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ABSTRACT

KINETICS AND THERMODYNAMICS OF INTRACRYSTALLINE DISTRIBUTIONS

ROBERT F. MUELLER

Goddard SPace Flight Center, National Aeronautics and Space Administration, Greenbelt, Maryland 20771

A general kinetic and thermodynamic model is presented for the distribution of two or more particles between two
or more lattice sites. Certain qualitative aspects of the general model are discussed in relation to complex ferromag-
nesian minerals and quantitative versions of the equation are developed for the quasi binary case with all sites behaving
as ideal solutions.

Although the integrated form of the rate equation is obtained only for the ideal, two-site case of the quasibinary
crystal, the forms of the rate equations and their implicit solutions are also discussed in some detail for three or more
sites. It is shown that the quasi binary model yields a system of nonlinear, first-order differential equations. As a
consequence the atomic fraction on any given site is a function only of the atomic fraction on one other site, and this
is true for both the rate and equilibrium equations.

An attempt is also made to calculate the specific rate constant and free energy of activation for orthopyroxene,
and applications to the study of the thermal history of rocks are suggested.

INTRODUCTION

In a sense all rate and equilibrium phenomena can be
considered as distribution problems in which a certain as-
sembly of atoms, ions, or other particles are distributed
among a given number of lattice sites. In the limiting case
of equilibrium these particles change "positions" only in a
detailed microscopic sense but maintain statistically con-
stant occupation numbers at each site. This results in the
macroscopically static identity known as a "phase assem-
blage." But in the case of rate phenomena these distribu-
tions change with time so that the quantity, chemical char-
acter and detailed internal structure of each phase also
change in a macroscopic sense. In this paper we shall be
concerned with kinetic and equilibrium aspects of the in-
ternal or homogenous intracrystalline distributions of fer-
romagnesian silicates with particular emphasis on the pyrox-
enes and amphiboles.

Ordinary phase equilibria are not usually regarded as dis-
tribution problems because many of them involve transfor-
mations between nearly stoichiometric phases for which
the distributions are relatively constant. However, such
transformations are characteristic of simple systems. Much
more common in nature are the complex solid solutions
from which the distribution character of phase equilibria is
readily apparent in the sympathetic variations of the com-
positions of coexisting minerals. The thermodynamic signif-
icance of these heterogeneous distributions were initially
stressed by Ramberg (1944, 1952) and in recent years they
have come to play an increasingly important role in the in-
terpretation of mineral assemblages.

Interest in the intracrystalline distributions of the ferro-
magnesian silicates dates at least to the classic work of
Goldschmidt (1927) who tried to correlate such parame-
ters as the ionic radius and bonding and polarization char-
acteristics of the ions with crystal structure. An analogous
approach was also employed by Ramberg (1954) and by
DeVore (1957).

Although the classical approach to the solution of crystal
structures by X-ray diffraction involves the determination
of stoichiometric distributions, some of the first evidence
for nonstoichiometric distributions in a complex silicate
was obtained by Whittaker (1949) in his study of the am-
phibole crocidolite. A more recent and petrologically im-
portant contribution of this type is the determination by
Morimoto, Appleman and Evans (1960) of the structures
of c1inoenstatite and pigeonite. However, most of the pres-
ent interest in this general subject was stimulated by the
work of Ghose (1961) on the distribution of Mg2+ and
Fe2+ in cummingtonite. Presently investigations of this
type are being pursued by a number of workers using X-ray
diffraction and such recently developed techniques as in-
frared, Mossbauer and electron spin resonance spectros-
copy.

Study of the kinetics of intracrystalline distributions
(order-disorder phenomena) has received its greatest impe-
tus in metallurgy. A particularly important contribution to
theoretical aspects of this problem was made by Dienes
(1955) who adapted energetic analogues of the early equi-
librium model of Bragg and Williams (1934).

When the relatively simple metallic alloys are ordered or
disordered, all of the particles and lattice positions are di-
rectly involved and large energy and structural changes
may occur. In such systems the degree of order is conve-
niently characterized by a parameter 0 which is limited by
the values zero and unity, corresponding to completely dis-
ordered and ordered states respectively. In the disordered
state all the lattice sites become energetically equivalent
and there is no site preference, whereas in the ordered
state the different atoms are almost completely segregated
into the nonequivalent sites.

In the case of certain complex crystals such as the ferro-
magnesian silicates it appears that the intracrystalline dis-
tributions may be more conveniently treated by a modified
form of the Dienes theory (Mueller, 196 7a) and which is
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closely analogous to the models employed for heteroge-
neous distributions. In these ferromagnesian crystals only a
fraction of the lattice positions and particles may partici-
pate directly in the order-disorder phenomena. For exam-
ple, in the pyroxenes and amphiboles Mg2+ and Fe2+ may
change their site occupancy numbers as a function of com-
positional and temperature changes, while Si4+ and 0'- re-
main relatively fixed in their positions. Also the ionic char-
acteristic such as radius and charge of such particles as
Mg2+ and Fe2+ are quite similar so that mutual substitution
readily occurs over a wide range of compositions and with
minimum lattice distortion. Under these circumstances it
might be expected that the exchange energies would be rel-
atively independent of the composition at constant volume
(or pressure) and temperature and that the identities of
the sites would be maintained over the entire temperature
range by the relatively rigid framework of nonparticipating
particles. Such characteristics imply ideal or near-ideal
mixing on each site with a separation of the sites by con-
stant standard exchange energies.

