} + andr_{ss}, and wo_{ss} + pwo + andr_{ss} are replaced by hem + wo_{ss} or pwo, or both. The breakdown of andradite and its solid solutions does not effect a change of the di-rich part of the plane. Compared with the 1050° and 1137°C sections (Figs. 9 and 10) the clinopyroxene solid solution field is increased to about di₆₂wo₁₉hem₁₉, and also the range of compositions represented by hem + cpx_{ss} as well as wo_{ss} + cpx_{ss} is expanded markedly.

Isothermal (pseudoternary) section at $1250^{\circ}C$ (Fig. 12). At $1250^{\circ}C$ the join di-wo-hem should probably not be treated as ternary but rather should be viewed in the context of the di-wo-hem-mt tetrahedron within the quinary

system CaO-MgO-Fe₂O₃-FeO-SiO₂. However, the phase relationships may be elucidated from a ternary point of view when a pseudoternary plane di-wo-*iron oxides* of the di-wohem-mt tetrahedron is considered. Owing to this simplification phases labelled as "*iron oxides*" include hem or mt_{ss} , or both. Additional stable phases present are liquid, cpx_{ss} , pwo, and wo_{ss}.

Geologic Discussion

Results of this study illustrate the formation of ferridiopside solid solutions at magmatic temperatures. These findings are correlated with the observation that the rocks of the alkali basalt series are characteristically enriched in ferric iron. In general, most of the clinopyroxenes from olivine basalts, hawaiites, mugearites, basanites, and nephelinites contain small to moderate amounts of both the ferri-Tschermak's and acmite molecules. This can be deduced from clinopyroxene analyses given by Murray (1954), Brousse (1961), Yoder and Tilley (1962), Aoki (1964),

FIG. 12. Isothermal (pseudoternary) section of diopside-wollastonite-iron oxides at 1250°C. Phases labelled as "iron oxides" are either hem or mt_{ss}, or both.

Huckenholz (1965*a*, 1965*b*, and 1966), and Lewis (1967). High P_{0_2} pressure in a normal alkali basalt magma or in its derivatives favors the solid solution of acmite in diopside (Yagi, 1966). With increasing sodium in excess of potassium in the bulk composition during fractionation, the acmite content in the clinopyroxenes increases as well, and the syenitic end member magmas precipitate aegirine or aegirine-augite under oxidizing conditions. The content of ferri-Tschermak's molecule in these clinopyroxenes is very small or absent, as may be seen from the data of Yagi (1953, 1966), Boesen (1964), Wilkinson (1966), and Tyler and King (1967).

Detailed information on alkaline rocks with potassic affinities and their related clinopyroxenes are rare. In general, the most common clinopyroxene in potassium-rich syenites, shonkinites, theralites, and ijolites is augitic in composition rather than acmitic. Closer relationships may be deduced from the potassium content of rocks and the composition of clinopyroxenes from the alkaline complex of Iron Hill, Colorado (Larsen, 1942). The potassium content usually exceeds that of sodium in the pyroxenite and melteigite members. Their related clinopyroxenes have average molecular compositions which can be expressed respectively as di75hd11ac, Ts12 and di73hd16ac2Ts9. The amount of the ferri-Tschermak's molecule in these clinopyroxenes is about 7 percent (max. 12%). The sodium content is larger in the ijolites, and a clinopyroxene of the composition di₆₈hd₁₈ac₄Ts₁₀ occurs containing 5 percent FTs. With further sodium enrichment in excess of potassium the clinopyroxene composition has changed to di29hd35ac25Ts11 and $di_{17}hd_{32}ac+jd_{43}Ts_8$ in the shonkinite and symplet end members, respectively. None or only traces of the ferri-Tschermak's molecule are present in these pyroxenes.

Additional data seem to support the view that clinopyrox-

175

enes from potassium-rich rocks are richest in ferri-Tschermak's molecule. Leucitite lavas from the 1929 eruption of Mount Vesuvius contain ferrian augites (Alfani, 1934; Müller, 1936) with an average amount of about 8 mole percent FTs. Augite found in a monchiquite from Khibina, Kola Peninsula (Lupanova, 1934) consists of 12 mole percent FTs; and Kashkai (1944) reported an augite from basaltic tuff in Azerbaidzhan with 10.4 percent. Ferrian augite is also found in a nepheline-bearing jacupirangite from Hesserau Hill, Quebec, close to the border of the Oka carbonatite complex (Gold, 1966). A clinopyroxene near Cape Tourmente, St. Joachim, Montmorency County, Quebec, has the largest amount of ferri-Tschermak's molecule in a natural specimen, 18.5 mole percent; and no sodium is reported in the chemical analysis given by Putman (1942). In summary, relatively larger amounts of the ferri-Tschermak's molecule of the clinopyroxenes are probably associated with those igneous rocks that have undergone strongly oxidizing conditions and contain only small amounts of either sodium or potassium, or both. The sodium deficiency prohibits the formation of relatively larger amounts of the acmite molecule, and potassium enters the diopside structure in very small amounts or nil.

