RECOMMENDED NOMENCLATURE FOR ZEOLITE MINERALS: REPORT OF THE SUBCOMMITTEE ON ZEOLITES OF THE INTERNATIONAL MINERALOGICAL ASSOCIATION, COMMISSION ON NEW MINERALS AND MINERAL NAMES

DOUGLAS S. COOMBS (Chairman)
Geology Department, University of Otago, P.O. Box 56, Dunedin, New Zealand

ALBERTO ALBERTI
Istituto di Mineralogia, Università di Ferrara, Corso Ercole I d’Este, 32, I-44100 Ferrara, Italy

THOMAS ARMBRUSTER
Laboratorium für chemische und mineralogische Kristallographie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland

GILBERTO ARTIOLI
Dipartimento di Scienze della Terra, Università di Milano, via Botticelli, 23, I-20133 Milano, Italy

CARMINE COLELLA
Dipartimento di Ingegneria dei Materiali e della Produzione, Università Federico II di Napoli, Piazzale V. Tecchio, 80, I-80125 Napoli, Italy

ERMANNO GALLI
Dipartimento di Scienze della Terra, Università di Modena, via S. Eufemia, 19, I-41100 Modena, Italy

JOEL D. GRICE
Mineral Sciences Division, Canadian Museum of Nature, Ottawa, Ontario K1P 6P4, Canada

FRIEDRICH LIEBAU
Mineralogisch-Petrographisches Institut, Universität Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany

JOSEPH A. MANDARINO (retired from Subcommittee, December, 1994)
Department of Mineralogy, Royal Ontario Museum, Toronto, Ontario M5S 2C6 Canada

HIDEO MINATO
5-37-17 Kagayama, Suginami-ku, Tokyo 168, Japan

ERNEST H. NICKEL
Division of Exploration and Mining, CSIRO, Private Bag, Wembley 6014, Western Australia, Australia

ELIO PASSAGLIA
Dipartimento di Scienze della Terra, Università di Modena, via S. Eufemia, 19, I-41100 Modena, Italy

DONALD R. PEACOR
Department of Geological Sciences, University of Michigan, Ann Arbor, Michigan 48109, U.S.A.

SIMONA QUARTIERI
Dipartimento di Scienze della Terra, Università di Modena, via S. Eufemia, 19, I-41100 Modena, Italy

ROMANO RINALDI
Dipartimento di Scienze della Terra, Università di Perugia, I-06100 Perugia, Italy

MALCOLM ROSS
U.S. Geological Survey, MS 954, Reston, Virginia 20192, U.S.A.

RICHARD A. SHEPPARD
U.S. Geological Survey, MS 939, Box 25046, Federal Center, Denver, Colorado 80225, U.S.A.

EKKEHART TILLMANNS
Institut für Mineralogie und Kristallographie, Universität Wien, Althanstrasse 14, A-1090 Vienna, Austria

GIOVANNA VEZZALINI
Dipartimento di Scienze della Terra, Università di Modena, via S. Eufemia, 19, I-41100 Modena Italy

1 E-mail address: doug.coombs@stonebow.otago.ac.nz
This report embodies recommendations on zeolite nomenclature approved by the International Mineralogical Association, Commission on New Minerals and Mineral Names. In a working definition of a zeolite mineral used for this review, structures containing an interrupted framework of tetrahedra are accepted where other zeolitic properties prevail, and complete substitution by elements other than Si and Al is allowed. Separate species are recognized in topologically distinctive compositional series in which different extra-framework cations are the most abundant in atomic proportions. To name these, the appropriate chemical symbol is attached by a hyphen to the series name as a suffix, except for the names harmotome, pollucite and wairakite in the phillipsite and analcime series. Differences in space-group symmetry and in order–disorder relationships in zeolites having the same topologically distinctive framework do not in general provide adequate grounds for recognition of separate species. Zeolite species are not to be distinguished solely on the ratio Si : Al except for heulandite (Si : Al < 4.0) and clinoptilolite (Si : Al ≥ 4.0). Dehydration, partial hydration, and overhydration are not sufficient grounds for the recognition of separate species of zeolites. Use of the term “ideal formula” should be avoided in referring to a simplified or averaged formula of a zeolite. Newly recognized species in compositional series are as follows: brewsterite-Sr, -Ba, chabazite-Ca, -Na, -K, clinoptilolite-K, -Na, -Ca, dachiardite-Ca, -Na, erionite-Na, -K, Ca, faujasite-Na, -Ca, -Mg, ferrierite-Mg, -K, -Na, gmelinite-Na, -Ca, -K, heulandite-Ca, -Na, -K, -Sr, levynite-Ca, -Na, paulingite-K, -Ca, phillipsite-Na, -Ca, -K, and stilbite-Ca, -Na. Key references, type locality, origin of name, chemical data, IZA structure-type symbols, space-group symmetry, unit-cell dimensions, and comments on structure are listed for 13 compositional series, 82 accepted zeolite mineral species, and three of doubtful status. Herschelite, leonhardite, svetlozarite, and wellsite are discredited as mineral species names. Obsolete and disputed names are listed.

Keywords: zeolite nomenclature, herschelite, leonhardite, svetlozarite, wellsite, brewsterite, chabazite, clinoptilolite, dachiardite, erionite, faujasite, ferrierite, gmelinite, heulandite, levynite, paulingite, phillipsite, stilbite.

INTRODUCTION

The name “zeolite” was introduced by the Swedish mineralogist Cronstedt in 1756 for certain silicate minerals in allusion to their behavior on heating in a borax bead (Greek òeо = boil; lithos = stone). Three such minerals were listed by Häüy (1801), namely stilbite, analcime, and harmotome, together with “mesotype”, which has not survived. Chabazite and leucite had been named even earlier. Nineteen had been described with their present meaning by 1842. Forty-six zeolites were listed by Gottardi & Galli (1985), and new species continue to be described. The first crystal-structure determination of a zeolite was done on analcime (Taylor 1930); following this, Hey (1930) concluded that zeolites in general have aluminosilicate frameworks with loosely bonded alkali or alkali-earth cations, or both. Molecules of H₂O occupy extra-framework positions. He pointed out the consequential requirements that the molar ratio of Si : Al be ≥ 4.0.
Zeolites have other highly characteristic features developed to varying degrees, notably the potential for reversible low-temperature dehydration, the ability of the dehydrated forms to reversibly absorb other molecules, a tendency toward more or less easy low-temperature exchange of extra-framework cations, and a lack of clear-cut, structurally controlled constraints on end-member compositions in terms of Si:Al ratios within the framework. In some cases, observed extraframework compositions may be artefacts of cation exchange resulting from human activities in the laboratory or elsewhere, and furthermore, the compositions are not conveniently determined by traditional optical methods. Perhaps for a combination of such reasons, separate names have been given to few zeolites on the basis of the dominant extra-framework cation in solid-solution series. This conflicts with standard practice in most mineral groups and with guidelines of the Commission on New Minerals and Mineral Names (CNMMN) (Nickel & Mandarino 1987).

With intensification of research and the advent of the electron microprobe, a flood of information on compositions has become available, and with automated single-crystal X-ray diffractometers and other developments, many complexities have been investigated, including order–disorder relationships in the frameworks and associated changes in unit-cell parameters and symmetry. Thus in the case of analcime, Muzzi & Galli (1978), Teertstra et al. (1994), and others have demonstrated a wide range of space-group symmetries associated with different patterns of order in the framework and possible displacive transformations. Sites of extra-framework cations are commonly less well defined in an open, zeolitic structure than in most other minerals, and are variably occupied. Guidelines allowing recognition of separate species depending on the dominant ion occupying each structural site are thus compromised in the case of extra-framework sites in zeolites. Furthermore, changes in the occupancy of such sites can distort the framework to varying degrees, changing the space-group symmetry.

Some minerals meet traditional criteria for zeolites in all respects except that they contain P, Be, or other elements in tetrahedral sites, with consequent departure from the requirement of Hey (1930) that O : (Si + Al) = 2. Other structurally related minerals with zeolitic properties have all tetrahedral sites occupied by elements other than Si and Al. Certain other minerals displaying zeolitic properties depart from traditional requirements for a zeolite in having a framework that is interrupted by some (OH) groups. An example is parthéite, listed by Gottardi & Galli (1985) as a zeolite.

Synthesis and structural analysis of materials having zeolitic properties have become major fields of research and have led to a voluminous literature, as has the industrial use of zeolitic materials.

The recommendations of an IMA CNMMN subcommittee set up to review zeolite nomenclature are set out below. These recommendations have been adopted by the Commission.

Definition of a Zeolite Mineral

In arriving at its working definition of a zeolite, the Subcommittee took the view that zeolites in the historical and mineralogical sense are naturally occurring minerals, irrespective of how the term may be applied to synthetic materials and in industry. In the light of advances in mineralogy, the Hey (1930) definition is found to be too restrictive. The Subcommittee gave particular consideration to the following questions. Is more than 50% substitution of elements other than Si and Al permissible in tetrahedral sites? Is the presence of H₂O and of extra-framework cations absolutely essential? Can “interrupted” framework structures qualify as zeolite minerals? These matters are further discussed in Appendix 1.

Definition

A zeolite mineral is a crystalline substance with a structure characterized by a framework of linked tetrahedra, each consisting of four O atoms surrounding a cation. This framework contains open cavities in the form of channels and cages. These are usually occupied by H₂O molecules and extra-framework cations that are commonly exchangeable. The channels are large enough to allow the passage of guest species. In the hydrated phases, dehydration occurs at temperatures mostly below about 400°C and is largely reversible. The framework may be interrupted by (OH,F) groups; these occupy a tetrahedron apex that is not shared with adjacent tetrahedra.

Application of the definition (see also Appendix 1)

Relatively easy exchange of extra-framework cations at relatively low temperature is a characteristic feature of zeolites and zeolitic behavior, but varies greatly from species to species. Its extent does not provide a convenient basis for the definition of zeolites. In practice, it appears that channels must have a minimum width greater than that of 6-membered rings (i.e., rings consisting of six tetrahedra) in order to allow zeolitic behavior at normal temperatures and pressures. Framework structures such as in feldspars, nepheline, sodalites, scapolites, melanophlogite, and probably leifite, in which any channels are too restricted to allow typical zeolitic behavior such as reversible dehydration, molecular sieving, or cation exchange, are not regarded as zeolites.

Framework density, defined as the number of tetrahedral sites in 1000 Å³, was used as the criterion for inclusion in the Atlas of Zeolite Structure Types.
(Meier et al. 1996). However, this criterion provides no evidence that the channels necessary for diffusion are present, as well as cages, and it has not been adopted in the present definition.

In some minerals with a tetrahedral framework structure and other zeolitic characteristics as described, namely parthéite, roggianite, maricopaite, and chiavennite, one apex of some tetrahedra is occupied by an (OH) group or F atom instead of being occupied by an O atom. This (OH) group or F atom does not form a bridge with an adjacent tetrahedron. The framework is thus interrupted. Such minerals are here accepted as zeolites.

In terms of the definition adopted, minerals of the cancrinite group can arguably be considered as zeolites. This group has long been regarded by many or most mineralogists as distinct from the zeolites, in part, at least, because of the presence of large volatile anions (e.g., Hassan 1997). They are not reviewed in the present report. Rather similarly, wenkite contains large cages and channels, but these are blocked by SO₄, Ca, and Sr compositions are readily obtainable by ion exchange from natural Ca-dominant chabazite at 110°C. Wenkite is not included as a zeolite in this report.

Leucite has seldom been regarded as a zeolite, as it does not display a full range of zeolitic behavior. Nevertheless, it has the same framework structure as analcime and conforms to the adopted definition. Ammonioleucite can be regarded as an analcime derivative, can be synthesized from analcime by cation exchange, and may have formed naturally by low-temperature replacement of analcime. Leucite and ammonioleucite are included in the list of zeolites, as is kalborsite, a derivative of the edingtonite structure.

Also conforming to the definition adopted are the beryllophosphates pahasapaite and weinebeneite. These contain neither Si nor Al and can be regarded as end-member examples of Si-free zeolites or zeolite phosphates.

RULES FOR NOMENCLATURE OF ZEOLITE MINERALS

In presenting the following rules for nomenclature of zeolite minerals, the Subcommittee feels strongly that they should be viewed as guidelines rather than as being rigidly prescriptive. As stated by Nickel & Mandarino (1987): "It is probably not desirable to formulate rigid rules to define whether or not a compositional or crystallographic difference is sufficiently large to require a new mineral name, and each new mineral proposal must be considered on its own merits". Explanatory notes following the proposed rules or guidelines give examples of how the Subcommittee envisages that rule being applied, but like Nickel and Mandarino, the Subcommittee urges that each case be treated on its merits. In some cases, compelling reasons may exist on grounds of historical usage for retaining an existing name, or other grounds may exist for departing from the rules for giving a new name. Cases arising under Rule 2 are particularly difficult, and require individual consideration.

Rule 1

(a) One or more zeolite minerals having a topologically distinctive framework of tetrahedra, and a composition that is distinctive for zeolites having that framework, constitute separate species. (b) Zeolites having the same topologically distinctive framework of tetrahedra constitute a series when they display a substantial range in composition in which differing extra-framework cations may be the most abundant in atomic proportions. These cations may occupy different extra-framework sites. Such series consist of two or more species that are distinguished on the basis of the most abundant extra-framework cation.

Application of the rule

Laumontite, for example, has a topologically distinctive framework and a composition which, as far as is currently known, is distinctive in that Ca is always the dominant extra-framework cation. It is a separate zeolite species under Rule 1a. Natrolite, mesolite, and scolecite have the same topologically distinctive framework structure as each other, and have compositions that are distinctive. They also are separate species under Rule 1a.

Zeolites having the topologically distinctive chabazite structure have a range of compositions in which any one of Ca, Na, or K may be the most abundant extra-framework cation. Substantial Sr is in some cases present as well, but so far has never been reported as the most abundant in natural examples. Chabazite is a series consisting of three separate species under Rule 1b. It is known that near-end-member Na, K, Ca, and Sr compositions are readily obtainable by ion exchange from natural Ca-dominant chabazite at 110°C (Alberti et al. 1982a), but this is not the essential criterion for recognition of the natural series.

Mesolite may have either Na or Ca slightly in excess of the other, but the ratio Na : Ca is always close to 1 : 1. The range of its composition is not regarded as "substantial", and mesolite is not divided into more than one species on grounds of composition.

Several distinct structural sites for extra-framework cations are recognized in many zeolites, but in view of the relatively loose bonding and specialized problems in establishing the individual site-occupancies, only the total population of extra-framework cations should in general be used in defining zeolite species.

Rule 2

(a) Differences in space-group symmetry and in order–disorder relationships in zeolite minerals having the same topologically distinctive framework do not in
appear to be related to Si,Al disorder in gobbinsite and dominent. Their different space-group symmetries framework structure as gismondine, but are alkali-

Gobbinsite and amicite have topologically the same Na in garronite. They are accepted as separate species.

Both have Ca as the dominant extra-framework cation.

Analcime and certain other zeolites exist with several different space-group symmetries, in some cases occurring on a very fine scale in the same hand specimen and with the same chemistry. Even though this may be related to Si,Al ordering, separate species names in these cases are in general not warranted.