Although the postulate of near constant exchange en-
ergy simplifies the treatment of order-disorder phenomena
in certain complex silicates where Mg2+ and Fe'+ are the
dominant exchangeable cations, this is not likely where spe-
cies such as Fe3+, AP+, Ca2+, Na" of diverse charges and
radii are concerned. Indeed it is likely that in such systems
the exchange energies are even more compositionally de-
pendent than in the metallic alloys. However, it is still pos-
sible to discuss these types of exchange phenomena qualita-
tively in terms of the most general type of rate equation
which is here proposed. With these model resources avail-
able we shall concern ourselves with the following aspects
of intracrystalline distributions:

1. The forms of the phenomenological rate equations in
terms of various concentration units, the structurally de-
pendent stoichiometric coefficients and the deduced rela-
tions between the concentration variables and the time

2. The temperature dependence of the rate and equilib-
rium constants

3. Mechanisms of exchange in terms of the theory of ab-
solute reaction rates

4. Interpretation of existing experimental and observa-
tional data in light of the theory

5. Implications of the rate and equilibrium studies m
the interpretation of the thermal histories of rocks.

PHENOMENOLOGICAL DEVELOPMENT

General model for two or more sites and particles. We may
begin by imagining the most general case possible, that of
a crystalline phase in which m different particles (atoms,
ions, etc.) are distributed among n nonequivalent sites.
Now, in principle, we might expect that there would be a
finite probability for any given particle to occupy any of
the available sites. However, we know that some of the
site occupation numbers will be vanishingly small. This is
especially true for the "ionic" crystals which are our major

concern here and in which certain sites are restricted to ei-
ther anions or cations. Consequently n in our model will
refer only to those sites which contain mutually exchange-
able ions m in number. To illustrate this we may consider
the following formula for an amphibole (Warren, 1930):

[M(4) HM(1) ],[M(2) ],[M(3) J,Sis022(OHh

This formula expresses the observation that in the amphi-
bole considered there are four major different kinds of
metal or cationic sites in addition to those for Si, and these
have been designated M(I), M(2), M(3), and M(4). Fur-
thermore the different sites are present in the relative
numbers indicated by the outer subscripts. These seven
sites of exchangeable cations per formula unit are asso-
ciated with a relatively constant framework of 8 Si, 220 and
20H. Although in very complex amphiboles there is consid-
erable substitution in the M positions by such species as
Fe3+ and AJ3+, these positions are usually occupied by
Mg2+, Fe2+ and Ca>. Similarly the complex amphiboles
usually show considerable AP+ in the Si4+ position, but this
is a topic beyond our present discussion.

If we now consider the distribution of Mg2+, Fe2+ and
Cas+ among the M(I), M(2), M(3) and M(4) sites
we note that there is very strong tendency for Ca2+ to
enter the M (4) site (Warren, 1930) while Mg2+ and Fe2+
are concentrated in the M (1), M (2) and M (3) sites. This
partitioning is so strong that the composition of the crystal
may approach stoichiometric Ca2(Mg, Fe)5 Sis022(OH)2
(actinolite). However in the absence of Ca2+ the M(4) site
shows a strong preference for Fe2+ while Mg2+ is heavily
concentrated in the remaining sites (Ghose, 1961). Among
the pyroxenes analogous behavior is shown by Ca (Mg, Fe)
Si206 and (Mg, Fe)Si03 (Warren and Bragg, 1928; Ghose,
1964) .

The marked partitioning of Ca2+ and Fe2+ into the M(4)
site of cummingtonite is a consequence of the highly dis-
torted polyhedron of oxygen ions which surround this site,
while the relatively small degree of partitioning among the
M(I), M(2) and M(3) sites results from comparative sim-
ilarity and regularity of these octahedra.

In the cases of species such as AP+, Mg2+ and Na+ which
have different valence states there is a strong tendency for
coupling such that ions of high charge are concentrated in
positions near those of low charge. This was noted by
Whittaker (1949) who found that in crocidolite Fe3+
tended to concentrate in the M(2) site while Nat concen-
trated in the adjacent M (4) site so that Pauling's (1948)
rule for local electroneutrality is satisfied. According to Pa-
pike and Clark (1968) the same relationships hold for the
amphibole glaucophane.

On the phenomenological level we may represent the
time rate of change of concentration of a species K on the
ith lattice site of any crystal as follows:
dC.K m-l n-l m-l n-l

--'- = L L KiKjLq,iK/,CiKCjL - L L KhKq,hKCjKC;L. (1)
dt L~l i-1 L~l j~l

(i =i, K,r. L)
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TABLE 1. DIFFERENT TYPES OF CRYSTAL LATTICES TO WHICH EQ. (1) AND (2) ApPLY

No. of Types of participating
Example Compositional effect Thermal effectsites particles

I few quite different simple alloys large variation in q, factors KjiO q,j;jq,ij-->l at high temperature

II many quite similar complex silicates small variation in q, factors KjiO q,ji!cf.>ij,r.1at high temp.

III many quite different complex silicates large variation in q, factors KjiO q,ji/q,ij,r.1 at high temp.

The C's which enter into this expression are the molar or
ionic concentrations (per ern"). KiKjL and K/"iK represent
the specific rate constants for the species and sites indicated
by the super and subscripts respectively. For example
KiKjL is the rate constant for the transport of the species
K from the i site and L from the j site. These constants are
by definition functions only of the temperature and the
volume (or pressure). The <p's are analogous to activity
coefficient products in macro systems and in general are func-
tions of the total crystal composition as well as the volume
and temperature.