The typical occurrence of andradite is in contact- or thermally metamorphosed, impure, calcareous sediments, and the assemblage andradite + clinopyroxene with either wollastonite or hematite is of particular interest with regard to the skarn deposits. The mineral assemblages obtained in the experiments under dry and oxidizing conditions are similar to those formed in nature from limestones and marbles. As examples, ferri-diopside is found in a thermally metamorphosed limestone of Juva, Finland (Juurinen and Hytönen, 1952), and almost pure andradite occurs in the marbles of the Hartenstein area (Moldanubian zone of Austria; Scharbert, 1966).

The phase relationships in the system diopside-wollastonite-hematite bear directly on the formation of andradite under magmatic conditions. Andradite is found in nepheline syenites, ijolites, and their volcanic equivalents, the phonolites and nephelinites. The andradite in these alkaline igneous rocks is generally the titaniferous variety, melanite or schorlomite, and the coexisting clinopyroxene is an aegirine-augite, aegirine, or diopside, occasionally rich in ferri-Tschermak's molecule. The main feature of those particular igneous rocks containing the mafic mineral association clinopyroxene, andradite, wollastonite, and iron ore (in most cases titanomagnetite, ilmenite, and occasionally hematite) is that andradite forms late in relation to the formation of clinopyroxene and wollastonite. This observation is supported by the petrographic descriptions of the alkaline rocks of the Iron Hill stock (Larsen, 1942), Alnö complex, Sweden (von Eckermann, 1948, 1958), Napak volcanoes, Uganda (King, 1949), Homa Bay area, Kenya (Pulfrey, 1950), Kaiserstuhl volcano (Wimmenauer, 1962), Magnet Cove alkaline complex, Arkansas (Erickson and Blade, 1963), and Oka carbonatite complex, Quebec (Gold, 1966). The thermal behavior of andradite outlined in the previous paragraphs is in accord with the formation of andradite in natural igneous rocks. Andradite does not crystallize on the liquidus nor appear with liquid in the system di-wo-hem. However, andradite having a Ti-bearing component in solid solution appears as a primary phase on the liquidus of the system enstatite-wollastonite-perovskite-hematite (Huckenholz, 1969). Its stability field is, therefore, well above the beginning of melting of alkali basalts, and it is likely to be a primary phase of mugearites and phonolites, which melt completely at temperatures below 1157°C.

Acknowledgements

The first-named author is most grateful to the Deutscher Akademischer Austauschdienst for supporting a Fellowship at the Geophysical Laboratory of the Carnegie Institution of Washington. The manuscript was kindly reviewed by Drs. F. R. Boyd, Ikuo Kushiro, and Dean Presnall.

References

- ALFANI, M. (1934) L'augite pneumatolitica raccolta sulle lave del fondo del cratere vesuviano nel 1929. Per. Mineral. [Rome], 5, 77–96.
- AOKI, K. I. (1964) Clinopyroxenes from alkaline rocks of Japan. Amer. Mineral., 49, 1199–1223.
- BOESEN, R. S. (1964) The clinopyroxenes of a monzonitic complex at Mount Dromedary, New South Wales. Amer. Mineral., 49, 1435–1457.
- BOETTCHER, A. L. (1967) The Rainy Creek alkaline-ultramafic igneous complex near Libby, Montana. I. Ultramafic rocks and fenites. J. Geol., **75**, 526–553.
- BROUSSE, R. (1961) Minéralogie pétrographie des rochs volcaniques du Massif du Mont Dore (Auvergne), I-III. Bull. Soc. Franc. Mineral. Cristallogr. 84, 131–156, 156–186, 245– 259.
- ——, AND E. BOYER (1965) Grand cristaux d'augite dans une brèche volcanique intrusive. Bull. Soc. Franc. Mineral. Cristallogr., 88, 525-526.
- CLARK, S. P., JR., J. F. SCHAIRER, AND J. DE NEUFVILLE (1962)