Gismondine and garronite are examples of zeolites that have the same topologically distinctive framework. Both have Ca as the dominant extra-framework cation. Their differing space-group symmetry is associated with disordered Si,Al and the presence of significant Na in garronite. They are accepted as separate species. Gobbinisite and amicite have topologically the same framework structure as gismondine, but are alkali-

dominant. Their different space-group symmetries appear to be related to Si,Al disorder in gobbinisite and possible chemical differences, and they are provisionally retained. Barrerite is topologically similar to stilbite and stellerite, but it has different symmetry correlated with the presence of extra cations that cause rotational displacements within the framework (Galli & Alberti 1975b); it is similarly retained.

Rule 3

Zeolite mineral species shall not be distinguished solely on the basis of the framework Si : Al ratio. An exception is made in the case of heulandite and clinoptilolite; heulandite is defined as the zeolite mineral series having the distinctive framework topology of heulandite and the ratio Si : Al < 4.0. Clinoptilolite is defined as the series with the same framework topology and Si : Al ≥ 4.0.

Application of the rule

Many zeolites have a widely variable Si : Al ratio, but this, in itself, is not regarded as providing adequate grounds for recognition of separate species. The exception is based on entrenched usage of the names heulandite and clinoptilolite, and their convenience for recognizing an important chemical feature. The cutoff value adopted (following Boles 1972) is arbitrary in a continuous range of compositions. The usual 50% compositional rule cannot be applied, as there are no clearly defined Si,Al end-member compositions for heulandite and clinoptilolite. Thermal stability has been used by some investigators to distinguish clinoptilolite from heulandite. This is a derivative property, however, suggested by Mumpton (1960) as an aid to identification, and it is not appropriate as the basis for definition. Alietti (1972) and Boles (1972) have shown that there is no gap in composition either in framework or extra-framework cation contents between heulandite and clinoptilolite, and that samples transitional in composition show intermediate properties in terms of thermal stability.

Rule 4

Dehydration, partial hydration, and overhydration, whether reversible or irreversible, are not sufficient grounds for the recognition of separate species of zeolite minerals.

Application of the rule

If a new topologically distinctive framework arises from overhydration or partial dehydration, separate species status would result from application of Rule 1. Leonhardtite, a partially and in most cases reversibly dehydrated form of laumontite, is not accepted as a separate mineral species.

Rule 5

Individual species in a zeolite mineral series with varying extra-framework cations are named by attaching to the series name a suffix indicating the chemical symbol for the extra-framework element that is most abundant in atomic proportions, e.g., chabazite-Ca.

The following exceptions are made: a) On grounds of historical precedence and long-established usage, the name harmotome is retained for the Ba-dominant member of the phillipsite series. b) On grounds of long-established usage, pollucite is retained as the Cs-dominant zeolite of the analcime structure-type. On grounds of established usage and markedly different space-group symmetry and Si,Al order related to the extra-framework cation content (Rule 2b), wairakite is retained as the Ca-dominant zeolite of the analcime structure-type. On the other hand, herschelite is suppressed in favor of chabazite-Na (Appendix 2).

Application of the rule

New species arising from Rule 5 that are well authenticated by published data are set out in Table 1. Future proposals for additional new species under this rule should be dealt with as for any other proposal for a new mineral name.
Adoption of a Levinson-style system of suffixes avoids the proliferation of a large number of new and potentially unrelated species names, and ensures that all members of a topologically identical compositional series are indexed together. It has the great advantage that where adequate chemical data are not required or are not available, a mineral can be referred to correctly by an unambiguous series name. The system adopted here is without the brackets (parentheses) used by Levinson (1966) in suffixes for rare-earth minerals.

Substantial amounts of extra-framework cations other than the dominant one may be indicated, if desired, by the use of adjectives such as calcian and sodian, e.g., calcian clinoptilolite-K. Such adjectival modifiers are not part of the formal name of a species.

Informal use is often made of descriptive terms such as calcium chabazite and Ca chabazite, in which the name or symbol of an element is used adjectivally. In conformity with general IMA guidelines, these should not appear in print as mineral names or in hyphenated form. The correct name for the mineral species in this case is chabazite-Ca. Terms such as sodium-substituted chabazite-Ca are suggested for what in effect would be a synthetic chabazite-Na prepared by cation exchange from chabazite-Ca. Chabazite remains the correct name for a member of the chabazite series that is not specifically identified on compositional grounds.

Rule 6

(a) Space-group variants of zeolite mineral species may be indicated by placing the space-group symbol in round brackets (parentheses) after the mineral species name, e.g., analcime (Ibca), heulandite-Ca (C2/m). (b) Levels of order may be indicated by adjectival use of words such as “disordered” or “fully ordered” before the mineral name.

Application of the rule

Modifiers as suggested here are not part of the formal name of the mineral.

Accepted Zeolite Series and Species

Zeolites to be elevated to series status and the consequential new species to be recognized on the basis of the most abundant extra-framework cation (Rule 5) are set out in Table 1.

An annotated list of accepted zeolite series and species follows below. In each entry for series, and for those species that are not members of compositional series, a simplified or generalized formula is given in the first line. This is followed by Z, the number of these formula units per unit cell, as given later in the entry. The simplified or generalized formula should be regarded as representative only, and should not be regarded as an “ideal” composition (see next paragraph). Users of the list should bear in mind that the Si : Al ratio, or, more generally, occupancy of tetrahedral sites by Si, Al, P, Be, Zn, and possibly other elements, varies widely in many zeolites. The total extra-framework cation charge varies accordingly. Major variation in more-or-less exchangeable, extra-framework cations is also a feature of many natural zeolites. Contents of H2O tend to decrease with increasing number and size of extra-framework cations, as well as with increasing temperature and decreasing P(H2O). Such variations can be vital to petrological, geochemical, environmental, and experimental considerations.

Simplified or generalized formulæ of zeolites, e.g., NaAlSi4O10·H2O for analcime, have often been referred to as “ideal” formulæ. However, the supposed ideality may be in writers’ desire for simplicity, rather than in anything fundamental to the zeolites concerned, and can lead to false assumptions. There is much evidence that the composition of naturally occurring analcime is a function of the chemical environment in which it forms (e.g., Coombs & Whetten 1967). In environments of low Si activity, as in altered strongly silica-deficient
Except for a few newly described species, details of zeolite compositions were widely as a result of variable compositions, variable extent of order, and differing levels of hydration. Space-group symmetry and crystallographic parameters follow. Many accepted zeolite species exist with more than one known space-group symmetry, and these are listed. Variations in space-group symmetry and variations in order–disorder relationship of framework cations are not in themselves adequate evidence for establishing new species (Rule 2). Cell parameters given are as reported for material specified in key references. Cell dimensions of many species vary widely as a result of variable compositions, variable extent of order, and differing levels of hydration.

The accepted series and species are as follows:

Amicite

\[K,Na_4[AlSi_2O_6] \cdot 10H_2O\]
GIS

Ammonioleucite

\[(NH_4)[AlSi_2O_6]\]
ANA

Hori *et al.* (1986). Type locality: Tatarazawa, Fujioka, Gunma Prefecture, Japan. The name reflects its composition and relationship to leucite.

Analcime

\[Na[AlSi_2O_6] \cdot H_2O\]
ANA

Haüy (1797, p. 278). Type locality: near Catanes, Cyclopean Isles, Italy (Haüy, 1801, p. 180–185). Name from Greek roots meaning “without strength”, in

alkaline rocks, natural analcime approaches a Si : Al ratio of 1.5. The composition in burial metamorphic rocks with quartz appears to be distinctly more Si–rich than the supposed “ideal” Si : Al value of 2. The evidently metastable equilibrium in natural environments containing siliceous volcanic glass or other source of silica yielding higher activity of Si than coexistence with quartz, leads to analcime with Si : Al approaching 3. Analogous observations apply to heulandite and other zeolites. If “ideal” is taken to imply equilibrium, it can therefore be concluded that this is a function of the chemical (and P–T) environment during crystallization, rather than simply being a function of crystal structure. Differing Si : Al ratios may in turn favor different patterns of order in the extent of order, and differing levels of hydration.

The role of Fe causes problems that may not be resolvable. Some Fe reported in zeolites is undoubtedly a contaminant, but there are reasons to suspect that both Fe$^{2+}$ and Fe$^{3+}$ may enter the structures of some zeolites in extra-framework or framework sites, or both.

Much information on zeolite compositions was given by Gottardi & Galli (1985). The present compilation incorporates results of further extensive searches of the literature. A widely used criterion for acceptability of zeolite compositions is that the value of the balance–error function of Passaglia (1970)

\[
E(\%) = 100 \times \frac{(Al + Fe^3) - (Li + Na + K) - 2(Mg + Ca + Sr + Ba)}{(Li + Na + K) + 2(Mg + Ca + Sr + Ba)}
\]

should be less than 10%, a figure that is itself arguably excessive. The calculation of E% may be modified to allow for other suspected cations, such as Fe$^{3+}$ and Cs$^+$. The role of Fe causes problems that may not be resolvable. Some Fe reported in zeolites is undoubtedly a contaminant, but there are reasons to suspect that...
allusion to the weak electrical effects induced by friction.

In most analyzed specimens, Na is the only substantial extra-framework cation, but analcime forms a continuous series with pollucite and possibly with wairakite (Seki & Oki 1969, Seki 1971, Cho & Liu 1987). T_{Na} varies widely, 0.59–0.73 (e.g., Coombs & Whetten 1967). As Si increases, NaAl decreases and H_2O increases.

Topological symmetry is cubic. $Ia3d$. Real symmetry variants include:

cubic, $Ia3d$, a 13.725 Å; tetragonal, $I4_1/acd$, a 13.723(7), c 13.686(10) Å; a 13.721(1), c 13.735(1) Å (Mazzi & Galli 1978); tetragonal, $I4_1/a$; orthorhombic, $Ibca$, a 13.733(1), b 13.729(1), c 13.712(1) Å, a 13.727(2), b 113.714(2), c 13.740(2) Å (Mazzi & Galli 1978); monoclinic with 2-fold axis parallel both to pseudo-cubic [100] and [110]; triclinic, a 13.6824(5), b 13.7044(6), c 13.7063(5) Å, α 90.158(3)°, β 89.569(3)°, γ 89.543(3)° (Hazen & Finger 1979); and probably trigonal with variable Si,Al order (e.g., Hazen & Finger 1979, Teertstra et al. 1994).

The name applies to Na-dominant compositions with this framework structure regardless of the degree and patterns of order.

Bikitaite

$Li[AlSiO_4]*H_2O$ $Z = 2$ BIK

Hurlbut (1957). Type locality: Bikita, Zimbabwe. Named after the type locality.

Two known localities, with the bikitaite having very similar compositions. $T_{Si} = 0.67$.

Monoclinic, $P2_1$, a 8.613(4), b 4.962(2), c 7.600(4) Å, β 114.45(1)° (Kocman et al. 1974). Also triclinic, $P1$, a 8.606(1), b 4.953(1), c 7.599(1) Å, α 89.89(2)°, β 114.42(2)°, γ 89.96(2)° (Bissert & Liebau 1986).

The framework structure consists of 5-membered rings linked by additional tetrahedra. Its topological symmetry is $P2_1$. The monoclinic $P2_1$ variant of Kocman et al. has partly ordered Si,Al distribution; the triclinic $P1$ variant of Bissert and Liebau is highly ordered.

Boggsite

$Ca_Na[Al_{10}Si_{12}O_{32}]•70H_2O$ $Z = 1$ BOG

Pluth et al. (1989) and Howard et al. (1990). Type locality: Basalt above cliff, Goble Creek, south side of the Neer Road, 0.2 km north of Goble, Columbia County, Oregon, U.S.A. Named after Robert Maxwell Boggs (father) and Russell Calvin Boggs (son), mineral collectors in the Pacific Northwest.

Type boggse shows the above formula, with minor Fe, Mg, and K. Boggse from Mt. Adamson, Antarctica (Galli et al. 1995) approximates $CaNa,K[Al_{10}Si_{12}O_{32}]•70H_2O$, with minor Fe, Mg, Sr, Ba. $T_{Si} = 0.81$.

Si,Al highly disordered.

Brewsterite

(Sr, Ba)$_2[Al_{10}Si_{12}O_{32}]•10H_2O$ $Z = 1$ BRE

Monoclinic, $P2_1/m$, $P2_1$, or triclinic (Akizuki 1987a, Akizuki et al. 1996).

The structure is sheet-like parallel to (010) (Perrotta & Smith 1990).

Brewsterite-Sr

New name for the original species of the series; Sr is the most abundant extra-framework cation. T_{Si} in the range 0.74–0.75.

Monoclinic, $P2_1/m$, a 6.793(2), b 17.573(6), c 7.759(2) Å, β 94.54(3)°, for composition (Sr, ε)$_2$Ba$_{0.56}$K$_{0.44}$.
[Al\textsubscript{12}Si\textsubscript{16}O\textsubscript{40}]2+nH\textsubscript{2}O (Schlenker et al. 1977a).

On optical grounds, possibly triclinic (Akizuki 1987a).

Refined as triclinic in three separate growth-sectors by Akizuki et al. (1996).

Partly ordered Si,Al distribution.

Brewerite-Ba

New name: Ba is the most abundant extra-framework cation.

Proposed type-example: the Gouverneur Talc Company’s No. 4 wollastonite mine near Harrisville, Lewis County, New York, U.S.A. (Robinson & Grice 1993). Also Cerchiara mine, Liguria, Italy (Cabella et al. 1993, including structure refinement). T\textsubscript{c} = 0.73, 0.74.

Monoclinic, P\textsubscript{2}/m or P\textsubscript{2}\textsubscript{1}n, \(c = 6.780(3), b = 17.599(9), a = 7.733(2)\) \(\AA\), \(c = 94.47(3)^\text{°}\) for type example, containing up to 0.85 Ba per 16 O atoms.

Chabazite (series)

\((Ca\textsubscript{1.86}Na\textsubscript{0.03}K\textsubscript{0.20}Mg\textsubscript{0.02}Sr\textsubscript{0.03})[Al\textsubscript{3.94}Fe\textsubscript{0.01}Si\textsubscript{7.40}O\textsubscript{24}]\textbullet11.47H\textsubscript{2}O.

Other cations vary widely. T\textsubscript{Si} in the range 0.58–0.80, Si/Al < 4.0 are classified as heulandite, with partial ordering leads to the lower symmetry. Although originally described as containing “silex, alumina, and potash” (Lévy 1825), the name herschelite has often been applied to chabazite minerals of tabular habit and high Na content. Herschelite should no longer be used as a species name.

Chabazite-K

New name: K is the most abundant single extra-framework cation.

Other cations vary widely. T\textsubscript{c} in the range 0.60–0.74.

Suggested type-specimen: Tufo Ercolano, Ercolano, Naples, Italy (De Gennaro & Franco 1976), \(a = 13.849(3), c = 15.165(3)\) \(\AA\), for hexagonal cell, with composition \((K\textsubscript{2.06}Na\textsubscript{0.04}Ca\textsubscript{0.04}Mg\textsubscript{0.04}Sr\textsubscript{0.04})[Al\textsubscript{4.12}Fe\textsubscript{0.01}Si\textsubscript{7.60}O\textsubscript{24}]\textbullet11.42H\textsubscript{2}O.