Although Eq, (1) is quite general as written we shall
find it necessary to confine our quantitative discussion to
the more restricted forms for which all <p = 1 and which
correspond to ideal mixing on each site.

Equation (1) states that the time rate of change of con-
centration of a given particle on any site is the sum of the
positive and negative exchange rates with every other par-
ticle on every other site. In elementary kinetic terms a K
particle on an i site may be thought of as "reacting" with
an L particle on a j site to produce a K particle on a j site
and an L particle on an i site.

It may be shown, that when (dCiK/dt) = 0, correspond-
ing to equilibrium, that each pair of terms must inde-
pendently equal zero so that in general

where K, 0 iLK is the equilibrium constant and, like Kj\K
and K iKjL, is a function only of the temperature and vol-
ume or pressure.

It should be noted that in this derivation there is no
need to assign chemical potentials to individual particles on
each site; all that enters into equations are the energy
differences between the state of order or disorder and the
activated state.

We can now recognize a spectrum of possible lattice
types to which the general Eqs. (1) and (2) might be ap-
plied. However, it is useful to divide this spectrum into
certain representative types for which different develop-
ments of the equations prove convenient. These types are
described in Table 1.

Type I of Table 1, to which the Dienes' modification of
the Bragg and Williams model is applicable, presents ana-
lytical difficulties because the <p factors are exponential

functions of the composition so that numerical solutions of
Eq. (1) are required even for the simplest case of binary
alloys. Type II on the other hand permits the simplest de-
velopment possible when the <p factors all reduce to unity
or are almost constant over certain compositional ranges.
It is this type of behavior which is our primary interest
here.

Type III on the other hand contains elements of both of
the previous types. In the simple alloys of Type I the
differences in the particles result largely from such factors
as atomic size, but in Type III crystals gross differences 01
ionic charge may also occur as already discussed for the
amphiboles crocidolite and glaucophane. It seems likely
that the latter difference might result in even larger varia-
tions in the <p factors than occurs in the metallic alloys.

As in the case of Type II the K, 0 i<pj;/ <Pij factors or dis-
tribution coefficients of Type III also do not reach unity at
high temperatures. In both types this results directly from
the maintenance of the nonequivalence of the lattice sites
by the relatively inert framework structure.

(2)

Quasibinary crystals. A number of important applications
of the model occur in systems of two exchangeable ions
distributed over two or more sites. Among the amphiboles
and pyroxenes the greatest interest is attached to the dis-
tribution of Mg'+ and Fe2+ since these species show a wide
range of mutual substitution because of their similarity,
lend themselves well to experiment by several techniques,
and should provide a good test for the simplest version of
the model.

Since only two ions are involved, the complexity of Eqs.
(1) and (Z) are considerably reduced by the conditions of
the type:

(3)

where the Xs refer to the atomic or ionic fraction of the
K and L species on each site. It is in fact most convenient
to transform Eqs. (1) and (2) into forms which incorporate
these ionic fractions. However, if this is done it is also
necessary to introduce the proper stoichiometric coefficients
Vi j and Vj i which relate the concentrations on the individ-
ual sites to the total concentration Co and which are par-
ticularly important in crystals which possess nonequivalent
sites in different numbers.

If now, as allowed by the condition (3), we omit refer-
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ence to the species involved, Eq. (1) becomes:

n-l

- Co L VjiKjiq,j,xj(l - X;)
j"",l

(j "" i). (4)

In this expression Co is the total concentration of all n
sites per unit volume of the crystal and the Xs are the
atomic or ionic fractions of one of the two exchangeable
species on the sites i and j. Furthermore it will be apparent
that in each case Vi j = Vj i '

It should be mentioned that Co is not quite constant, al-
though it is treated as such here. The reason for this is
that Co will vary with the K/L ratio since the unit-cell di-
mensions of the crystals are functions of this ratio. How-
ever, in all cases under discussion the amount of this varia-
tion is much smaller than other uncertainties and will have
no bearing on the result.

To illustrate Eq. (4) we shall first make use of the or-
thopyroxene type lattice since this type presents the sim-
plest case of only two nonequivalent sites which occur in
equal numbers. Consequently V = Yz and we obtain

sx, 1 [ ]- -- = - Co KWP1,Xl(1 - X,) - K'lq,21X,(1 - Xl). (5)
dt 2

For any fixed bulk composition of the crystal the atomic
fractions on the different lattice sites will be related as fol-
lows:

Xl + X, = 2X,

where X is the total atomic fraction for each exchangeable
species in the crystal.

If now we consider the case of ideal mixing' on both lat-
tice sites </>,2 = </>21 = 1, and substitution of (6) into (5)
yields

sx, 1 [( 0 ( ) 0- -- = - COK1' 1 - K'l ) Xl 2 + (2K'l X - 2X
dt 2

+ K21
0 + 1)Xl - 2K2•oX], (7)

where K 21 ° is the equilibrium constant and is equal to

K21
K210

= K-:'
For the limiting case of equilibrium we also have

\ '

X,(l - 2X + Xl)
K'lO = .