- Phase relations in the system $CaMgSi_2O_6$ - $CaAl_2SiO_6$ - SiO_2 at low and high pressure. *Carnegie Inst. Wash. Year Book*, **61**, 59–68.
- COLEMAN, L. C. (1962) Effect of ionic substitution on the unitcell dimensions of synthetic diopside. In A. E. J. Engel, H. L. James, and B. F. Leonard, Eds. Petrologic Studies: A Volume in Honor of A. F. Buddington, Geol. Soc. Amer., New York, p. 429-446.
- ECKERMANN, H. VON (1948) The alkaline district of Alnö Island. Sveriges Geol. Undersökn., Arsbok, Ser. Ca, Avhandl. Uppsat., 36, 176 p.
- (1958) The alkaline and carbonatite dikes of the Alnö formation on the mainland north-west of Alnö Island. *Kungl. Svenska Vetenskapsakad, Handl., Ser. 4, 7,* no. 2, 61 p.
- (1966) The pyroxenes of the Alnö carbonatite (sövite) and of surrounding fenites. In Pap. Proc., Int. Mineral. Assoc., 4th Gen. Meet., Mineral. Soc. India, 126-139.
- ERICKSON, R. L., AND L. V. BLADE (1963) Geochemistry and petrology of the alkalic igneous complex at Magnet Cove,

Arkansas. U. S. Geol. Surv. Prof. Pap., 425, 95 p.

- ERNST, W. G. (1966) Synthesis and stability relations of ferrotremolite. Amer. J. Sci., 264, 37-65.
- FRECHEN, J. (1963) Kristallisation, Mineralchemismus und Förderfolge der Mafitite vom Dreiser Weiher, Eifel. Neues Jahrb. Mineral., Monatsh., 1963, 205–225.
- GELLER, S. (1967) Crystal chemistry of the garnets. Z. Kristallogr., 125, 1-47.
- H. J. WILLIAMS, G. P. ESPINOSA, AND R. C. SHERWOOD (1964) Importance of intrasublattice magnetic interactions and of substitutional ion type in the behavior of substituted yttrium iron garnets. *Bell Syst. Tech. J.*, 43, 565-623.
- GOLD, D. P. (1966) The minerals of the Oka carbonatite and alkaline complex, Oka, Quebec. Pap. Proc., Int. Mineral. Assoc., 4th Gen. Meet., Mineral. Soc. India, 109–125.
- HUCKENHOLZ, H. G. (1965a) Der petrogenetische Werdegang der Klinopyroxene in den tertiären Vulkaniten der Hocheifel.
 I. Die Klinopyroxene der Alkaliolivinbasalt-Trachyt Assoziation. Beitr. Mineral. Petrog., 11, 138-195.
- (1965b) Der petrogenetische Werdegang der Klinopyroxene in den tertiären Vulkaniten der Hocheifel. II. Die Klinopyroxene der Basanitoide. *Beitr. Mineral. Petrog.*, 11, 415-448.
- (1966) Der petrogenetische Werdegang der Klinopyroxene in den tertiären Vulkaniten der Hocheifel. III. Die Klinopyroxene der Pikritbasalte (Ankaramite). *Beitr. Mineral. Petrog.*, **12**, 73–95.
- (1969) Synthesis and stability of Ti-andradite. Amer. J. Sci., Schairer Vol., 267-A, 209-232.
- ITO, J., AND C. FRONDEL (1967) Synthetic zirconium and titanium garnets. Amer. Mineral., 52, 773-781.
- JUURINEN, A., AND K. HYTÖNEN (1952) Diopside from Juva, Finland. Bull. Comm. Géol. Finlande, 157, 145-146.
- KASHKAI, M.-A. (1944) The augites from Talysh (Azerbaidzhan). Dokl. Akad. Nauk SSSR, 43, 351-353.
- KING, B. C. (1949) The Napak area of southern Karamoja, Uganda. Uganda Geol. Surv. Mem., 5, 57 p.
- LARSEN, E. S. (1942) Alkalic rocks of Iron Hill, Gunnison County, Colorado. U. S. Geol. Surv. Prof. Pap., 197-A, 1-64.
- LEMAITRE, R. W. (1962) Petrology of volcanic rocks, Gough Island, South Atlantic. *Geol. Soc. Amer. Bull.*, **73**, 1309–1340. LEWIS, J. F. (1967) Unit-cell dimensions of some aluminous
- natural clinopyrozenes. Amer. Mineral., 52, 42-54.
- LUPANOVA, N. P. (1934) Basaltic hornblende and augite from monchiquite of Khibina Mountains. Trudy Pétrog. Inst. Akad. Nauk SSSR, 6, 53-64.
- Müller, K. (1936) Augit vom Vesuv. Neues Jahrb. Mineral., Centralbl., 1936A, 116–122.
- MURRAY, R. J. (1954) The clinopyroxenes of the Garbh Eilean sill, Shiant Isles. *Geol. Mag.*, **91**, 17–31.
- PHILLIPS, B., AND A. MUAN (1960) Stability relations of iron oxides: phase equilibria in the system Fe₃O₄-Fe₂O₈ at oxygen pressures up to 45 atmospheres. J. Phys. Chem., 64, 1451-1453.
- PRESNALL, D. C. (1966) The join forsterite-diopside-iron oxide and its bearing on the crystallization of basaltic and ultramafic magmas. Amer. J. Sci., 264, 783-809.