Chiavennite

CaMn[Be\textsubscript{2}Si\textsubscript{10}O\textsubscript{18}(OH)\textsubscript{2}]\textbullet2H\textsubscript{2}O

Z = 4

Boneti et al. (1983), Raade et al. (1983). Type locality: Chiavenna, Lombardy, Italy. Named after type locality.

The limited data available show up to 0.72 Al and 0.15 B in tetrahedral sites, and significant extra-framework Fe and Na (Raade et al. 1983, Langhof & Holstam 1994). T\textsubscript{c} in the range 0.63 to 0.68. Orthorhombic, \(Pnab\), \(a = 8.729(5), b = 31.326(11), c = 4.903(2)\) \(\AA\) (Tazzoli et al. 1995).

A Ca,Mn berylliosilicate with an interrupted framework of four-connected [SiO\textsubscript{4}] and three-connected [BeO\textsubscript{4}] tetrahedra.

Clinoptilolite (series)

\((Na, K, Ca\textsubscript{0.5}Sr\textsubscript{0.5}Ba\textsubscript{0.5}Mg\textsubscript{0.5})[Al\textsubscript{6}Si\textsubscript{30}O\textsubscript{72}]\textbullet20H\textsubscript{2}O

Z = 1

HEU

Schaller (1923, 1932). Type locality: in decomposed basalt at a high point on ridge running east from Hoodoo Mountain, Wyoming, U.S.A. (“crystallized mordenite” of Pirsson 1891). The name reflects its inclined extinction and supposed similarity in composition to “ptilolite” (mordenite). Ptilo-, from Greek, alludes to the downy, finely fibrous nature of that mineral.

The cation content is highly variable. Ca-, Na-, and K-dominant compositions are known, and Sr, Ba, and Mg are in some cases substantial. Fe2+ and Fe3+ are possible constituents. In Pirsson’s (1890) analysis, K is the most abundant single cation by a small margin. Clinoptilolite-K is therefore taken as the type species of the series. T\textsubscript{c} in the range 0.80–0.84.

Minerals with the same framework topology but with T\textsubscript{c} < 0.80, Si/Al > 4.0 are classified as heulandite, with which clinoptilolite forms a continuous series. Monoclinic, \(C2/m\), or \(C2\), or \(Cm\). Structure refinements by Alberti (1975a) and Armbuster (1993) demonstrate variations in extra-
framework cation sites compared with heulandite and as a function of the extent of dehydration.

Clinoptilolite-K

New name for the original species; K is the most abundant single extra-framework cation. A moderately K-rich clinoptilolite-K was referred to as “potassium clinoptilolite” by Minato & Takano (1964). \(\text{T}_{\text{Si}} \) in the range 0.80–0.83.

Monoclinic, \(C2/m \), \(C2 \), or \(Cm \), \(a 17.688(16) \), \(b 17.902(9) \), \(c 7.409(7) \) Å, \(\beta 116.50(7) \)^°, for \((K_{1.12}Na_{0.88}Ca_{0.04}Sr_{0.03}Mg_{0.19}Fe_{0.08}Mn_{0.06})[Al_{6.72}Si_{29.20}O_{72}]+23.7H_2O \) from an off-shore borehole, Japan (Ogihara & Iijima 1990).

Suggested type-example: Kuruma Pass, Fukushima Prefecture, Japan (Koyama & Takéuchi 1977), for Kuruma Pass specimen, range 0.80–0.84.

Clinoptilolite-Na

New name; Na is the most abundant single extra-framework cation. Other cations vary widely. \(\text{T}_{\text{Si}} \) in the range 0.80–0.84.

Suggested type-example: Barstow Formation, about 1.6 km east of mouth of Owl Canyon, San Bernardino County, California, U.S.A., USGS Lab. no. D100594 (Sheppard & Gude 1969a).

Monoclinic, \(C2/m \), \(C2 \), or \(Cm \), \(a 17.627(4) \), \(b 17.955(4) \), \(c 7.399(4) \) Å, \(\beta 116.29(2) \)^°, for \((Na_{1.76}K_{1.05}Ca_{1.90}Mg_{0.17})[Al_{6.72}Si_{29.20}O_{72}]+23.7H_2O \) from the type locality contains 0.12 Cs atoms per formula unit (apfu) (Bonardi 1979). \(\text{T}_{\text{Si}} \) in the range 0.78–0.86.

Monoclinic, monoclinic symmetry \(C2/m \), real symmetry \(Cm \). \(a 18.676, b 7.518, c 10.246 \) Å, \(\beta 107.87^\circ \), for the composition \((Na_{3.78}K_{1.31}Ca_{0.61}Ba_{0.09}Mg_{0.23}Mn_{0.01})[Al_{6.61}Fe_{0.16}Si_{29.19}O_{72}]+20.4H_2O \) from the type locality (Vezzalini 1984).

Clinoptilolite-Ca

New name; Ca is the most abundant single extra-framework cation. Other cations vary widely. \(\text{T}_{\text{Si}} \) in the range 0.80–0.84.

Monoclinic, \(C2/m \), \(C2 \), or \(Cm \), \(a 17.660(4) \), \(b 17.963(3) \), \(c 7.400(3) \) Å, \(\beta 116.47(3) \)^° based on \(C2/m \) (Koyama & Takéuchi 1977), for Kuruma Pass specimen, \((Na_{1.13}K_{1.10}Ca_{0.11}Ba_{0.08}Mg_{0.01})[Al_{6.82}Si_{29.23}O_{72}]+23.7H_2O \) from the type locality (Vezzalini et al. 1992).

Cowlesite

\(\text{Ca[Al}_2\text{Si}_2\text{O}_8]+5.3H_2O \) \(Z = 52 \) (IZA code not assigned)

Wise & Tschernich (1975). Type locality: road cuts 0.65 km northwest of Goble, Columbia County, Oregon, U.S.A. Named after John Cowles of Rainier, Oregon, amateur mineralogist.

Minor substitution for Ca by Na and lesser K, Mg, Sr, Ba, Fe. \(\text{T}_{\text{Si}} \) in the range 0.60–0.66 (Vezzalini et al. 1992).

Orthorhombic, \(P2_22_2 \), or \(Pnnm \), \(Pmm2 \), \(P2_1m \), \(P22 \) (Navaz 1984), \(a 23.249(5), b 30.629(3), c 24.964(4) \) Å (Artioli et al. 1987).

Structure and degree of order of framework cations have not been determined.

Dachiardite

\(\text{(Ca}_{0.5\text{Na,K}}^\text{Na}_4\text{[Al}_{4\text{Na,K}}\text{Si}_{20\text{Na,K}}\text{O}_{48\text{Na,K}}]^\text{13H}_2\text{O}} \) \(Z = 1 \) DAC

D’Achiardi (1906). Type locality: San Piero in Campo, Elba, Italy. Named by the author in memory of his father, Antonio D’Achiardi (1839–1902), first full professor of Mineralogy at the University of Pisa. May contain minor Cs and Sr. \(\text{T}_{\text{Si}} \) in the range 0.78–0.86.

Monoclinic, topological symmetry \(C2/m \), real symmetry \(Cm \).

The structure consists of complex chains of 5-membered rings cross-linked by 4-membered rings (Gottardi & Meier 1963), but with complexities that commonly result in diffuse and streaked X-ray-diffraction maxima (Quartieri et al. 1990).

Dachiardite-Ca

New name for the original species of the series; Ca is the most abundant extra-framework cation. Dachiardite from the type locality contains 0.12 Cs atoms per formula unit (apfu) (Bonardi 1979). \(\text{T}_{\text{Si}} \) in the range 0.78–0.83.

Monoclinic, monoclinic symmetry \(C2/m \), real symmetry \(Cm \). \(a 18.676, b 7.518, c 10.246 \) Å, \(\beta 107.87^\circ \), for the composition \((Ca_{1.54}Na_{0.42}K_{0.92}Cs_{0.11}Sr_{0.12}Ba_{0.01})[Al_{4.86}Fe_{0.02}Si_{18.96}O_{48}]+12.56H_2O \) from the type locality (Vezzalini 1984).

Partly ordered distribution of Si,Al.

Dachiardite-Na

New name; Na is the most abundant extra-framework cation. Suggested type-example: Alpe di Siusi, Bolzano, Italy (Alberti 1975b).

Available analytical results for material from seven localities, e.g., Bonardi et al. (1981) show considerable variation in Na : K : Ca proportions. \(\text{T}_{\text{Si}} \) in the range 0.81–0.86.

Monoclinic, \(a 18.647(7), b 7.506(4), c 10.296(4) \) Å, \(\beta 108.37(3)^\circ \), for \((Na_{2.59}K_{0.71}Ca_{0.53}Mg_{0.04}Ba_{0.01})[Al_{4.27}Fe_{0.02}Si_{19.61}O_{48}]+13.43H_2O \) from the type locality (Vezzalini 1984).

Diffuse diffraction-spots indicate disorder.

Edingtonite

\(\text{Ba[Al}_2\text{Si}_2\text{O}_8]+4H_2\text{O} \) \(Z = 2 \) EDI

Haidinger (1825). Type locality: Kilpatrick Hills, near Glasgow, Scotland. Named after a Mr. Edington of Glasgow, whose collection Haidinger found the mineral. Small amounts of K, Na, and Ca may replace Ba. \(\text{T}_{\text{Si}} \) in the range 0.59–0.61.

Orthorhombic, \(P2_2_2_1 \), \(a 9.550(10), b 9.665(10), c 6.523(5) \) Å (Böhlet mine, Westergotland, Sweden) (Galli 1976).
Also tetragonal, *P4_2(m)*, *a* 9.584(5), *c* 6.524(3) Å (Old Kilpatrick, near Glasgow, Scotland) (Mazzi et al. 1984).

From optical evidence, Akizuki (1986) suggested that a triclinic true symmetry also is possible. The structure is similar to that of natrolite, but with a distinctive cross-linking of the chains (Taylor & Jackson 1933, Mazzi et al. 1984). Examples of orthorhombic edingtonite have nearly perfect (Si,Al) order. The tetragonal form is disordered, and available analytical results show that slightly more Ba has been replaced by other ions.

Orthorhombic edingtonite have nearly perfect (Si,Al) order. The tetragonal form is disordered, and available analytical results show that slightly more Ba has been replaced by other ions.

Epistilbite

(Ca,Na)₂(Al₂Si₄O₁₂)·4H₂O

Rose (1826). Type localities: “Iceland” and “Faröe Islands”. Named from Greek *epi* in the sense of near, and stilbite, from its supposed similarity to the latter. Na/(Na + Ca) varies from about 0.1 to 0.3, with minor K and Ba (e.g., Galli & Rinaldi 1974). *Tₐ* in the range 0.72–0.77.

Erionite (series)

\[K_x(Na,Ca_{1-x})_2[Al_{18}Si_{26}O_{72}]·3xH_2O \]

Z = 1 ERI

Eakle (1898). Type locality: Durkee, Oregon, U.S.A., in rhyolitic, welded ash-flow tuff. Name from Greek root meaning wool, in reference to its appearance. Substantial amounts of any or all of Ca, Na, and K, and subordinate Mg may be present, and there is evidence that trace Fe may enter tetrahedral and extra-framework sites. Eakle’s (1898) analysis of type erionite shows Na as the most abundant extra-framework cation; Passaglia et al. (1998) found Ca to be the most abundant in a type-locality specimen. *Tₐ* in the range 0.68–0.79. Hexagonal, *P₆₃/mmc*, *a* 13.15, *c* 15.02 Å (Kawahara & Curien 1969).

The structure is related to those of offretite, with which it may form intergrowths with stacking faults (Schlenker et al. 1977b), and levice, on which it forms epitactic growths (Passaglia et al. 1998). The three minerals have 4-, 6- and 8-membered rings. They differ in the stacking of single and double 6-membered rings, resulting in different c dimensions and differently sized and shaped cages. Si,Al disordered.

Erionite-Na

New name; Na is the most abundant extra-framework cation.

Proposed type-example: Cady Mountains, California, U.S.A. (Sheppard et al. 1965). *Tₐ* in the range 0.74–0.79. For the type specimen, *a* 13.214(3), *c* 15.048(4) Å, composition \((Na_{0.99}K_{0.01})_{18}[Al_{18}Si_{26}O_{72}]·30.60H_2O \) (Sheppard & Gude 1969b).

Erionite-K

New name; K is the most abundant extra-framework cation.

Proposed type-example: Rome, Oregon, U.S.A., in which K makes up 58% of extra-framework cations; significant Na, Ca, and Mg also are present (Eberly 1964). *Tₐ* in the range 0.74–0.79.

For a specimen from Ortenberg, Germany, *a* 13.227(1), *c* 15.075(3) Å, \((K_{12.49}Na_{0.51})_{18}[Al_{18}Si_{26}O_{72}]·31.39H_2O \) (Passaglia et al. 1998).

Erionite-Ca

New name; Ca is the most abundant extra-framework cation.

Proposed type-example: Mazé, Niigata Prefecture, Japan (Harada et al. 1967). *Tₐ* in the range 0.68–0.79.

For the type example: *a* 13.333(1), *c* 15.091(2) Å; \((Ca_{18.25}K_{1.75})_{18}[Al_{18}Si_{26}O_{72}]·31.35H_2O \) (Harada et al. 1967).

Faujasite (series)

\[(Na,Ca_{0.5},K_{0.5})[Al_{12}Si_{12}O_{48}]·16H_2O \]

Z = 16 FAU

Damour (1842). Type locality: Sasbach, Kaiserstuhl, Germany. Named after Barthélemy Faujas de Saint Fond, noted for his work on extinct volcanoes. Major amounts of Na, Ca, and Mg are commonly present, and in some cases, K; minor Sr is also reported. The ratio Si : Al also varies; *Tₐ* in the range 0.68–0.74, with one record of 0.64. In most samples analyzed, *x* in the above generalized formula is in the range 3.2–3.8, with one record of 4.4 (Rinaldi et al. 1975a, Wise 1982, Ibrahim & Hall 1995). Cubic, *Fd3m*, *a* 24.65 Å (material from Sasbach: Bergerhoff et al. 1958).

The framework structure is very open, with complete sodalite-type cages and with very large cavities having 12-membered ring openings. Up to 260 molecules of H₂O can be accommodated per unit cell (Bergerhoff et al. 1958, Baur 1964).
Faujasite-Na

New name; Na is the most abundant extra-framework cation, as it is in the original (incomplete) and most subsequent analyses of samples from the type locality, Sasbach, Kaiserstuhl, and some other localities. \(T_a \) in the range 0.70–0.74, with one report of 0.64. Reported values of \(a \) range from 24.638(3) Å (Wise 1982) to 24.728(2) Å (Ibrahim & Hall 1995).

Faujasite-Ca

New name; Ca is the most abundant extra-framework cation. Reported \(T_a \) in the range 0.68–0.73. Proposed type-example: drill core from Haselborn near Ilbeshausen, Vogelsberg, Hessen, Germany (Wise 1982), composition \((Ca_{1.3},Na_{0.5},Mg_{0.2},K_{0.04})[Al_{6}Si_{30}O_{72}]\cdot18H_{2}O, Z = 1\).