(2X - Xl)(l - Xl)

Equation (7) may be integrated directly for both the
cases of ordering and disordering under isothermal-isobaric
conditions since under these conditions K12, K21 and K21 0

remain constant (Mueller 1967a). Then for ordering we
obtain:

1 It is important to keep in mind that ideal mixmg on indi-
vidual lattice sites is in general equivalent to non-ideal mixing in
the crystal as a whole (Mueller, 1962, Matsui and Banno, 1965).

b (b2 )1/21 X,'
eXl+- - - - ca

2 4
b' )l/2ln b b' )1/21 , (9)

2 (- - ca eX 1 + - + (- - ca
4 2 4 I X,·

and for disordering:

12 CoK12tlt

(b2 )1/2 ( b) IX,"
- - ea + eXl +-

1 4 2
= --~~-ln ---~~-----I(10)b' 1/2 b2 1/2 b'

2 (4 - ea) (4 - ca ) (exl + 2) x,'

where the constants are defined as follows:

c = 1 - K'lo
b = 2K2loX - 2X + K'lo + 1
a = - 2K'loX

(6)

These equations have an interesting and useful form in
that a single rate constant occurs only on the left while the
constants on the right contain only the bulk composition X
and the equilibrium constant K21 ". Since both of the latter
parameters are measurable independently of the rate data it
is left merely to measure X, as a function of /It the time
interval. Although both Eqs. (9) and (10) yield curves of
similar form, the case of disordering will be stressed here
since it lends itself best to the laboratory time scale.

If we wish to disorder the crystal according to Eq. (10)
it is necessary to begin with an ordered crystal with the
corresponding low temperature values of K21 0, X, and X 2·

However, the value of K21
o, which enters into Eq. (10)

through a, band c and which determines the ultimate de-
gree of equilibrium disorder is that which corresponds to
the disordering temperature. The initial low temperature
value of K21

0 occurs only implicitly in (10) through its de-
termination of the initial value X, = X,' of the lower
limit of integration. In graphical terms this yields a plot of
};; COK'2/lt as a function of X,.

For convenience in relating Eq. (10) to the experimental
data on the pyroxenes we choose the following values of
the equilibrium constants:

(8)

K21
0 (low temp.) = 51

K'lo (high temp.) = 3.24

Then for a crystal with X = 0.5, Eq, (8) yields

X, (initial) = 0.878
Xl (final) = 0.643

The isothermal-isobaric equilibrium distribution corre-
sponding to the low-temperature ordered crystal with K21°
= 51 is shown as curve (1) in Figure 1, while the high
temperature disordered equilibrium distribution with K21°
= 3.24 is shown as curve (3) in this figure. The curve (2)
corresponding to K21 ° = 10, is for an intermediate tempera-
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ture of disordering. Also shown for comparison is the 45°
dashed line which represents complete disorder and which
is excluded by the model except as a limiting case.

The arrows designated (a), (b) and (c) in Figure 1 in-
dicate the displacement of points on the curve which oc-
curs during disordering of two crystals of different bulk
compositions, one with X = 0.5 and the other with X =
0.6. The corresponding rate curves are shown in Figure 2.

As an illustration of the next step in complexity involv-
ing a three-site quasibinary lattice we may utilize the struc-
ture of the amphibole actinolite. However, we shall not be
concerned primarily at this point about the actual mineral
actinolite or whether it indeed behaves as outlined here.
We shall assume simply that all the M (4) sites are un-
available because they are filled with Ca2+ and that Mg2+
and Fe2+ are distributed among the M (1), M (2) and M (3)
sites. Now there are two sites each of M(l) and M(2) but
just one of M (3) per formula unit since M (3) occupies the
crystallographic origin (Warren, 1930). Consequently the
bulk atomic fraction X is related to these sites as:

5X = 2Xl + 2X2 + X3,

where the X's refer to one of the two mutually substituted
ions so that

x = Mg'+/(Mg2+ + Fe2+).

There are then three simultaneous differential equations
such as (4) which express the variation of Xl' X2 and X3
with the time. However, because of (11) only two of these
equations are independent. If we choose the equations for

x
>-u
z
«
o,
::::J
U
Uo
w
>--v;

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

SITE OCCUPANCY X2

FIG. 1. Equilibrium isotherms (Curves 1, 2 and 3) for the
distribution of two atoms among the nonequivalent sites 1 and
2. The lettered arrows indicate the movement of points on the
curve, with increasing temperature for two different values of
the total atomic fraction.
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X I and X 2 and at the same time assume ideal solutions at
all three sites we obtain:

(12)

2 1 ]-5Kl,Xl(l - X,) - 5K3,X3(1 - X2) •

If now (11) is substituted into (12) and (13) these be-

(13)

come

sx,
- = A' + B'Xl + C'X, + D'X1X, + E'(Xl)', (14)dt

ex,
- = A + BXl + CX2 + DX1X, + E(X,)', (15)dt

with the constants defined as follows:

(11) A = Co(K"X)

B = Co (2KJ' - 2K3o)5 - 5 "

(
2 1 2 )C = Co - -K·'l - -K'3 + K23X- -K32 - K32X5 - 5 5

(
2 2 2 2)D = Co -Kol - -K'3 - -Kl·, + -K3'

5" 5 5 - 5

Ii = Co ( - ~ K'3 + fK32)
A I = CO(K31X)

In order to obtain even an implicit solution for (14) and
(15) it is desirable first to eliminate the time. These two
equations then yield the following first order equation:

[A + BX, + CX, + DX1X, + E(X,)']dXl
- [A' + B'Xl + C'X, + D'X1X, + E'(Xl)']dX, = O. (16)

This equation is not exact and although Boole (1859) dis-
cussed a solution to a more restricted version of this gen-
eral form, the writer is unaware of a solution for this gen-
eral form.