- PULFREY, W. (1950) Ijolitic rocks near Homa Bay, western Kenya. Quart. J. Geol. Soc. (London), 105, 425-459.
- PUTMAN, H.-M. (1942) Analyse chimique d'une augite du Cape Tourmente. Naturaliste Can., 69, 261-263.
- QUARENI, S., AND R. DE PIERI (1966) La struttura dell'andradite. Mem. Accad. Patavina, Sci., Let., Arte, Cl. Sci. Mat. Nat., 78 (1956–1966).
- SCHAIRER, J. F., AND N. L. BOWEN (1942) The binary system CaSiO₃-diopside and the relations between CaSiO₃ and akermanite. Amer. J. Sci., 240, 725-742.
- SCHARBERT, H. G. (1966) Andraditführende Einschaltungen im Marmor von Hartenstein (Kl. Kremstal, N. Ö.). Neues Jahrb. Mineral., Montash., 1966, 221–223.
- SEGNIT, E. R. (1953) Some data on synthetic aluminous and other pyroxenes. *Mineral. Mag.*, **30**, 218-226.
- SHAPIRO, L., AND W. W. BRANNOCK (1962) Rapid analysis of silicate, carbonate, and phosphate rocks. U. S. Geol. Surv. Bull., 1144-A, A1-A56.
- SHEPHERD, E. S., AND G. A. RANKIN (with optical study by F. E. Wright) (1909) The binary systems of alumina with silica, lime and magnesia. *Amer. J. Sci.*, **28**, 293–333.
- SIMPSON, E. S. W. (1954) The Okonjeje igneous complex, Southwest Africa. Trans. Geol. Soc. S. Ajr., 57, 125-166.
- SKINNER, B. J. (1956) Physical properties of end-members of the garnet group. Amer. Mineral., 41, 428-436.
- SWANSON, H. E., M. I. COOK, T. ISAACS, AND E. H. EVANS (1960) Standard X-ray diffraction powder patterns. U. S. Nat. Bur. Stand. Circ., 539, (vol. 9), 22–23.
- TAVLOR, H. P., J. FRECHEN, AND E. T. DEGENS (1967) Oxygen and carbon isotope studies of carbonatites from the Laacher See district, West Germany, and the Alnö district, Sweden. *Geochim. Cosmochim. Acta*, 31, 405–430.
- TILLEY, C. E., AND J. GITTINS (1961) Igneous nepheline bearing rocks of the Haliburton-Bancroft province of Ontario. J. Petrology, 2, 38–48.
- TYLER, R. C., AND B. C. KING (1967) The pyroxenes of the alkaline igneous complexes of eastern Uganda. *Mineral. Mag.*, 36, 5-21.
- VILMINOT, J. C. (1965) Les enclaves de peridotite et de pyroxenolite dans le basalte du Rocher du Lion. Bull. Soc. Franc. Mineral. Cristallogr., 88, 109-118.
- WILKINSON, J. F. G. (1957) The clinopyroxenes of a differentiated teschenite sill near Gunnedah, New South Wales. *Geol. Mag.*, 94, 123–133.
- (1966) Clinopyroxenes from the Square Top intrusion, Nundle, New South Wales. *Mineral. Mag.*, **35**, 1061–1070.
- WIMMENAUER, W. (1962) Beiträge zur Petrographie des Kaiserstuhls. Teil IV. Die Gesteine der phonolithischen Familie. Teil V. Die subvulkanischen Breccien. Neues Jahrb. Mineral., Abhandl., 98, 367-415.
- YAGI, K. (1953) Petrochemical studies of the alkalic rocks of the Morotu district, Sakhalin. Geol. Soc. Amer. Bull., 64, 769– 810.
- (1966) The system acmite-diopside and its bearing on the stability relations of natural pyroxenes of the acmitehedenbergite-diopside series. *Amer. Mineral.*, **51**, 976–1000.
- YODER, H. S., JR., AND C. E. TILLEY (1962) Origin of basalt magmas: an experimental study of natural and synthetic rock systems. J. Petrology, 3, 342-532.