Faujasite-Mg

New name; Mg is the most abundant extra-framework cation. Proposed type (and only) example: “Old (museum) sample” (# 32, Genth Collection, Pennsylvania State University) from Sasbach, Kaiserstuhl, Germany (anal. #15, Rinaldi et al. 1975a), composition \((Mg_{1.5},Ca_{0.5})[Al_{6}Si_{30}O_{72}]\cdot14H_{2}O, Z = 1\).

Ferrierite (series)

\((K,Na,Mg_{0.5},Ca_{0.5})[Al_{6}Si_{30}O_{72}]\cdot8H_{2}O, Z = 1\)

Graham (1918). Type locality: Kamloops Lake, British Columbia, Canada. Named after Dr. Walter F. Ferrier, mineralogist, mining engineer, and one-time member of the Geological Survey of Canada, who first collected it. Substantial amounts of any or all of Mg, Na, and Ca may be present, and smaller amounts of Fe, Ba, and Sr. \(T_a \) in the range 0.80–0.88. Statistical symmetry, orthorhombic, \(Immm \); true symmetries orthorhombic, \(Pnma, a \) 19.23, \(b \) 14.15, \(c \) 7.50 Å (Alberti & Sabelli 1987), and monoclinic, \(P2_1/n, a \) 18.89, \(b \) 14.18, \(c \) 7.47 Å, \(\beta \) 90.0° (Graham-Meier et al. 1985). The structure was first determined by Vaughan (1966). Framework Si,Al partially ordered (Alberti & Sabelli 1987).

Ferrierite-Mg

New name for the original member of the series; Mg is the most abundant single extra-framework cation. Substantial extra-framework Na, K, and lesser Ca commonly present. \(T_a \) in the range 0.80–0.84. True symmetry orthorhombic, \(Pnnm, a \) 19.231(2), \(b \) 14.145(2), \(c \) 7.499(1) Å for specimen from Monastir, Sardinia, of composition \((Mg_{2.02}K_{1.19}Na_{0.56}Ca_{0.52}Sr_{0.14}Ba_{0.02})[Al_{6.89}Si_{29.04}O_{72}]\cdot17.86H_{2}O\) (Alberti & Sabelli 1987).

Ferrierite-K

New name; K is the most abundant single extra-framework cation. Proposed type-example: Altoona, Washington, U.S.A., composition \((Na_{3.06}K_{0.97}Mg_{0.38}Ca_{0.05}Sr_{0.03}Ba_{0.02})[Al_{6}Si_{30}O_{72}]\cdot18H_{2}O\) (Wise & Tschernich 1976, #3). \(T_a \) in the range 0.81–0.87. Orthorhombic, \(a \) 18.973(7), \(b \) 14.140(6), \(c \) 7.478(4) Å for type specimen.

Ferrierite-Na

New name; Na is the most abundant single extra-framework cation. Proposed type-example: Altoona, Washington, U.S.A., composition \((Na_{3.06}K_{0.97}Mg_{0.38}Ca_{0.05}Sr_{0.03}Ba_{0.02})[Al_{6}Si_{30}O_{72}]\cdot18H_{2}O\) (Wise & Tschernich 1976, #1). \(T_a \) in the range 0.85–0.88. Monoclinic, \(P2_1/n, a \) 18.886(9), \(b \) 14.182(6), \(c \) 7.470(5) Å, \(\beta \) 90.0(1)° (Graham-Meier et al. 1985, for a specimen from Altoona, Washington).

Garronite

\(Na_{12.5}[Al_{6}Si_{30}O_{72}]\cdot14H_{2}O, Z = 1 \)

GIS Walker (1962). Type locality: slopes of Glenariff Valley, County Antrim, Northern Ireland. Named after the Garron Plateau, where the type locality is sited. Cal/(Na + K) is variable, but Ca predominates. Type-locality garronite has about 1.3 Na apfu, some others have (Na + K) < 0.2 apfu. \(H_{2}O \) in the range 13.0–14.0 molecules per formula unit. \(T_a \) in the range 0.60–0.65. The crystal structure has been refined in tetragonal symmetry, \(P4_{mm2}, a \) 9.9266(2), \(c \) 10.3031(3) Å, by Artioli (1992), and Na-free synthetic garronite has been refined in \(I4_{1}/a, a \) 9.873(1), \(c \) 10.288(1) Å, by Schröpfer & Joswig (1997). Orthorhombic symmetry has been proposed on the basis of X-ray diffraction with twinned crystals (Nawaz 1983) and crystal morphology (Howard 1994). The framework topology is the same as for gismondine, but Si and Al are essentially disordered. The different space-group symmetry (Artioli 1992) is associated with disorder and the presence of significant Na. Gottardi & Alberti (1974) proposed partial ordering subsequent to growth to explain twin domains.

Gaultite

\(Na_{6}[Zn_{2}Si_{3}O_{8}]\cdot5H_{2}O, Z = 8 \)

VSV Ercit & Van Velthuizen (1994). Type locality: Mont Saint-Hilaire, Quebec, Canada. Named after Robert A.
Gault, (b. 1943), mineralogist at the Canadian Museum of Nature, Ottawa, Ontario, Canada. No other elements detected in the one reported example; $T_{	ext{si}} = 0.78$. Orthorhombic, $F2dd$, $a = 10.211(3)$, $b = 39.88(2)$, $c = 10.304(4)$ Å. The zirconolite framework of tetrahedra is characterized by stacked sheets of edge-sharing 4- and 8-membered rings. The sheets are cross-linked by tetrahedra. Gaultite is isomorphous with synthetic zeolite VPI-7 and similar in structure to lovdarite (Ercit & Van Velthuizen 1994).

Gismondine

$\text{Ca[Al}_2\text{Si}_2\text{O}_8\text{]}\cdot 4.5\text{H}_2\text{O}$ $Z = 4$ GIS von Leonhard (in footnote, 1817), renaming "zeagonite" of Gismondini (1817). Type locality: Capo di Bove, near Rome, Italy. Named after Carlo Giuseppe Gismondo (1762–1824), lecturer in Mineralogy in Rome. (K + Na) does not exceed 0.12 $apfu$ with K less than 0.08 $apfu$, analyses showing high K result from intergrown phillipsite. Minor Sr may be present; T_{si} in the range 0.51–0.54 (Vezzalini & Oberti 1984). T_{si} is slightly variable (4.4–4.5 molecules per formula unit) because of mixed 6- and 7-coordination of Ca (Artioli et al. 1986b).

Monoclinic, originally refined in $P2_1/a$ by Fischer & Schramm (1970); cell converted to standard $P2_1/c$ second setting is $a = 10.023(3)$, $b = 10.616(5)$, $c = 9.843(15)$ Å, $\beta = 92.42(25)^\circ$. Also refined (two samples) by Rinaldi & Vezzalini (1985). The framework topology is based on crankshaft chains of 4-membered rings as in feldspars, connected in UUDD configuration. Si,Al are strictly ordered.

Gismondine (series)

$\text{Na}_2\text{Ca}_x\text{K}_y\text{[Al}_x\text{Si}_y\text{O}_{32}\text{]}\cdot 12\text{H}_2\text{O}$ $Z = 1$ GME Brewster (1825a). Type locality: the name was proposed for minerals occurring both at Little Deer Park, Glenarm, County Antrim, Northern Ireland, and at Montecchio Maggiore, Vicenza, Italy. Named after Christian Gottlob Gmelin, Professor of Chemistry, University of Tübingen.

Na-dominated members are the most common. T_{si} in the range 0.65–0.72. Hexagonal, $P6_1/mmc$, $a = 13.62–13.88$, $c = 9.97–10.25$ Å. The structure is similar to that of chabazite, with which it is commonly intergrown (Strunz 1956), but gmelinite has a different stacking of the double 6-membered rings (Fischer 1966). Si,Al are disordered.

Gmelinite-Na

New name for the most common species of the series. It occurs in at least one of the gmelinite type-localities (Montecchio Maggiore). The Ca content is commonly substantial, K is minor, and Sr is significant in a few samples analyzed. T_{si} in the range 0.65–0.71. Hexagonal, $P6_1/mmc$, $a = 13.756(5)$, $c = 10.048(5)$ Å (Galli et al. 1982), for near-end-member material from Queensland, Australia, of composition $(\text{Na}_{7.61}\text{Ca}_{0.03}\text{K}_{0.16})\text{[Al}_{7.41}\text{Si}_{16.49}\text{O}_{48}\text{]}\cdot 21.51\text{H}_2\text{O}$ (Passaglia et al. 1978a).

Gmelinite-Ca

New name for a species that also occurs in at least one of the type localities (Montecchio Maggiore). Ca is the most abundant single extra-framework cation. Significant to substantial Sr and Na, minor K. T_{si} in the range 0.68–0.70. Hexagonal, $P6_1/mmc$, $a = 13.800(5)$, $c = 9.964(5)$ Å (Galli et al. 1982), from Montecchio Maggiore, of composition $(\text{Ca}_{2.06}\text{Sr}_{1.35}\text{Na}_{0.78}\text{K}_{0.11})\text{[Al}_{7.82}\text{Si}_{16.21}\text{O}_{48}\text{]}\cdot 23.23\text{H}_2\text{O}$ (Passaglia et al. 1978a).

Gmelinite-K

New name; K is the most abundant single extra-framework cation. Proposed type-example: Fara Vicentina, Vicenza, Italy, composition $(\text{K}_{2.72}\text{Ca}_{1.67}\text{Sr}_{0.39})\text{[Al}_{6.17}\text{Si}_{9.93}\text{O}_{32}\text{]}\cdot 12\text{H}_2\text{O}$ (Malinovskii 1984). Also known from the Kola Peninsula (Malinovskii 1984).

Hexagonal, $P6_1/mmc$, $a = 13.621(3)$, $c = 10.254(1)$ Å.

Gobinsite

$\text{Na}_2\text{[Al}_3\text{Si}_5\text{O}_{12}\text{]}\cdot 12\text{H}_2\text{O}$ $Z = 1$ GIS Nawaz & Malone (1982). Type locality: basalt cliffs near Hills Port, south of the Gobbins area, County Antrim, Northern Ireland. Named after the locality. Na : Ca : Mg : K variable, with Na greatly predominant, < 0.6 $apfu$. Reports of high K are ascribed to intergrown phillipsite (Artioli & Foy 1994). T_{si} in the range 0.62–0.68, substantially higher than in gismondine. Orthorhombic, $Pnn2_1$, $a = 10.108(1)$, $b = 9.766(1)$, $c = 10.171(1)$ Å for the anhydrous composition $(\text{Na}_{2.38}\text{K}_{2.18}\text{Ca}_{0.59})\text{[Al}_{5.15}\text{Si}_{5.07}\text{O}_{12}\text{]}$ from Two-Mouth Cave, County Antrim, Northern Ireland (McCusker et al. 1985); $a = 10.1027(5)$, $b = 9.8016(5)$, $c = 10.1682(6)$ Å for $(\text{Na}_{3.04}\text{Ca}_{0.64})\text{[Al}_{5.00}\text{Si}_{5.00}\text{O}_{12}\text{]}\cdot 12\text{H}_2\text{O}$ from Magherameorne quarry, Larne, Northern Ireland (Artioli & Foy 1994). The framework topology is the same as for gismondine and is based on crankshaft chains of 4-membered rings, as in feldspars. Distortion from tetragonal topological symmetry results from the arrangement of cations in the channels. Si,Al in the framework are disordered.
Gonnardite

(Na,Ca)₆[Si₂₀O₆₂]•12H₂O
Z = 1 NAT

Lacroix (1896). Type locality: Chaux de Bergonne, Gignat, Puy-de-Dôme, France. Named after Ferdinand Gonnard, who had earlier described the material as “mesole” (= thomsonite).

Forms an extensive substitution series, commonly approximating Na₆.42 Ca 1.50 [Al 9.22 Si 10.73 O 40]•12H₂O (after Ross et al. 1992), with minor Fe²⁺, Mg, Ba, Sr, and K. Tₚ in the range 0.52–0.59 (or 0.52–0.62 if tetranahtrolite = gonnardite).

Tetragonal, I4d, a 13.21(1), c 6.622(4) Å for material from Tvedalen, Langesund, Norway, of composition (Na₆.42,K 0.01,Ca 1.50)[Al 9.22 Si 10.73 O 40]•12.37H₂O (Mazzi et al. 1986).

The structure is similar to that of natrolite, but with noncentrosymmetric and triclinic, P1 (e.g., Akizuki 1985, Stuckenschmidt et al. 1990), a 9.879(2), b 14.139(2), c 8.693(2) Å, ß 124.81(1)° for (Ba 1.93,Ca 0.46,K 0.70)[Al 8.30 Si 11.70 O 32]•12H₂O from Andreasberg, Harz (Rinaldi et al. 1974). Tₚ in the range 0.68–0.71 (e.g., Černý et al. 1977).

Monoclinic, refined in P2₁/m, but on piezoelectric and optical grounds, the true symmetry may be noncentrosymmetric and triclinic, P1 (e.g., Akizuki 1985, Stuckenschmidt et al. 1990), a 9.879(2), b 14.139(2), c 8.693(2) Å, ß 124.81(1)° for (Ba 1.93,Ca 0.46,K 0.70)[Al 8.30 Si 11.70 O 32]•12H₂O from Andreasberg, Harz (Rinaldi et al. 1974). The sheet-like structure was solved by Merkle & Stuckenschmidt (1974).

Harmotome forms a continuous series with phillipsite-Ca. The name harmotome predates phillipsite; on grounds of history and usage, both are retained in spite of Rule 1 of the present report. Tₚ in the range 0.68–0.71 (e.g., Černý et al. 1977).

The framework topology is the same as for the more distinctly monoclinic minerals previously known as stilbite. Named after Henry Heuland, English mineral collector. The cation content is highly variable. Ca-, Na-, K-, and Sr-dominant compositions are known, and Ba and Mg are in some cases substantial. Tₚ in the range 0.71 to 0.80. Minerals with the same framework topology, but with Tₚ ≥ 0.80, Si/Al ≥ 4.0, are distinguished as cinnoptilolite.

Monoclinic, with highest possible topological symmetry C2/m (P2₁/m). Cm and C2 also have been suggested. The sheet-like structure was solved by Merkle & Slaughter (1968). There is partial order of Si,Al.

Heulandite (series)

(Ca₆₋₅,Sr₇₋₅,Ba₄₋₃,Mg₆₋₅,Na, K₃)[Al₅₋₂Si₇₋₅O₃₂₋₈]•24H₂O
Z = 1 HEU

Brooke (1822). Type locality: none; the name was given to the more distinctly monoclinic minerals previously known as stilbite. Named after Henry Heuland, English mineral collector.

The cation content is highly variable. Ca-, Na-, K-, and Sr-dominant compositions are known, and Ba and Mg are in some cases substantial. Tₚ in the range 0.71 to 0.80. Minerals with the same framework topology, but with Tₚ ≥ 0.80, Si/Al ≥ 4.0, are distinguished as cinnoptilolite.