It would of course be possible to determine the nature
of the function if reasonable values of the rate constants
could be estimated, but so far this information seems
unobtainable. In any case, the complexities of these equa-
tions increase rapidly with the number of nonequivalent
sites.
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FIG. 2. Isothermal disordering curves for two different total
atomic fractions X = 0.5 and X = 0.6 and two different tem-
peratures. The letters are the same as appear in Fig. 1.

In the absence of explicit solutions for equations of the
type (16) it is still possible to derive information from
their general forms and from the implicit solutions. The
system of rate equations of the form (4) will always lead
to a system of nonlinear first order equations in the site
occupancy factors. Thus in general for n sites we obtain
the system:

where X 1 is regarded as the independent variable. So that
Eq. (16) for three sites yields the single equation

ex,
dX: = j,(Xl, X,).

The implicit solutions of the system (17) are

Xn_l = Xn_l(Xl, Cl ••• , Cn-2),

where Cs are constants of integration. Also Xn may be
obtained from relations of the type of (11). Thus the solu-
tion of (16) becomes

X2 = X,(X1, Cl). (19)

Once solutions of the form of (18) have been obtained
they may be substituted back into the original rate equa-
tions of the form (4) involving the time. In this manner
all the site occupancy factors except X i may be eliminated
and the equation integrated as in the case of (7) to yield
X i as a function of 6.t.

As an interesting and important illustration of the rate
equations one step beyond (14) and (15) we may choose
the model for the cummingtonite type lattice in which the
exchangeable cations are distributed over four nonequiva-
lent sites of the amphibole structure. The equation analo-
gous to (11) then is

7X = 2Xl + 2X, + X3 + 2X, (20)

From this number of sites there will result three indepen-
dent rate equations analogous to (12) and (13) which for
brevity may be presented as in Table 2. In these equations
X. has been regarded as eliminated through the relation
(20) and if this is done these equations can be trans-
formed into three equations analogous to (14) and (15),
but with the three site occupancy factors, X " X 2, and X 3

appearing explicitly in each. If the time were now elimi-
nated from the latter the existence of the following solu-
tions would be implied:

X, = X,(Xl, Cl, C,),
X3 = X,(X

"
Cl, C,).

It is of some importance that the existence of these sys-
tems of ordinary first order equations implies that if any
one of the compositional variables is chosen as independent
all the others are functions only of this variable. Further-

TABLE 2. RATE CONSTANTS AND CORRESPONDING
STOICHIOMETRIC COEFFICIENTS FOR THE

CUMMINGTONITE TYPE LATTICE

(17)

Rate I Stoichiometric
constant coefficien t
--

r" 2/7
K21 2/7

sx, K13 1/7
-- K31 1/7

dt IKu 2/7
lK41 2/7

(K21 2/7
JK12 2/7

sx, K23 1/7
--1K32 1/7

dt lK2< 2/7
K42 2/7

r 2/7
K23 2/7

dX3 K31 2/7
-- K13 2/7

dt K34 2/7
lK43 2/7

(18)
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more, although the equations have been derived under the
assumptions that the <p factors were all equal to one, the
same type of dependency would hold if these factors were
functions of the same set of variables as appear in the rest
of the rate equation. Of course the solutions would be even
more complicated in this event.

However, if the <p factors were at the same time func-
tions of other compositional variables other than those of
the quasibinary system, the above stated simple depen-
dency could no longer hold. Such a situation might arise in
a real crystal when the framework structure shows compo-
sitional variation.

Effect of temperature. One of the central aspects of the
study of intracrystalline exchange is the effect of tempera-
ture on the equilibrium and rate constants. The effect of
temperature on the equilibrium constant is sometimes
known from experiments. In the examples studied so far
this change has been found to be in accord with simple
thermodynamic considerations. Thus if K2l

o is an ordering
equilibrium constant and f'lE210 is the standard internal en-
ergy change- in the exchange process then

er RT'

Now the internal energy is related to the Helmholtz free
energy as follows:

The quantity f'lS210 is the standard entropy change and
would be expected to be small. Consequently if we write the
exchange reaction for ordering so that f'lF2lo < 0 we should
expect that !'lEn 0 < 0 also. As a consequence of the nega-
tive value of f'lE210, K2l

o decreases toward unity. We shall
see that this accords with the examples studied so far.

Similarly we know that the experimental energy of activa-
tion Eex * is related to the rate constant K as follows:

a InK Eex*
---=--
et RT'

We shall see that Ecx * is always positive since it contains the
potential energy change of the barrier between stable states.
Consequently

es.;
aT > 0

aKl'>O,
aT

while

If we differentiate (25) we obtain

aK2
::'" = _~ (aK21 _ K'loaK12).

or K12 et er

1 Internal energy is used here to be consistent with the concen-
tration standard state, which is formally required in the kinetic
treatment.

Then as a consequence of the relations (24) we find that

alnK12 alnK"
--->---,or or (27)

so that

Thus for each increase in the temperature the disordering
rate constant increases more proportionately than that for
ordering and this results in a decrease in K21 o.