Monoclinic, with highest possible topological symmetry C2/m (P2₁/m). Cm and C2 also have been suggested. The sheet-like structure was solved by Merkle & Slaughter (1968). There is partial order of Si,Al.

Heulandite-Ca

New name for the most common species of the series, and that deduced from results of most older analyses. Ca is the most abundant single extra-framework cation. Tₚ in the range 0.71–0.80.

Monoclinic, C2/m, Cm, or C2. a 17.718(7), b 17.897(5), c 7.428(2) Å, ß 116.42(2)° from Faroe Islands, composition (Ca₄₋₃,Sr₇₋₅,Ba₄₋₃,Mg₆₋₅,Na,K₃)[Al₅₋₂Si₇₋₅O₃₂₋₈]•26.02H₂O (Tₚ = 0.74) (Alberti 1972).
Heulandite-Sr

New name; Sr is the most abundant single extra-framework cation. One known example: Campegli, Eastern Ligurian ophiolites, Italy, of composition \((\text{Sr}_{1.18}\text{Ca}_{1.74}\text{Ba}_{0.14}\text{Mg}_{0.02}\text{Na}_{0.16}\text{K}_{0.12})[\text{Al}_{1.18}\text{Si}_{2.64}\text{O}_{7.84}]\cdot n\text{H}_2\text{O}\), \(T_S = 0.75\) (Lucchetti et al. 1982).

Monoclinic, \(\text{C}2\text{m}, \text{Cm}\) or \(\text{C}2\), \(a = 17.655(5)\), \(b = 17.877(5)\), \(c = 7.396(5)\) Å, \(\beta = 116.65^\circ\).

Heulandite-Na

Monoclinic, \(\text{C}2\text{m}, \text{Cm}\), or \(\text{C}2\), \(a = 17.670(4), b = 17.982(4), c = 7.404(2)\) Å, \(\beta = 116.40(2)^\circ\) (Bolles 1972) for the type example, of composition \((\text{Na}_{3.08}\text{Ca}_{1.72}\text{K}_{0.33})[\text{Al}_{7.84}\text{Si}_{28.00}\text{O}_{72}]\cdot 21.74\text{H}_2\text{O}\), \(T_S = 0.78\).

A close approach to end-member \(\text{K}_9[\text{Al}_{9}\text{Si}_{27}\text{O}_{72}]\cdot n\text{H}_2\text{O}\) has been reported by Nørnberg (1990).

Heulandite-K

New name; K is the most abundant single extra-framework cation. Proposed type-example: Albero Bassi, Vicenza, Italy (Passaglia 1969a), composition \((\text{K}_{9}\text{Na}_{0.30}\text{Ca}_{1.72}\text{Ba}_{0.14}\text{Mg}_{0.02})[\text{Al}_{9.08}\text{Fe}_{0.56}\text{Si}_{26.48}\text{O}_{72}]\cdot 25.84\text{H}_2\text{O}\), \(T_S = 0.78\).

Monoclinic, \(\text{C}2\text{m}, \text{Cm}\), or \(\text{C}2\), \(a = 17.498, b = 17.816, c = 7.529\) Å, \(\beta = 116.07^\circ\).

A close approach to end-member \(\text{K}_9[\text{Al}_{9}\text{Si}_{27}\text{O}_{72}]\cdot n\text{H}_2\text{O}\) has been reported by Nørnberg (1990).

Leucite

Known from two localities in the Khibina massif, both with compositions close to the above formula (Pekov & Chukanov 1996). \(T_S\) values are 0.59, 0.61.

Tetragonal, \(P4_2\text{c}, a = 9.851(5), c = 13.060(5)\) Å, Framework of Si,Al tetrahedra, with channels along \(c\) containing B(OH)\(_4\) tetrahedra and K, Cl (Malinovskii & Belov 1980). Considered by Smith (1988) to be an anhydrous analogue of the edingtonite structure-type EDI.

Laumontite

\(\text{Ca}[^{\text{Al}}_{12}\text{Si}_{18}\text{O}_{42}]\cdot 18\text{H}_2\text{O} Z = 1\) LAU

As leonardite, Jameson (1805), who credits the name to Werner without specific reference; spelling changed to laumonite by Haiüy (1809), and to laumontite by von Leonhard (1821). Named after Gillet de Laumont, who collected material described as “zéolithe efflorescente” by Haiüy (1801, p. 410–412), from lead mines of Huelgoët, Brittany. The later spellings were applied to this material, and the Huelgoët mines are effectively the type locality.

Always Ca-dominant, with minor (K,Na). “Primary leonhardtite” of Fersman (1908) is laumontite with approximately 1.5 Ca replaced by 3(K,Na) apfu and reduced \(\text{H}_2\text{O}\). \(T_{so}\) in the range 0.64–0.70.

Monoclinic, \(\text{C}2\text{m}\) (although reported to be pyroelectric), \(a = 14.845(9), b = 13.167(2), c = 7.541(8)\) Å, \(\beta = 110.34(2)^\circ\) (Nasik, India: Artioli & Ståhl 1993).

Except where unusually rich in (K,Na), reversibly loses \(\text{ca.} 4\text{H}_2\text{O}\) at low humidity at room temperature and pressure to form the variety termed “leonhardtite” (e.g., Fersman 1908, Armbruster & Kohler 1992); structure refined by Bartl (1970) and others. Si,Al in the framework is highly ordered.

Hsianghualite

\(\text{Li}_4\text{Ca}_2[\text{Be}_2\text{Si}_2\text{O}_7]F_2 Z = 8\) ANA

Huang et al. (1958). Type locality unclear, in metamorphosed Devonian limestone, Hunan Province, China. The name is from a Chinese word for fragrant flower. Known from the original locality only. Minor Al, Fe, Mg, Na, and 1.28% loss on ignition reported (Beus 1980). Fersman (1908, Armbruster & Kohler 1992); structure refined by Bartl (1970) and others. Si,Al in the framework is highly ordered.

Kalborsite

\(\text{K}_2[\text{Al}_2\text{Si}_2\text{O}_2]\cdot \text{B} \cdot \text{OH}, \text{Cl} Z = 2\) EDI

Khomyakov et al. (1980), Malinovskii & Belov (1980). Type locality: rischorrite pegmatite, Mt. Rasvumchore, Khibina alkaline massif, Kola Peninsula, Russia. The name alludes to the composition.
Levyne (series)

(Ca$_{0.5}$Na,K)$_6$[Al$_6$Si$_{12}$O$_{36}$]•17H$_2$O

$Z = 3$

LEV

Brewster (1825b). Type locality: Dalsnypen, Faroe Islands. Named after Armand Lévy (1794–1841), mathematician and crystallographer, Université de Paris.

Extra-framework cations range from strongly Ca-dominant to strongly Na-dominant, with minor K and, in some cases, minor Sr or Ba. Si:Al is also variable (Galli et al. 1981). T_s in the range 0.62–0.70.

Trigonal, R_3m, a 13.32–13.43, c 22.66–23.01 Å. The stacking of single and double 6-membered rings differs from that in the related structures of erionite and offretite (Merlino et al. 1975).

Levyne-Ca

New name for the original member of the series; Ca is the most abundant extra-framework cation. Type locality: Dalsnypen, Faroe Islands. Material closely approaching end-member Ca$_6$[Al$_6$Si$_{12}$O$_{36}$]•17H$_2$O has been reported by England & Ostwald (1979) from near Merriwa, New South Wales, Australia. T_s in the range 0.62–0.70.

Hexagonal, $R3m$, a 13.338(4), c 23.014(9) Å for composition (Ca$_{13}$Na$_{11}$K$_2$)[Al$_{12}$Si$_{12}$O$_{36}$]•16.66H$_2$O from near the Nurri to Orroli road, Nuora, Sardinia (Passaglia et al. 1974, Merlino et al. 1975).

Levyne-Na

New name; Na is the most abundant extra-framework cation. Proposed type-example: Chojabaru, Nagasaki Prefecture, Japan (Mizota et al. 1974). T_s in the range 0.65–0.68.

Hexagonal, $R3m$, a 13.380(5), c 22.684(9) Å for (Na$_{14}$K$_{13}$Ca$_{18}$Mg$_{8}$)[Al$_{12}$Si$_{12}$O$_{36}$]•16.66H$_2$O (Mizota et al. 1974).

Lovdarite

K$_n$Na$_{16-i}$Be$_i$Si$_{32}$O$_{92}$•18H$_2$O

$Z = 1$

LOV

Men’shikov et al. (1973). Type locality: alkaline pegmatites on Mt. Karnasurt, Lovozero alkaline massif, Kola Peninsula, Russia. Name means “a gift of Lovozero”.

In the type and only known occurrence, approximately 1 Al atom substitutes for Si in the above structure-derived formula, with introduction of additional extra-framework Na and Ca. T_s = 0.75.

Orthorhombic, $Pna2$, but contains b-centered domains in which a is doubled; a 39.576(1), b 6.9308(2), c 7.1526(3) Å (Merlino 1990).
Mesolite

\[\text{Na}_3\text{Ca}_4[\text{Al}_{2}\text{Si}_{3}\text{O}_{10}] \cdot 2\text{H}_{2}\text{O} \]
\[Z = 1 \]
NAT

Gehlen & Fuchs (1813), as mesolite, for some varieties of “mesotype” (mostly natrolite) of Haüy (1801). No type locality was given. Fuchs (1816) clarified the distinctions among natrolite, scolecite, and mesolite, and gave analytical data for mesolite from the Faröe Islands, Iceland and Tyrol. The name recognizes its compositional position between natrolite and scolecite. (Na + K)/(Mg + Ca + Sr + Ba) varies from 0.45 to 0.52, with K, Mg, Sr, Ba very minor (Alberti et al. 1982b). Tₘ in the range 0.50–0.62. Orthorhombic, \(Fdd_2 \), \(a = 18.4049(8), b = 56.655(6), c = 6.5443(4) \) Å, for material from Poona, India (Artioli et al. 1986a).

Ordered Si,Al in the framework, with one natrolite-like layer alternating with two scolecite-like layers parallel to (010) (Artioli et al. 1986a, Ross et al. 1992).

Montesommaite

\[\text{K}_9[\text{Al}_{9}\text{Si}_{23}\text{O}_{64}] \cdot 10\text{H}_{2}\text{O} \]
\[Z = 1 \]
MON

Rouse et al. (1990). Type locality: Pollena, Monte Somma, Vesuvius, Italy. Named after the locality.

Minor Na was detected in the one published analytical data-set. Tₘ = 0.70. Orthorhombic, \(Fdd_2, a = b \times 10.099(1), c = 17.307(3) \) Å (pseudotetragonal, \(I_4/land \)).

The framework can be constructed by linking (100) sheets of five- and eight-membered rings; it has similarities to those of merlinoite and the gismondine group (Rouse et al. 1990).

Mordenite

\[(\text{Na}_3\text{Ca}_2\text{K}_2)[\text{Al}_{13}\text{Si}_{32}\text{O}_{84}] \cdot 28\text{H}_{2}\text{O} \]
\[Z = 1 \]
MOR

How (1864). Type locality: shore of Bay of Fundy, 3–5 km east of Morden, King’s County, Nova Scotia, Canada. Named after the locality.

The cation content is variable, with Na/(Na + Ca) typically in the range 0.50–0.81. Some K, Mg, Fe, Ba, and Sr also may be present (Passaglia 1975, Passaglia et al. 1995). In some examples, K is reported as the dominant cation (Thugutt 1933, Lo et al. 1991, Lo & Hsieh 1991), potentially justifying the recognition of a mordenite series with Na- and K-dominant species. Tₘ in the range 0.80–0.86.

Structure determined by Meier (1961). Si,Al disorder in the framework is extensive, but not complete.

Mutinaite

\[\text{Na}_3\text{Ca}_4[\text{Al}_{11}\text{Si}_{85}\text{O}_{192}] \cdot 60\text{H}_{2}\text{O} \]
\[Z = 1 \]
MFI

Galli et al. (1997b), Vezzalini et al. (1997b). Type locality: Mt. Adamson, Northern Victoria Land, Antarctica. The name is for Mutina, the ancient Latin name for Modena, Italy.

Electron-microprobe analyses of mutinaite from the type and only known locality show limited departure from the simplified formula, with minor Mg (~0.21 apfu) and K (~0.11 apfu). Very high Si, Tₘ = 0.88.

Orthorhombic, \(Pnma, a = 20.223(7), b = 20.052(8), c = 13.491(5) \) Å.

Mutinaite conforms closely in structure with synthetic zeolite ZSM–5.

Natrolite

\[\text{Na}_3\text{Ca}_2[\text{Al}_{3}\text{Si}_{2}\text{O}_{10}] \cdot 2\text{H}_{2}\text{O} \]
\[Z = 8 \]
NAT

Klaproth (1803). Type locality: Hohenwiel, Hegau, Baden-Württemberg, Germany. Name from natro- for sodium-bearing.

(Na + K)/(Mg + Ca + Sr + Ba) varies from 0.97 to 1.00, with K, Mg, Sr, and Ba very minor. Tₘ in the range 0.59–0.62 (Alberti et al. 1982b, Ross et al. 1992).

Orthorhombic, \(Fdd_2, a = 18.272, b = 18.613, c = 6.593 \) Å (Si,Al highly ordered, Dutoitspan, South Africa: Artioli et al. 1984); a = 18.319(4), b = 18.595(4), c = 6.597(1) Å (~70% Si,Al order, Zeilberg, Germany: Hesse 1983).

Offretite

\[\text{CaK}_2\text{Mg}[\text{Al}_{5}\text{Si}_{3}\text{O}_{12}] \cdot 16\text{H}_{2}\text{O} \]
\[Z = 1 \]
OFF

Gonnard (1890) as offrétite. Type locality: Mont Simonse (Mont Semiol), Loire, France. Named after Albert J.J. Offret, professor in the Faculty of Sciences, Lyon, France.

Ca, Mg, and K substantial, commonly in proportions approaching 1 : 1 : 1; Na commonly trace or minor. Passaglia et al. (1998) and W. Birch (pers. commun., 1997) show that earlier published analytical data pertaining to apparently Ca- and Na-dominant variants are compromised by identification problems, including possible mixtures. Tₘ in the range 0.69–0.74.

Hexagonal, \(P6_3/m2, a = 13.307(2), c = 7.592(2) \) Å for composition (Meier 1961), Si,Al order, Ba, Sr, K apfu.

\[\text{Na}_9\text{Ca}_3[\text{Al}_{5}\text{Si}_{12}\text{O}_{36}] \cdot 16.85\text{H}_{2}\text{O} \] from the type locality (Passaglia & Tagliavini 1994).

The framework is related to those of erionite and leynve, but differs in the stacking of sheets of six-membered rings, resulting in different values for c and differently sized and shaped cages (Gard & Tait 1997)
1972). A high degree of Si,Al order is inferred. Offretite may contain intergrown macro- or crypto-domains of erionite (e.g., Rinaldi 1976). It forms epitactic intergrowths with chabazite, but epitactic associations with levyne are questionable (Passaglia et al. 1998).