To see how the changes in the rate and equilibrium con-
stants with temperature affect the time scale of disordering
we rewrite Eq. (10) as follows:

InZ == Y. (28)

(21)

Here In Z refers to the difference of the log terms with the
limiting composition X/and X /'. If we compare the values
of Y corresponding to the same values of Xl for both curves
(b) and (c) of Figure 2 we see that K l:/:>.t is greater the
lower the temperature of disordering. Then since K12 has a
smaller value at the lower temperature, f'lt the time interval
at which the same value of Xl is attained must increase
with decreasing temperature of disordering.

On the other hand if we now compare the fractional at-
tainment of equilibrium disorder for the two curves, we
obtain a somewhat different result. For example, in the
case of curve (b), one half the equilibrium degree of disor-
der is attained when Xl = 0.840 whereas in the case of
(c) one half disorder is attained when Xl = 0.895. In this
case Y decreases almost y,; with the temperature of disor-
dering. As a result the time interval f'lt for fractional disor-
dering may in some cases remain essentially constant. These
results are of considerable interest in the interpretation of
experimental data.

(22)

(23)
MECHANISMS AND ABSOLUTE REACTION RATES

It is desirable to further elucidate the rate equations al-
ready presented by considering the exchange mechanism
from the standpoint of the theory of absolute reaction rates
(Glasstone, Laidler and Eyring, 1941). According to this
theory if two particles A and B are concentrated in the lat-
tice sites 1 and 2 respectively in the low temperature or-
dered state, then for disordering to occur they must first
pass through an activated transitional state astride a poten-
tial energy barrier as shown in Figure 3. The change of
potential energy .f'lU* is always positive because the stable
ordered and disordered states lie in potential wells. Also
since the potential energy changes make the largest contri-
bution to Eex * the energy of activation, the magnitude of
this quantity is directly related to the corresponding value
of !:;U*. However, we have already seen that Eex12* is
greater than Eex21* and this is the reason Figure 3 has been
constructed with f'lU12* > f'lU21*.

The transitional state is regarded as being in equilibrium

(24)

(25)

(26)
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FIG. 3. Potential energy diagram for an intracrystalline ex-
change process involving particles A and B in sites 1 and 2.
The potential energy differences of individual particles and sites
are not distinguished and the shapes of the wells and barrier
have no significance. Arrows indicate the disordering process.

with the reactant state and as possessing thermodynamic
properties just as does this state. Similarly in the ordering
process the particles of the disordered state are regarded as
being in equilibrium with the same activated complex.

According to the theory the specific rate constant K may
be expressed as

kT
K = K-K*

h

where k is Boltzmann's constant, h is Planck's constant, K is
the transmission coefficient and K* is the equilibrium con-
stant linking the particles in the reactant and activated
states. But Eq. (29) takes this simple form only if all the
particles are regarded as forming ideal solutions (Glas-
stone, et al., 1941). Also, in conformity with common prac-
tice and because of lack of information on K we set this
parameter equal to one.

The equilibrium constant is defined as

K* = exp (-L::.G*/RT),

where t.G* is the change in Gibbs free energy in going
from the reactant to the activated state.

Technically if the standard state is defined in concentra-
tion units as it is here Eq (29) should be differentiated at
constant volume to obtain the temperature effect. If this is
done we obtain the following alternative expression for Eq.
(23):

(31)

so that

Eex* = RT + L::.E*, (32)

where t.E* is the change in internal energy on activation.
Also

L::.H* = L::.E* + PL::.V*, (33)

where t.H* is the enthalpy change and t.V* the volume
change of activation.

Although t.V* cannot be readily estimated it should not
be large, and since P the pressure is low to moderate in
most experimental situations, t.E* ~ t.H* and .t.G* :::::::
D.F*where t.F* is the Helmholtz free energy change.

Now Eq. (10) provides us with a method of calculating
the rate constant of disordering K12 from the experimen-
tally determinated values of K21

o, Xl and t.t. However, a
crude value of Kl, can also be estimated even though Xl
and t.t are only poorly known. To make this estimate we
define a "characteristic time" of disordering for which Xl
has just virtually attained its equilibrium value and the
quantity Y of Eq. (28) has some value Yo. If we examine
Figure 2 we see that for curves (a) and (b) a convenient
value is Yo = 1 so that if the characteristic time is t.t
then

(29)

Once K12 is known it is possible to estimate D.G* through
Eq. (30) and then if the corresponding entropy change
.D.S* can be estimated, the expression t.G* = .D.H* -
Tt.S* can also be used to estimate t.H* or t.E* However
the estimation of t.S* is difficult. Now the exchange pro-
cess requires the simultaneous activation of both A and B
particles and the probability of this event is incorporated
into the rate constant as a frequency factor. This probabil-
ity will in turn be governed by the configuration of the ac-
tivated complex and since this involves a somewhat or-
dered state for A and B it seems likely that t.S* < o.
Since t.G* also is positive, we should expect that t.H* <
sc« and that ss» < ss=.

(30)

ApPLICATIONS TO THE PYROXENES AND AMPHIBOLES

We have already indicated that the derived model is ap-
plicable in various ways to the complex silicates. The quali-
tative aspects of the general model which distinguishes the
different lattice types have been presented in Table 1.
However, the development for the quasibinary solutions
appears particularly suitable to the Mg2+ - Fe2+ pyroxenes
and amphiboles such as orthopyroxene, cummingtonite, an-
thophyllite and actinolite.

At the present time only very limited experimental data
exist for the application of the rate equations, and the
thermodynamic data, although somewhat more abundant,
are also still in a preliminary stage. Thus the work of
Ghose and Hafner (1967) on orthopyroxene has indicated

(34)
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that continuous distribution curves analogous to those of
Figure 1 are adhered to. These authors have also shown
that when metamorphic pyroxenes are heated the curves
move toward the 45° line. Similarly the distribution curves
of rapidly quenched volcanic pyroxenes lie closer to the
45° line than do those of unheated metamorphic pyro-
xenes. Thus the existing data provide rather striking confir-
mation of the simple thermodynamic model represented by
Eq. (2). However, there is some evidence that the distribu-
tions obtained for orthopyroxene are not quite as simple as
those shown in Figure 1 for which </> factors are aU equal
to unity. If this is true the mixing on the lattice sites is
not ideal and may take a form similar to that already pro-
posed earlier (Mueller, 1962) for cummingtonite. However,
for the present purposes it will be adequate to assume that
if the </> factors which enter into Eq. (5) are not all unity
that they may at least be regarded as small over the range
of conditions discussed here.

Ghose and Hafner (1967) applied this simple ideal solu-
tion model to unheated metamorphic pyroxenes and ob-
tained a value of approximately 48 for K 210. Similarly for
the volcanic orthopyroxene they obtained K2I

O = 12.
Recently also a preliminary report was given by Hafner

and Virgo (1968) on the kinetics of disordering of ortho-
pyroxene.' They found that at 1000°C virtually the maxi-
mum degree of disorder was attained in about a day for a
crystal for which X; = MgUj(Mg2+ + Fe2.+) on the M1
site was approximately 0.7 and for which the total atomic
fraction X = Mg2","/(Mg2+ + Fe2+) was 0.6. If these data
are substituted into Eq. (8) the equilibrium constant for the
disordered state is K21 a = 2.33. Both this high temperature
value and the low temperature value of K21 ° = 48 may,
within the limits of uncertainty, be represented by curves
(1) and (3) of Figure 1 and curve (b) of Figure 2. Con-
sequently we may employ these curves directly to estimate
K12 by setting fECOJ(12,b.t = l. The characteristic time so
defined may be inaccurate by a factor of 10 or 100, but
this will have only a small influence on the value of l>.G*
thus determined. For example it may happen that the mea-
sured time actually corresponds to ~COKI2b.t = 100, but
this will change b.GI2* by only RT In 100, which is still
quite small relative to the magnitude of l>.G12 *.

If we now consult the unit-cell volume data (Robie,
Bethke, Toulmin and Edwards, 1966) we find that Co ~
0.032 mole ern:", although this value will vary slightly with
composition. Then since b.t = 8.64 X 104 sec per day we
find that KI2 at 1000°C is approximately 7.33 X 10-4 ern"
mole! sec". If we now solve Eq. (29) for l>.GI2* we find
this amounts to 232,800 calories at 1000°C.

Although the activation process involves the simultaneous
breaking of 12 M-O bonds, this value of ,b.G* seems high.
This is especially true in view of the 20,000 calories ob-

1 The values quoted here are somewhat different from the final
refined values (Virgo and Hafner, 1969), but this difference does
not change the calculations significantly.

tained for Eex* by Virgo and Hafner (1969). Such a large
difference between l>.G* and Eex * can be explained either
by large negative values of l>.S* or by a small transmission
coefficient. It is interesting that both of these effects are
possible and in the right direction from a theoretical stand-
point. Although there is no way to evaluate the transmission
coefficient, we may estimate ,b.S* by ignoring the RT term
in equation (32) and by setting Eex* equal to ,b.E* (or
b.H*). This yields b.S* c-: -167 e.u. It is interesting that
negative values of b.S* almost this large are encountered
from electrostatic forces when ions with high charges of the
same sign react in dilute aqueous solutions (Glasstone et
al., 1941). It is possible that a similar but somewhat magni-
fied effect is involved here.

Although no kinetic data comparable to the foregoing
yet exist for other pyroxenes and amphiboles, some data
of thermodynamic significance exist for cummingtonite.
An equilibrium model for the distribution of Mg2+ and
Fe2+ in this mineral was originally proposed (Mueller,
1962) to correlate the intracrystalline and heterogeneous
distributions of these ions for the coexisting minerals. This
correlation was based on the single distribution point which
has been measured by Ghose (1961) from X-ray data and
which first disclosed the strong concentration of Fe2+ in
the M (4) site. In the equilibrium model an attempt was
made to determine in a quantitative way the distribution
between the M (4) site (V sublattice) and the weighted av-
erage of the M(l), M(2) and M(3) sites (W sublattice)
over the entire range of composition. Two different equilib-
rium distributions were derived from the heterogeneous
equilibria between cummingtonite and actinolite. One of
these derived distributions is based on an ideal solution
model for both the V and W sublattices while the other is
equivalent to the assumption that all of the nonideality ob-
served in cummingtonite is concentrated in the M (4) site.
The ideal solution model for the V and W sublattice was
also applied by Matsui and Banno (1965) who showed
that it results in a fairly good fit of the macroscopic distri-
bution data for coexisting cummingtonite and actinolite.