Pahasapaithe

\(\text{Pahasapaithe} \)

\((Ca_{1.3}Li_{1.2}K_{1.2}Na_{0.8}Be_{0.4}P_{0.6}O_{38}) \cdot 38H_2O \)

Rouse et al. (1987). Type locality: Tip Top mine, Black Hills, South Dakota, U.S.A. Named after Pahasapa, a Sioux Indian name for the Black Hills. Known from the type locality only. \(T_{6g} = 0 \).

Cubic, \(F23, a = 13.781(4) \) Å. A beryllophosphate zeolite with ordered BeO\(_4\) and PO\(_4\) tetrahedra and a distorted synthetic zeolite RHO-type framework, structurally related to the faujasite series (Rouse et al. 1989).

Parthéite

\(\text{Parthéite} \)

\(\text{Ca}_3[\text{Al}_{2}\text{Si}_{2}\text{O}_{8}(\text{OH})_2] \cdot 4\text{H}_2\text{O} \)

Sarp et al. (1979). Type locality: in ophiolitic rocks, 7 km southeast of Doganbaba, Burdur province, Taurus Mountains, southwestern Turkey. Named after Erwin Parthé, Professor of Structural Crystallography, University of Geneva, Switzerland.

Minor Na and K. \(T_{6g} = 0.52 \) and 0.495 in the only two known occurrences. Monoclinic, \(\text{C2/}c, a = 21.553(3), b = 8.761(1), c = 9.304(2) \) Å, \(\beta = 91.55(2)^\circ \) (type locality; Engel & Yvon 1984).

The framework contains various 4-, 6-, 8-, and 10-membered rings, and is interrupted at every second AlO\(_4\) tetrahedron by hydroxyl groups. Si and Al are ordered.

Paulingite-K

\(\text{Paulingite-K} \)

\(\text{K}_2\text{Na}([\text{Al}_{10}\text{Si}_{32}\text{O}_{84}] \cdot 27–44\text{H}_2\text{O}) \)

Z = 1

RHO

New name; \(K \) is the most abundant extra-framework cation. Average composition from five analyses of samples from Rock Island Dam, Washington, U.S.A., the suggested type-example for paulingite-K: \(\text{K}_4\text{Al}_9\text{Si}_{32}\text{O}_{84}\text{H}_2\text{O} \). Structural content (27 H\(_2\)O for \(Z = 16 \)) in barian paulingite-Ca from Vinarická Hora, Czech Republic.

Paulingite-Ca

\(\text{Paulingite-Ca} \)

\(\text{K}_2\text{Na}([\text{Al}_{10}\text{Si}_{32}\text{O}_{84}] \cdot 15\text{H}_2\text{O}) \)

Z = 1

LTL

New name; \(Ca \) is the most abundant extra-framework cation. Average result of four analyses, Ritter, Oregon, U.S.A., the suggested type-locality for paulingite-Ca: \(\text{K}_4\text{Al}_9\text{Si}_{32}\text{O}_{84}\text{H}_2\text{O} \). Structural content (15 H\(_2\)O for \(Z = 1 \)) in barian paulingite-Ca from Vinarická Hora, Czech Republic.

Perilalite

\(\text{Perilalite} \)

\(\text{K}_2\text{Na}([\text{Al}_{10}\text{Si}_{32}\text{O}_{84}] \cdot 15\text{H}_2\text{O}) \)

Z = 1

LTL

Minor substitution by Sr and Ba, but little other compositional variation in the two known occurrences. \(T_{6g} \) in the range 0.65–0.67.

Hexagonal, \(P6/mmm, a = 18.49(3), c = 7.51(1) \) Å (Men’shikov 1984).

Perilalite has the same framework topology as synthetic zeolite-L (Artioli & Kvick 1990). Structural columns have alternating cancrinite-type cages and double 6-membered rings. No Si,Al order has been detected.

Phillipsite (series)

\(\text{Phillipsite (series)} \)

\(\text{K}_2\text{Na}([\text{Al}_{10}\text{Si}_{32}\text{O}_{84}] \cdot 12\text{H}_2\text{O}) \)

Z = 1

PHI

Lévy (1825). Type locality as recorded by Lévy: Ac Reale, now Acireale, on the slopes of Etna, Sicily, Italy. Contemporary literature (see Di Franco 1942) and present-day exposures suggest that the occurrence was probably in basaltic lavas at Acì Castello, nearby. Named after William Phillips (1773–1828), author of geological and mineralogical treatises and a founder of the Geological Society of London.

Either K, Na, Ca, or Ba may be the most abundant extra-framework cation, but the name harmotome is retained for the Ba-dominant member of the series. Minor Mg and Sr may be present. In the generalized formula above, \(x \) ranges from about 4 to about 7. \(T_{6g} \)
varies from approximately 0.56 to 0.77. Monoclinic, \(P2_1\) or \(P2_1/m\), \(a\ 8.965(2),\ b\ 14.300(4),\ c\ 8.668(2)\ \AA, \beta\ 124.20(3)\ °\) (Phillipsite-K with substantial Ca from Casal Brunori, Rome, Italy: Rinaldi et al. 1974). A pseudo-orthorhombic cell has \(a = 9.9, b = 14.2, c = 14.2 \ \AA, \beta = 90.0°, Z = 2\).

Two cation sites have been identified, one, with two atoms per formula unit fully occupied by K in phillipsite-K and by Ba in harmotome, is surrounded by eight framework atoms of oxygen and four molecules of \(H_2O\); the other is partly occupied by Ca and Na in distorted octahedral coordination with two framework atoms of oxygen and four molecules of \(H_2O\) (Rinaldi et al. 1974). Framework Si,Al largely disordered.

Phillipsite-Na

New name; Na is the most abundant extra-framework cation. Na forms 81% of all extra-framework cations in material from Acì Castello, Sicily, Italy, suspected to be the original locality for phillipsite (\# of Galli & Loschi Ghittoni 1972). Known range in \(T_{Si}\): 0.64–0.77. For pseudocell, \(9.931–10.003, 14.124–14.332, 14.159–14.338 \ \AA, \beta = 90°, Z = 2\) (e.g., Galli & Loschi Ghittoni 1972, Sheppard & Fitzpatrick 1989).

Phillipsite-K

New name; K is the most abundant extra-framework cation. Proposed type-locality: Capo di Bove, Rome, Italy (Hintze 1897, \#2 of Galli & Loschi Ghittoni 1972). Known range in \(T_{Si}\): 0.59–0.77. For the pseudocell, \(9.931–10.003, 14.124–14.332, 14.159–14.338 \ \AA, \beta = 90°, Z = 2\) (e.g., Galli & Loschi Ghittoni 1972, Sheppard et al. 1970).

Phillipsite-Ca

New name; Ca is the most abundant extra-framework cation. Proposed type-locality: Lower Salt Lake Tuff, Pauolua Road near Moanalua Road junction, Oahu, Hawaii (Iijima & Harada 1969). Known range in \(T_{Si}\): 0.57–0.74. For the pseudocell, \(9.871–10.007, 14.124–14.332, 14.198–14.415 \ \AA, \beta = 90°, Z = 2\) (e.g., Galli & Loschi Ghittoni 1972, Sheppard et al. 1970).

Pollucite

\(\text{(Cs,Na)}_{2n-1}\text{AlSi}_{12}O_{30}(\text{Si}_{2}O_{5})\cdot (\text{H}_{2}O)\), where \((\text{Cs} + n) = 1\) \(Z = 16\) ANA Breithaupt (1846). Type locality: Elba, Italy. Named “pollux” with coexisting mineral “castor” (a variety of petalite) for twins Castor and Pollux, of Greek mythology; name modified to pollucite by Dana (1868).

Forms a series with analcime (Černý 1974) reaching end-member compositions (Teertstra & Černý 1995). \(T_{Si}\) in the range 0.67–0.74. Minor Rb and Li may be present. Sodian pollucite commonly contains more Si than the simplified formula. The name pollucite applies where Cs exceeds Na in atomic proportions.

Cubic, \(Ia3d\), \(a\ 13.69 \ \AA\) for \((\text{Cs}_{11.7}\text{Na}_{3.1}\text{Li}_{0.25}\text{K}_{0.4})\text{Al}_{15}\text{Si}_{33}\text{O}_{96.2}\cdot\text{H}_{2}O\) (Beegs 1969); \(a\ in the range 3.672(1)–3.674(1) \ \AA\) for 0.114–0.173 Na apfu, \(Z = 16\) (Černý & Simpson 1978).

Roggianite

\(\text{Ca}_{8-}\text{Be(OH)}_{2}\text{Al}_{10}\text{Si}_{30}\text{O}_{130}\cdot <2.5\text{H}_{2}O\)

\(Z = 8\) –ROG

Tetragonal, \(Ih\text{mcm}, a\ 18.33(1), c\ 9.16(1) \ \AA\) (Galli 1980). Contains framework tetrahedrally coordinated Be (Passaglia & Vezzalini 1988) and framework-interrupting (OH) groups (Giuseppetti et al. 1991).

Scolecite

\(\text{Ca}_{8-}\text{Al}_{10}\text{Si}_{30}\text{O}_{130}\cdot 3\text{H}_{2}O\) \(Z = 4\) or 8

NAT Gehlen & Fuchs (1813), as scoleziit. Clark (1993) gave the type locality as Berufjord, Iceland, but this is not apparent in the original reference. Fuchs (1816) clarified the distinctions among natrolite, scolecite, and mesolite. He listed occurrences of scolecite as Faröe Islands, Iceland and Staffa (Western Isles, Scotland), with analytical data for specimens from the Faröe Islands and Staffa. Named from Greek \(s\)kelex, worm, for a tendency to curl when heated. (Na + K)/(Mg + Ca) varies from 0 to 0.16, with very little K, Mg, or other elements. \(T_{Si}\) in the range 0.60–0.62 (Alberti et al. 1982b).

Monoclinic, \(Cc, a\ 6.516(2), b\ 18.948(3), c\ 9.761(1) \ \AA, \beta = 108.98(1)°\) \(Z = 4\) (Bombay, India: Kvick et al. 1985), or, by analogy with natrolite, pseudo-orthorhombic \(Fd, e.g., a\ 18.508(5), b\ 18.981(5) c\ 6.52(2) \ \AA, \beta = 90.64(1)°\) \(Z = 8\) (Berufjord, Iceland: Joswig et al. 1984).

The structure is similar to that of natrolite, with a well-ordered Si,Al framework, Ca instead of Na, and an extra molecule of \(H_2O\).

Stellerite

\(\text{Ca}_{8-}\text{Al}_{10}\text{Si}_{30}\text{O}_{130}\cdot 7\text{H}_{2}O\) \(Z = 8\)

STI Morozewicz (1909). Type locality: Commander Island, Bering Sea. Named after Wilhelm Steller (1709–1746),
For the pseudo-orthorhombic cell, abundant extra-framework cation. New name for common stilbite in which Ca is the most noncentrosymmetric (Galli 1971).

Centrosymmetric space-group depends on statistically different isochemical sectors are monoclinic, Fmmm, a in the range 13.507–13.605, b in the range 18.198–18.270, c in the range 17.823–17.863 Å (Passaglia et al. 1978b).

The framework is topologically the same as for stilbite, but it has higher symmetry, correlated with fewer extra-framework cations. Only one independent extra-framework site is occupied, and the symmetry is Fmmm (Galli & Alberti 1975a). Na-exchanged stellerite retains the Fmmm symmetry, unlike the Na zeolite, berrerite, with which it is isostructural (Passaglia & Sacerdoti 1982).

Villarroel (1983) has suggested the occurrence of Na-dominant Fmmm stellerite from Roberts Island, South Shetland group.

Stilbite (series)

\[(Ca_{0.5}Na,K)_2[Al_{5}Si_{17}O_{40}] \cdot 7H_2O\]

STI

Haiyi (1801, p. 161-166), for minerals, apparently including heulandite, that had previously been described with informal names. He mentioned occurrences in volcanic terranes, and named Andreasberg in Harz, Alpes Dauphinoises, and Norway, but there is no clear type-locality. Named from Greek word for mirror, in allusion to its luster ("un certain éclat").

Ca is almost always the dominant extra-framework cation, accompanied by subordinate Na and minor K and Mg, approximating Ca_{0.5}Na_{0.5}K per formula unit, but Na-rich members also are known. Tₐ in the range 0.71 to 0.78.

Monoclinic, C2/m, a 13.64(3), b 18.24(4), c 11.27(2) Å, β 128.00(25)° (Galli & Gottardi 1966, Galli 1971), an alternative setting is pseudo-orthorhombic, F2/m, Z = 2.

Increasing departure from the topological symmetry of the orthorhombic framework, Fmmm, tends to correlate with increasing content of monovalent cations (Passaglia et al. 1978b), which causes the framework to rotate (Galli & Alberti 1975a, b). However, [001] growth sectors with appreciable Na and orthorhombic Fmmm symmetry have been observed in crystals in which other isochemical sectors are monoclinic, C2/m (Akizuki & Konno 1985, Akizuki et al. 1993). The centrosymmetric space-group depends on statistically complete Si,Al disorder, and the true space-group may be noncentrosymmetric (Galli 1971).

Stilbite-Ca

New name for common stilbite in which Ca is the most abundant extra-framework cation.

For the pseudo-orthorhombic cell, F2/m, a 13.595–13.657, b 8.201–18.291, c 17.775–17.842 Å, β 90.06–90.91° (Passaglia et al. 1978b).

Stilbite-Na

New name; Na is the most abundant extra-framework cation.

Proposed type-locality: Capo Pula, Cagliari, Sardinia, Italy (Passaglia et al. 1978b, #21).

Known examples contain significant Ca and K, and minor Mg, as well as clearly predominant Na. Tₐ in the range 0.73–0.78 (Passaglia et al. 1978b, Ueno & Hanada 1982, Di Renzo & Gabelica 1997).

Monoclinic, C2/m. Using the pseudo-orthorhombic F2/m setting, a 13.610, b 18.330, c 17.820 Å, β 90.54° for type material, of composition(Na_{0.71}K_{0.29}Ca_{4.19}Mg_{0.50})[Al_{16.62}Si_{55.25}O_{144}]•53.53H2O (Quartieri & Vezzalini 1987). In spite of the high Na content, the monoclinic C2/m symmetry of stilbite is retained, in contrast to stellerite, Fmmm, and berrerite, Anima.

Terranovaite

NaCa[Al_{5}Si_{17}O_{40}]•7H_2O

Z = 4

TER

Galli et al. (1997a). Type locality: Mt. Adamson, Northern Victoria Land, Antarctica. Named after the Italian Antarctic station at Terranova Bay.

Type material contains minor amounts of K and Mg, Tₐ = 0.85.

Orthorhombic, Pnmc, a 9.747(1), b 23.880(2), c 20.068(2) Å.

The framework topology is not known in other natural or synthetic zeolites. It contains polyhedral units found in laumontite, heulandite, and boggsite.

Thomsonite

CaNa[Al_{5}Si_{17}O_{40}]•6H_2O

Z = 4

THO

Brooke (1820). Type locality: Old Kilpatrick, near Dumbarton, Scotland. Named after Dr. Thomas Thomson (1773–1852), editor of the journal in which the name was published, and who contributed to the improvement of methods of chemical analysis.