Subsequent to Ghose's (1961) determination of the cum-
mingtonite distribution by X-rays a number of studies
were undertaken to determine the distribution over a wider
range. In particular Bancroft, Burns and Maddock (1967)
were the first to apply Mossbauer and infrared spectra to
this end. Although their experimental data show consider-
able scatter, they are in strong qualitative agreement with
the X-ray results. Unfortunately neither the X-ray nor
other published data are precise or abundant enough to es-
tablish the detailed course of the distribution curve or to
demonstrate the continuity predicted by the thermody-
namic model. More recently, however, Ghose and Hafner
(1968) examined 57Fe hyperfine Mossbauer resonance ab-
sorption spectra of 14 cummingtonites for values of X =
Mg2+j(Mg2+ + Fe2+) ranging from 0.02 to 0.62. These
spectra consist of two doublets, one for the smaller nuclear
quadrupole splitting attributable to 57Fe at the M (4) site
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(V sublattice) and the other of 57Fe at the M (1), M (2) and
M(3) sites (W sublattice) as previously determined by
Bancroft, et al. (1967). However, the doublets distinguishing
M(I), M(2) and M(3) from each other could not be re-
solved. Furthermore it is concluded by Ghose and Hafner
from the nearly identical temperature dependence of the
splitting at these sites that a similar degree of distortion
from the regular octahedron prevails at each of the three
types of sites. Thus the latest data tend to justify the group-
ing of sites into the V and W sublattices.

Interpretation of the data of Ghose and Hafner (1968)
also strongly supports the continuous distribution model.
Their points fall close to the curve for which Kvw 0 =
(1.8)7/2 and where 1.8 refers to the macroscopic distribu-
tion constant for coexisting cummingtonite and actinolite
(Mueller, 1961). Indeed, it appears that the fitted distribu-
tion curve even exhibits the same type of curvature shown
by the model which ascribes a small degree of non-ideality
to the M (4) site. If the latter situation holds true it will be
necessary to retain small 1> factors in Eq. (4) to adequately
treat the energetic behavior of this mineral.

GENERAL PETROLOGIC ApPLICATIONS

The intracrystalline exchange phenomena provide us
with a means of studying the thermal history of rocks and
meteorites which supplements those of the heterogeneous
reactions between coexisting minerals. However, it is im-
portant to realize that these two classes of phenomena may
frequently apply to quite different temperature ranges.
This is readily apparent if we consider the heterogeneous
exchange involving Ca-pyroxene and orthopyroxene.

CaFeSi,06 + MgSi03 µ CaMgSi,06 + FeSi03 (a)
Ca-pyroxen e orthopyroxene Ca-pyroxene orthopyroxene

This reaction is applicable to a variety of igneous and
metamorphic rocks and meteorites, and it has been shown
to reflect the temperature of crystallization rather well
(Kretz, 1963). Among known igneous rocks perhaps the
closest approach to equilibrium between coexisting minerals
is exhibited by the Stillwater complex of Montana (Hess,
1960; McCallum, 1968). McCallum has found that in this
complex macrocrystals of coexisting Ca-pyroxene and or-
thopyroxene have distribution coefficients of approximately
1.35, corresponding to magmatic or near magmatic temper-
atures. On the other hand these same macrocrystals also
exhibit exsolution lamellae. Within the Ca-pyroxene macro-
crystals, where these lamellae attain the greatest width, the

BANCROFT,G. M., R. G. BURNS,ANDA. G. MADDOCK(1967)
Determination of cation distribution in the cummingtonite-
grunerite series by Mossbauer spectra. A mer. Mineral. 52,
1009-1026.

BOOLE,GEORGE(1859) Differential equations. Chelsea, New York.
BRAGG,W. L. ANDE. J. WILLIAMS(1934) Effect of thermal

agitation on atomic arrangement in alloys. Proc. Roy. Soc.
(London) 145A, 699-730.

distribution coefficient for Fe>' and Mg2+ between unmixed
orthopyroxene and Ca-pyroxene host is about 1.8, which
corresponds to an un mixing temperature in the range of
600-700°C. Since some of these lamellae are of the order
of 50 microns in width it appears that Ca2+, Mg2+ and Fe2+
were able to redistribute themselves over this distance
within a single crystal during the slow cooling of this plu-
tonic rock. However, the retention of the high temperature
distributions by the macrocrystals indicates that redistribu-
tion on a scale of their dimensions did not occur.

If we know t.hat exsolution has occurred in Ca-pyroxene
it is predictable that intracrystalline ordering should have
occurred even more readily since the reaction coordinate of
exchange in the ordering process should be measured in
angstrom units rather than the microns required for the
diffusion path of unmixing. This follows because the acti-
vation energy per unit jump in exsolution should be of the
same order as that involved in ordering. As a consequence
we should expect overlapping ranges of temperatures in
which the different processes occur: (1) Heterogeneous
reactions such as (a) will occur only at high temperatures
or when at lower temperatures a rock is subject to differ-
ential stresses (Mueller, 196 7b); (2) Exsolution occurs
during slow cooling under static conditions with a lower
limit perhaps somewhere in the range of high grade meta-
morphism; and (3) Ordering of cations occurs throughout
the range of (1) and (2) but probably continues to even
somewhat lower temperatures than those for which exsolu-
tion is possible.

When cooling is rapid enough, as in certain volcanic
rocks and meteorites, a considerably disordered state may
be quenched in as is shown by the measurement of Ghose
and Hafner (1966). However, it is likely that the value of
12 observed for K21 0 represents a temperature somewhat
lower than the highest attained. As has been pointed out
(Mueller, 1967a) the suppression of the ordering process
results 'from the decrease of the rate constants with tem-
perature. However, once the temperature dependence of
the rate constants has been experimentally determined it
should be possible, at least in principle, to estimate the
time scale of ordering over a broad temperature range and
to determine cooling rates for many rocks.
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