Extensive variation in Na/(Ca + Sr) and Si/Al approximately according to the formula Na_{4-x}(Ca, Sr)_x[Al_{20-x}Si_{17}O_{72}]•28H_2O, where x varies from about 0 to 2; small amounts of Fe, Mg, Ba, and K also may be present (Ross et al. 1992). Tₐ in the range 0.50–0.56.

Chains with a repeat unit of five tetrahedra occur as in the NAT structure type, but they are cross-linked in a different way; Si,Al are highly ordered, but disorder increases with increasing Si : Al (Alberti et al. 1981).
Tschernichite

Ca[Al₂Si₆O₁₆]•4H₂O Z = 8 BEA
Smith et al. (1991), Boggis et al. (1993). Type locality: Goble Creek, 0.2 km north of Goble, Columbia County, Oregon, U.S.A. Named after Rudy W. Tschernich, zeolite investigator of the American Pacific Northwest, who discovered the mineral.
Na, Mg, and K are minor but variable constituents in specimens from the one known locality. Tₘₙ in the range 0.74–0.78 (0.73, 0.80 in a schernichinite-like mineral from Mt. Adamson, Antarctica: Galli et al. 1995).
Tetragonal, possible space-group 4/mmm, a = 12.880(2), c = 25.020(5) Å, but may consist of an intergrowth of a tetragonal enantiomorphic pair with space groups P4₁22 and P4₁22, and a triclinic polymorph P1. See also Galli et al. (1995).
This is a structural analogue of synthetic zeolite beta.

Willhendersonite

Ca₄[Al₂Si₆O₁₆]•4H₂O Z = 16 (IZA code not assigned)
Krause et al. (1997), Effenberger et al. (1998). Bellberg volcano, near Mayen, Eifel, Germany. Named after Jochen Tschörtner, mineral collector and finder of the mineral. Tₘₙ = 0.50 for the only known occurrence.
Cubic, Fm₃m, a 31.62(1) Å. Cages in the framework include a large super-cage with 96 tetrahedra and 50 faces. A Cu(OH)-bearing cluster occupies another cage. The framework density is the lowest known for a zeolite with a non-interrupted framework.

Wairakite

Ca[Al₂Si₆O₁₆]•2H₂O Z = 8 ANA
Steiner (1955), Coombs (1955). Wairakei, Taupo Volcanic Zone, New Zealand. Named after the locality. Most analyzed samples have Na/(Na + Ca) less than 0.3, but wairakite possibly forms a continuous solid-solution series with analcime (Seki & Oki 1969, Seki 1971, Cho & Liou 1987). Other reported substitutions are very minor. Tₘₙ in the range 0.65–0.69.
Monoclinic (highly ordered), P2₁/a, a 13.692(3), b 13.643(3), c 13.560(3) Å, β 90.5(1)° for (Ca₀.₉₀Na₀.₁₀)[Al₁.₉₂Si₄.₀₈O₁₂]•2H₂O (Takéuchi et al. 1979).
Tetragonal or near-tetragonal, I₄/madc, a 13.72(4), c 13.66(4) Å for (Ca₀.₉₀Na₀.₁₀)[Al₁.₅₂Si₄.₄₈O₁₂]•2.11H₂O (Nakajima 1983).
The framework topology is similar to that of analcime, but Al is preferentially located in a pair of tetrahedral sites associated with Ca, and Ca is in one specific extra-framework site. Smaller departures from cubic symmetry are correlated with decreased Si,Al order.

The name applies to zeolites of ANA structural type in which Ca is the most abundant extra-framework cation, irrespective of the degree of order or space-group symmetry.

Weinebeneite

Ca₃(Be₉(PO₄)₂(OH)₂)•4H₂O Z = 4 WEI
No elements other than those in the given formula were detected in the one known occurrence.

Yugawaralite

Ca[Al₂Si₆O₁₆]•4H₂O Z = 2 YUG
Sakurai & Hayashi (1952). Type locality: Yugawara Hot Springs, Kanagawa Prefecture, Honshu, Japan. Named after the locality.
Reported compositions are close to the ideal stoichiometry, with up to 0.2 aqH₂O of Na + K + Sr. Tₘₙ in the range 0.74–0.76.
Monoclinic, Pc, a 6.700(1), b 13.972(2), c 10.039(5) Å, β 111.07° (Kvick et al. 1986).
Triclinic, P1, by symmetry reduction ascribed to local Si,Al order, has been reported on the basis of optical measurements (Akizuki 1987b).
Si,Al are strictly ordered in samples from Iceland (Kerr & Williams 1969, Kvick et al. 1986). The partial order reported for the Yugawara sample (Leimer & Slaughter 1969) is doubtful (Gottardi & Galli 1985).

Zeolites of Doubtful Status and a Possible Zeolite

Further work is recommended to clarify the status of paramonatrolite and tetranatrolite. Essential data for these minerals and for tvedalite, which is possibly a berylllosilicate zeolite, are as follows.

Paramonatrolite

\[\text{Na}_x[\text{Al}_y\text{Si}_{24-x}\text{O}_{30-x}] \cdot 2\text{H}_2\text{O} \quad Z = 8 \quad \text{NaT} \]

Chao (1980). Type locality, Mont Saint-Hilaire, Quebec, Canada. The name recognizes its association with and similarity in chemical composition to natrolite, \([\text{Na}_x\text{Al}_y\text{Si}_{24-x}\text{O}_{30-x}] \cdot 2\text{H}_2\text{O}\). Contains additional \(\text{H}_2\text{O} \) relative to natrolite, also minor \(\text{Ca} \) and \(\text{K} \).

Tetranatrolite

\[(\text{Na},\text{Ca})_x[\text{Al}_y\text{Si}_{16-x}\text{O}_{24}] \cdot 16\text{H}_2\text{O} \quad Z = 0.5 \quad \text{NaT} \]

Chen & Chao (1980). Type locality: Mont Saint-Hilaire, Quebec, Canada. The name recognizes its association with the orthorhombic analogue of natrolite, \(\text{Na}_x\text{Al}_y\text{Si}_{24-x}\text{O}_{30-x} \cdot 2\text{H}_2\text{O} \). Contains additional \(\text{H}_2\text{O} \) relative to natrolite, also minor \(\text{Ca} \) and \(\text{K} \).

Tvedalite

\[(\text{Ca},\text{Mn})_x\text{Be}_y\text{Si}_z\text{O}_{17}(\text{OH})_3 \cdot 3\text{H}_2\text{O} \quad Z = 2 \]

Larsen et al. (1992). Type locality: Vevya quarry, Tvedalen, Vestfold County, Norway. Named after the locality.

Spot analyses show a range from \((\text{Ca}_{1.20}\text{Mn}_{0.27}\text{Fe}_{0.09})_{1.58} \) to \((\text{Ca}_{2.06}\text{Mn}_{1.14}\text{Fe}_{0.15})_{1.58} \) for \(\text{Be}_y\text{Si}_z\text{O}_{17}(\text{OH})_3 \cdot 3\text{H}_2\text{O} \), with about 0.1 to 0.2 \(\text{Al} \) and minor \(\text{Be} \) substituting for \(\text{Si} \) in the generalized formula.

Orthorhombic (c-centered), \(a 8.724(6), b 23.14(1), c 4.923(4) \) Å.

Considered to be structurally related to chiavennite, but in the absence of an adequate determination of its structure, it has not been listed here as an accepted zeolite species.

Herschelite, Leonhardtite, Svetlozarite, and Wellsite

Herschelite, leonhardtite, svetlozarite, and wellsute are discredited as names of mineral species (Appendix 2).

Kehoeite

Kehoeite was regarded by McConnell (1964) as a zinc phosphate analogue of analcime, but according to White & Erd (1992), type kehoeite is a heterogeneous mixture of quartz and sphalerite with other phases including gypsum and woodhouseite, or a very similar phase. No phase present bears any relationship to analcime. It is not accepted as a valid zeolite species.

Visète

Visète is shown by Di Renzo & Gabelica (1995) not to be a zeolite, as had commonly been supposed. They regard it as a defective member of the crandallite group, with composition \(\text{CaAl}_3(\text{PO}_4,\text{SiO}_4)_2(\text{OH})_4 \cdot m\text{H}_2\text{O} \). Kim & Kirkpatrick (1996) showed that a specimen examined by them is very disordered, with a structure similar to that of crandallite, but contains other phases including opal. Visète is excluded from the list of accepted zeolites.

Obsolote and Discredited Names

Obsolete and discredited names are listed below, followed by the correct names or identifications. The list is based on one compiled by the late G. Gottardi, using the following references: Hintze (1897), Dana (1914), Cocco & Garavelli (1958), Davis (1958), Hey (1960, 1962), Merlino (1972), and Strunz (1978). Numerous additions and amendments have been made in the light of more recently published work and of the notes below, and of listings in Clark (1993), in which much information on the history and usages of these names can be found.

- abrazite = gismondine, phillipsite
- acadialite = chabazite
- adiardite = dachiardite
- adipite = chabazite
- aedelforsite = laumontite, stilbite
- aedelite (of Kirwan), aedilite = natrolite
- amelteite = mixtures of sodalite, analcime, phillipsite, and relict nepheline
- amphibène = leucite
<table>
<thead>
<tr>
<th>Zeolite Mineral</th>
<th>Recommended Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>analcidite</td>
<td>analcime</td>
</tr>
<tr>
<td>analcite</td>
<td>analcime</td>
</tr>
<tr>
<td>analzim</td>
<td>analcime</td>
</tr>
<tr>
<td>andreasbergolite</td>
<td>harmotome</td>
</tr>
<tr>
<td>andreolite</td>
<td>harmotome</td>
</tr>
<tr>
<td>antiédrite</td>
<td>edingtonite</td>
</tr>
<tr>
<td>apoanalcite</td>
<td>natrolite</td>
</tr>
<tr>
<td>arduinite</td>
<td>mordenite</td>
</tr>
<tr>
<td>aricite</td>
<td>gismondine</td>
</tr>
<tr>
<td>ashtonite</td>
<td>mordenite</td>
</tr>
<tr>
<td>bagotite</td>
<td>thomsonite</td>
</tr>
<tr>
<td>barium-heulandite</td>
<td>heulandite</td>
</tr>
<tr>
<td>barium-heulandite</td>
<td>barian heulandite</td>
</tr>
<tr>
<td>barytkreuzstein</td>
<td>harmotome</td>
</tr>
<tr>
<td>beaumontite</td>
<td>heulandite</td>
</tr>
<tr>
<td>bergmannite</td>
<td>natrolite</td>
</tr>
<tr>
<td>blätterzeolith</td>
<td>heulandite, stilbite</td>
</tr>
<tr>
<td>brevicite</td>
<td>natrolite</td>
</tr>
<tr>
<td>cabasite</td>
<td>chabazite</td>
</tr>
<tr>
<td>caporciante</td>
<td>laumontite</td>
</tr>
<tr>
<td>clathralite</td>
<td>analcime</td>
</tr>
<tr>
<td>comptonite</td>
<td>thomsonite</td>
</tr>
<tr>
<td>crocalite</td>
<td>natrolite</td>
</tr>
<tr>
<td>cubicite</td>
<td>analcime</td>
</tr>
<tr>
<td>cuboite</td>
<td>analcime</td>
</tr>
<tr>
<td>cuboizite</td>
<td>chabazite</td>
</tr>
<tr>
<td>desmine</td>
<td>stilbite</td>
</tr>
<tr>
<td>diagonite</td>
<td>brewsterite</td>
</tr>
<tr>
<td>dollanite</td>
<td>analcime</td>
</tr>
<tr>
<td>doranite</td>
<td>analcime</td>
</tr>
<tr>
<td>echellite</td>
<td>natrolite</td>
</tr>
<tr>
<td>efflorescing zeolite</td>
<td>laumontite</td>
</tr>
<tr>
<td>eisennatrolith</td>
<td>natrolite with other mineral inclusions</td>
</tr>
<tr>
<td>epidesmine</td>
<td>stellerite</td>
</tr>
<tr>
<td>epinatrolite</td>
<td>natrolite</td>
</tr>
<tr>
<td>ercinite</td>
<td>harmotome</td>
</tr>
<tr>
<td>eudonhphelite</td>
<td>analcime</td>
</tr>
<tr>
<td>euthalite</td>
<td>euthalite</td>
</tr>
<tr>
<td>ezeotholith</td>
<td>heulandite</td>
</tr>
<tr>
<td>falkenstenite</td>
<td>probably plagioclase</td>
</tr>
<tr>
<td>faröelite</td>
<td>thomsonite</td>
</tr>
<tr>
<td>farolite</td>
<td>thomsonite</td>
</tr>
<tr>
<td>fassait (of Dolomieu)</td>
<td>probably stilbite</td>
</tr>
<tr>
<td>feugasite</td>
<td>faujasite</td>
</tr>
<tr>
<td>flokeite</td>
<td>mordenite</td>
</tr>
<tr>
<td>folliciated zeolite</td>
<td>heulandite, stilbite</td>
</tr>
<tr>
<td>foresite</td>
<td>stilbite</td>
</tr>
<tr>
<td>galactite</td>
<td>natrolite</td>
</tr>
<tr>
<td>gibsonite</td>
<td>thomsonite</td>
</tr>
<tr>
<td>ginzburgite</td>
<td>roggianite</td>
</tr>
<tr>
<td>gismondite</td>
<td>gismondine</td>
</tr>
<tr>
<td>glotalite</td>
<td>chabazite</td>
</tr>
<tr>
<td>granatite</td>
<td>leucite</td>
</tr>
<tr>
<td>granatite (of Daubenton)</td>
<td>leucite</td>
</tr>
<tr>
<td>groddeckite</td>
<td>gmelinite</td>
</tr>
<tr>
<td>hairzoeolite</td>
<td>natrolite, thomsonite, mordenite</td>
</tr>
<tr>
<td>harmotomite</td>
<td>harmotome</td>
</tr>
<tr>
<td>harringtonite</td>
<td>thomsonite, mesolite mixture</td>
</tr>
<tr>
<td>haydenite</td>
<td>chabazite</td>
</tr>
<tr>
<td>hercynite (of Zappe)</td>
<td>harmotome</td>
</tr>
<tr>
<td>herschellite</td>
<td>chabazite-Na</td>
</tr>
<tr>
<td>högaute</td>
<td>natrolite</td>
</tr>
<tr>
<td>hsianghualite</td>
<td>harmotome</td>
</tr>
<tr>
<td>hydrocastorite</td>
<td>stilbite, mica, petalite mixture</td>
</tr>
<tr>
<td>hydrolite (of Leman)</td>
<td>gmelinite</td>
</tr>
<tr>
<td>hydronatrolite</td>
<td>natrolite</td>
</tr>
<tr>
<td>hydronephelite</td>
<td>a mixture, probably containing natrolite</td>
</tr>
<tr>
<td>hypodesmine</td>
<td>stilbite</td>
</tr>
<tr>
<td>hypostilbite</td>
<td>stilbite or laumontite</td>
</tr>
<tr>
<td>idrocastorite</td>
<td>hydrocastorite (stilbite, mica, petalite mixture)</td>
</tr>
<tr>
<td>karphostilbite</td>
<td>thomsonite</td>
</tr>
<tr>
<td>koodilite</td>
<td>thomsonite</td>
</tr>
<tr>
<td>krokalith</td>
<td>natrolite</td>
</tr>
<tr>
<td>kubizit</td>
<td>analcime</td>
</tr>
<tr>
<td>kudoate</td>
<td>analcime</td>
</tr>
<tr>
<td>laubanite</td>
<td>natrolite</td>
</tr>
<tr>
<td>laumonite</td>
<td>laumontite</td>
</tr>
<tr>
<td>ledererite</td>
<td>lederite (of Jackson)</td>
</tr>
<tr>
<td>lehunitite</td>
<td>natrolite</td>
</tr>
<tr>
<td>leonhardite</td>
<td>H₂O-poor laumontite</td>
</tr>
<tr>
<td>levyine</td>
<td>leucite</td>
</tr>
<tr>
<td>lime-harmotome</td>
<td>phillipsite</td>
</tr>
<tr>
<td>lime-soda mesotype</td>
<td>mesolite</td>
</tr>
<tr>
<td>lincolnite</td>
<td>heulandite</td>
</tr>
<tr>
<td>lintonite</td>
<td>thomsonite</td>
</tr>
<tr>
<td>lomonite</td>
<td>laumontite</td>
</tr>
<tr>
<td>marburgite</td>
<td>thomsonite</td>
</tr>
<tr>
<td>mesole</td>
<td>thomsonite</td>
</tr>
<tr>
<td>mesoline</td>
<td>leucite</td>
</tr>
<tr>
<td>mesoline</td>
<td>chabazite</td>
</tr>
<tr>
<td>mesolitine</td>
<td>thomsonite</td>
</tr>
<tr>
<td>mesotype</td>
<td>natrolite, mesolite, scolecite</td>
</tr>
<tr>
<td>metachabazite</td>
<td>partially dehydrated chabazite</td>
</tr>
<tr>
<td>metadesmine</td>
<td>partially dehydrated stilbite</td>
</tr>
<tr>
<td>metaepistilbite</td>
<td>partially dehydrated epistilbite</td>
</tr>
<tr>
<td>metaheulandite</td>
<td>partially dehydrated heulandite</td>
</tr>
<tr>
<td>metalaumontite</td>
<td>partially dehydrated laumontite</td>
</tr>
<tr>
<td>metaleonhardite</td>
<td>dehydrated "leonhardite" (laumontite)</td>
</tr>
<tr>
<td>metaleucite</td>
<td>leucite</td>
</tr>
<tr>
<td>metamesolite</td>
<td>mesolite</td>
</tr>
<tr>
<td>metanatrolite</td>
<td>partially dehydrated natrolite</td>
</tr>
</tbody>
</table>
metascolecite, metaskolecit, metaskolezit = partially dehydrated scolecite
metathonsonite = partially dehydrated thomsonite
monophane = epistilbite
mooraboolite = natrolite
morvenite = harmotome
natrochabazite = gmelinite
natron-chabasit, natronchabazit (of Naumann) = gmelinite
natronite (in part) = natrolite
needle zeolite, needle stone = natrolite, mesolite, scolecite
normalin = phillipsite
orizite, oryzite = epistilbite
parastilbite = epistilbite
phacolite, phakolit(e) = chabazite
picranalcime = analcime
picrothomsonite = thomsonite
pollux = pollucite
poonalhite, poonalite = mesolite
portite = natrolite (Franzini & Perchiazzi 1994)
potassium clinoptilolite = clinoptilolite-K
pseudolaumontite = pseudomorphs after laumontite
pseudomesolite = mesolite
pseudonatrolite = mordenite
pseudophillipsite = phillipsite
ptilolite = mordenite
puflerite, pufflerite = stilbite
radiolite (of Esmark) = natrolite
ranite = gonnardite (Mason 1957)
reissite (of Fritsch) = epistilbite
retzite = stilbite?, laumontite?
sarcolite (of Vauquelin) = gmelinite
sasbachite, saspachite = phillipsite?
savite = natrolite
schabasit = chabazite
schneiderite = laumontite (Franzini & Perchiazzi 1994)
schorl blanc = leucite
scolesite, scolezit = scolecite
scoulerite = thomsonite
seebachite = chabazite
skolezit = scolecite
slouite = laumontite?
snaiderite (schneiderite) = laumontite
soda-chabazite = gmelinite
soda mesotype = natrolite
sodium dachiardite = dachiardite-Na
somnaitse = leucite
spangite = phillipsite
sphaerodesmine, sphaerostilbite = thomsonite
spreustein = natrolite (mostly)
staurobaryte = harmotome
steeleite, steeleit = mordenite
stellerycie = stellerite
stilbite anamorphique = heulandite
stilbite (of many German authors) = heulandite
strontium-heulandite = strontian heulandite and heulandite-Sr
svetlozarite = dachiardite-Ca
syhanhualite, syankhualite = hsianghualite
syhadrite, syhedrite = impure stilbite?
tetraedgingonite = edingtonite
tonsonite = thomsonite
triploclase, triploklase = thomsonite
vanadio-laumontite = vanadian laumontite
verrucite = mesolite
vesuvian garnet = leucite
vesuvian (of Kirwan) = leucite
viséite = disordered clandellite and other phases
weissian = scolecite
wellsite = barian phillipsite-Ca and calcian harmotome
white garnet = leucite
winchellite = thomsonite
Würfelzeolith = analcime, chabazite
zeagonite = gismondine, phillipsite
zeolite mimetica = dachiardite
zéolithe efflorescente = laumontite

ACKNOWLEDGEMENTS

Members of the present Subcommittee, which commenced work in 1993, are grateful to a previous Subcommittee, established in 1979 under the Chairmanship of Professor W.S. Wise of the University of California, Santa Barbara, California, for work contained in a draft report completed in 1987. Members of the 1979 Subcommittee included L.P. van Reeuwijk and the late G. Gottardi and M.H. Hey, as well as D.S.C. and H.M. of the present Subcommittee. J.V. Smith, W.M. Meier, R.W. Tschernich, and the late V.A. Frank-Kamenetskii were consultants. Although recommendations in the present report differ significantly from those in the 1987 report, the existence of that report has greatly facilitated our task. We thank J.V. Smith and L.B. McCusker for advice, C.E.S. Arps and W.D. Birch, successive secretaries of CNMMN, for much help, and many other colleagues for contributions of time, advice, and specimens. Staff of the Science Library, University of Otago, and others, helped trace obscure references.

REFERENCES

RECOMMENDED NOMENCLATURE FOR ZEOLITE MINERALS

ERKLE, A.B. & SLAUGHTER, M. (1968): Determination and
MINATO, H. & TAKANO, T. (1964): An occurrence of
NORBERG, P. (1990): A potassium-rich zeolite in soil
MEN’SHIKOV, YU.P. (1984): Perlitite, K Na(Ca,Sr)
________ & ________ (1975): Barrerite, a new natural
________ (1975): The crystal chemistry of mordenites.
________ & ________ (1978a): The crystal
________, ________, ________ & Vezzalini, G. (1978a):
The crystal chemistry of mordenites.
________ (1975): Exceptionally K-rich potassium clinoptilolite from Itaya, Yamagata Prefecture,
________, _______ & Vezzalini, G. (1978b): The crystal
RECOMMENDED NOMENCLATURE FOR ZEOLITE MINERALS

RECOMMENDED NOMENCLATURE FOR ZEOLITE MINERALS

Received December 3, 1997.
APPENDIX 1. NOTES ON THE DEFINITION OF A ZEOLITE

Is more than 50% substitution of elements other than Si and Al permissible in tetrahedral sites?

There was complete agreement in the Subcommittee that some substitution of elements such as P and Be for Si and Al in tetrahedral sites must be permitted in the definition. Discussion in this context focussed on whether a 50% rule should be applied. The so-called 50% rule (Nickel 1992) is normally applied to split a binary solid-solution series into two species at the half-way point according to the predominant cations concerned, but not to separate members of a solid-solution series into two separate classes of minerals, as could happen if applied in the present context. Proponents of a 50% rule argued that the definition of zeolites should be on grounds of both structure and composition, zeolites being aluminosilicates or possibly Al-free silicates. The contrary opinion is that where structures are topologically equivalent and other essentially identical zeolitic characteristics prevail, irrespective of Si and Al contents in tetrahedral sites, any restrictions based on specific Si and Al contents would be arbitrary and undesirable. The Subcommittee voted by a substantial majority for this view. The beryllosilicates lovdarite and chiavennite, like the zincosilicate gaultite, have more than 50% tetrahedral sites occupied by Si, and are here accepted as zeolites in spite of having little if any Al. Also included are the beryllophosphates pahasapaite and weinebeneite, which have neither Si nor Al, but have typically zeolitic structures and other zeolitic characteristics. They can be regarded as end-member examples of Si-free zeolites or zeolite phosphates.

A compositional factor is included in the adopted definition in that the framework consists essentially of oxygen atoms together with cations that enter into tetrahedral co-ordination with oxygen.

Is the presence of H₂O and of extra-framework cations essential?

Reversible dehydration is a characteristic feature of zeolitic behavior, but how much H₂O must be present for a mineral to be considered a zeolite? Pollucite forms a continuous series with analcime, the H₂O content declining progressively with increasing Cs content such that the Na-free, Cs member is essentially anhydrous. It seems unnecessary, impractical, and illogical to prescribe some arbitrary H₂O content below which pollucite (or other mineral) would be defined as anhydrous, and no longer a zeolite. Furthermore, it is not inconceivable that some typical zeolite might be reversibly dehydrated under natural conditions without essential loss of structure. If so, it has not ceased to be a zeolite. Although zeolites typically are hydrous, it is inexpedient to specify the presence of H₂O in the definition.

Natural zeolites are known with up to 88% of tetrahedral sites occupied by Si, as in mutinaite, and there is no theoretical reason why this figure cannot be exceeded. If the site occupancy of tetrahedra by Si approaches 100%, the extra-framework cation content will approach zero, even though the structure and other characteristics may remain typically zeolitic. It is again considered inexpedient to word the definition so as to exclude such a hypothetical end-member case from the zeolite category. Melanophilosite, a low-density SiO₂ phase with large cages in its framework, would be a possible example, but is otherwise excluded by the adopted definition because it lacks appropriate channels for the passage of guest species.

REFERENCE

APPENDIX 2. DISCRIMINATIONS

Herschelite is chabazite-Na

Herschelite, Na[AlSi₂O₆]•3H₂O, was named by Lévy (1825) from material brought to him by Herschel from “Aci Reale” (now Acireale), on the flanks of Mt. Etna in Sicily. Contemporary literature and present-day exposures suggest that the actual occurrence may have been in basaltic lavas at Aci Castello, nearby. Lévy described herschelite as tabular crystals of hexagonal outline that contain “silex, alumina, and potash”. It was later identified with chabazite (e.g., Hausmann 1847) and relegated to synonymy, although shown to be Na-rich, not K-rich. Strunz (1956) confirmed that herschelite and chabazite give essentially identical X-ray powder patterns. Mason (1962) proposed revaluation on the bases of a supposed compositional gap between herschelite and “normal” Ca-rich chabazite, the distinctive habit, and lower indices of refraction.

Passaglia (1970) demonstrated a continuum of compositions from Ca- to Na-dominant types, extending into the field of K-dominance in a ternary series; there is no discernible gap in composition. The lower indices of refraction reflect the Na-rich composition. Variant crystal habit is not an accepted basis for species status for minerals, and some examples of strongly Na-dominant chabazite have rhombohedral, not tabular habit, as in the case of micrometer-scale crystals aggregated into thin ragged plates, illustrated by Sheppard et al. (1978). In view of its chequered history and the above considerations, the name herschelite is suppressed, and the name chabazite-Na is to be applied to those members of the chabazite series in which Na is the most abundant extra-framework cation. Herschelite may retain some use as a term for a distinctive habit.
Leonhardt is H₂O-poor laumontite

Leonhardt Ca₄[Al₈Si₁₆O₄₈]•14H₂O was described by Blum (1843) for a mineral closely related to laumontite Ca₄[Al₈Si₁₆O₄₈]•18H₂O, but with different morphology. The type locality was near Schemnitz, nowadays Banska Stiavnica, then in Hungary, now in Slovakia. Delffs (1843) showed that type-locality leonhardtite has less H₂O (ca. 13 molecules of H₂O per formula unit) than laumontite. Doelter (1921) agreed that leonhardtite is identical in composition to laumontite, apart from its lower content of H₂O. The name has continued to be used widely for a material that forms rapidly and reversibly by partial dehydration of laumontite under ambient conditions. This happens upon exposure in the field and in the laboratory as a function of H₂O vapor pressure or by soaking in water, giving a readily observable change in extinction angle and cell dimensions (e.g., Coombs 1952, Armbruster & Kohler 1992).

Fersman (1908) introduced the term “primary leonhardtite” for a variety from Kurtsy (nowadays Ukranika), Crimea, with 14 molecules of H₂O, which neither dehydrates nor rehydrates under ambient conditions. In it, (K,Na), substitutes for Ca, although Ca is still dominant (Pipping 1966).

Type leonhardtite of Blum from Schemnitz catalogued in the Museum of Natural History, Vienna, in 1843 and type “primary leonhardtite” of Fersman obtained from the Fersman Mineralogical Museum in Moscow are shown by Wuest & Armbruster (1997) and Stolz & Armbruster (1997), respectively, to have the same Si,Al ordered framework of tetrahedra as laumontite. The low H₂O content of “primary leonhardtite” is attributed to space limitations resulting from the introduction of additional cations of larger size.

In conformity with Rule 4, leonhardtite is discredited as the name of a separate species. It is an H₂O-poor variety of laumontite. “Primary leonhardtite” is H₂O-poor sodian potassian laumontite.

Svetlozarite is dachiardite-Ca

Svetlozarite was described by Maleev (1976) as a high-silica zeolite occurring as spherulites in chalcedony veinlets in brecciated andesites west of Zvedsel, eastern Rhodopes, Bulgaria. Analysis showed Ca > Na > K, and minor Fe and Mg. From X-ray powder-diffraction studies, Maleev suggested an orthorhombic symmetry, with a c-axis repeat of 7.5 Å, which is characteristic of the mordenite group, to which he attributed the mineral.

Gellens et al. (1982) concluded from powder and single-crystal X-ray and transmission electron microscopy (TEM) studies, that svetlozarite, space group *Cmca* (157), is related to the ideal dachiardite structure by irregular periodic twinning and stacking faults, and that it is not a topologically distinct member of the mordenite family. Its composition is within the range of other samples of dachiardite. It is regarded as a multiply twinned and highly faulted dachiardite (dachiardite-Ca), and is discredited as a separate species.

Wellsite is barian phillipsite-Ca and calcian harmotome

The mineral named wellsite by Pratt & Foote (1897) has been shown by Galli (1972) and Galli & Loschi Ghittoni (1972) to be isostructural with phillipsite and harmotome, and Černý et al. (1977) have shown that zoning in crystals of wellsite covers most of the range from Ca-rich phillipsite to potassian calcian harmotome. Wellsite is discredited. Most examples of wellsite are barian phillipsite-Ca, and others are calcian harmotome.

REFERENCES

