REVISION 1

Word count: 8,986

Local strain heterogeneity associated with $\mathrm{Al} / \mathrm{Si}$ ordering in anorthite, $\mathrm{CaAl}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}$, with implications for thermodynamic mixing behaviour and trace element partitioning in plagioclase feldspars

ALISON J. ATKINSON ${ }^{1}$, TIZIANA BOFFA BALLARAN ${ }^{\mathbf{2}}$, AND MICHAEL A. CARPENTER ${ }^{1}$
${ }^{1}$ Dept. Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, U.K.
${ }^{2}$ Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth, Germany

Abstract

Hard Mode IR powder absorption spectroscopy has been used to characterise local strain relaxation associated with $\mathrm{Al} / \mathrm{Si}$ ordering in a suite of synthetic anorthite samples with structural states that vary from a high degree of $\mathrm{Al} / \mathrm{Si}$ order through a metastable incommensurate structure at intermediate states of order to long range order with $I \overline{1}$ symmetry. The dominant feature accompanying the changing structural states is line broadening, which has been quantified by autocorrelation analysis and is attributed to local heterogeneous strain variations on a length scale of at least 1-5 unit cells. The autocorrelation results are consistent with contributions to the line broadening as being due to order parameters for both the $C \overline{1} \rightarrow I \overline{1}$ and $I \overline{1} \rightarrow P \overline{1}$ transitions which couple biquadratically, $\lambda Q_{\mathrm{od}}^{2} Q_{\text {displ }}^{2}$. Close correlation with enthalpy variations from previously published calorimetric data indicates that the driving force for ordering can be understood in terms of elimination of strain fields arising from accommodating more or less rigid AlO_{4} and SiO_{4} tetrahedra in the feldspar framework. The metastable

incommensurate structure of anorthite is closely analogous to the stable incommensurate structure that develops at intermediate compositions in the plagioclase solid solution, confirming that the same strain relaxation mechanism dominates the properties and behaviour of all structural states across the solid solution. Elimination of strain heterogeneity by ordering on the basis of $I \overline{1}$ symmetry determines the form of non-ideal mixing shown by the solid solution at high temperatures, and changes in elastic properties may contribute to a break in slope of partitioning of trace elements between crystals and melt.

Keywords: anorthite, $\mathrm{Al} / \mathrm{Si}$ ordering, hard mode IR spectroscopy, local strain heterogeneity, enthalpy

INTRODUCTION

A number of different strategies have been adopted to describe the thermodynamic properties of plagioclase feldspars in the context of efforts to produce quantitative descriptions of the stability fields of mineral assemblages under the full range of possible geological conditions. Dubacq (2022) summarised contrasting treatments of mixing properties for the $C \overline{1}$ and $I \overline{1}$ structures at high temperatures as those which smooth out the effects of the discrete $C \overline{1} \leftrightarrow I \overline{1}$ transition (Ghiorso 1984; Benisek et al. 2004, 2010; Namur et al. 2012; Holland et al. 2022), those which treat states with different symmetries as separate solid solutions (Holland and Powell 1992) and those which treat the mixing properties in terms of an $\mathrm{Al} / \mathrm{Si}$ order/disorder process at anorthite-rich compositions (Carpenter and Ferry 1984; Carpenter 1992, 1994). The differences revolve, in effect, around the need (or otherwise) to include a physically correct description of the phase transition approximately half way across the solid solution. This debate continues because mean field models of $\mathrm{Al} / \mathrm{Si}$ ordering to give the symmetry change explicitly, such as from Landau theory, do not readily yield equations that can conveniently be incorporated into mixing models with a limited number of variable parameters. As a
consequence, activity-composition descriptions based on conventional asymmetric mixing models are used for applications in petrology, while models based on atomic interactions are used to understand $\mathrm{Al} / \mathrm{Si}$ ordering at a more fundamental level for albite, anorthite and the more complex incommensurate structures that develop at intermediate compositions during slow cooling in nature.

A significant recent advance in the context of understanding the stability of plagioclase feldspars from an atomic perspective has been provided by a Monte Carlo simulation by Dubacq (2022) which focussed on interactions between nearest neighbour and next nearest neighbour tetrahedral cations. This author concluded that superposition of $I \overline{1}$ ordering on a $C \overline{1}$ solid solution, with large ordering energies for anorthite, can provide reliable results in terms of energy and ordering across the solid solution. However, he also drew attention to the fact that pairwise interaction models, such as used for the Monte Carlo simulation, do not include the contribution of strain fields explicitly. If local strain fields are less than the size of the supercell used in the model they are included implicitly but if they are on a longer length scale they are not. This is a conundrum in all energetic modelling of crystal structures and the present paper is intended to shed light on the influence of local strain effects from an experimental point of view by analysing line broadening in IR absorption spectra.

The generalised result attributed to Eshelby (1957) that a strain field will decay through a medium in three dimensions according to $1 / r^{3}$, where r is distance, implies that placing a specific limit on the length scale of strain fields in a crystal is arbitrary. The expectation is at least that they extend further than nearest or next nearest neighbour atoms, and there are experimental observations which confirm this view for silicates. For example, diffraction contrast in a transmission electron microscope image of exsolution of augite from pigeonite shows a strain field extending up to $\sim 250 \AA$ from the tip of an augite precipitate (Carpenter 2002). Similarly, Figure 7.10 of Salje (1993) shows that the strain field from a kink of individual domain wall in $\mathrm{KAl}_{3} \mathrm{SiO}_{8}$ can influence the topology of adjacent walls at distances of $\sim 1,000 \AA$. In a different context, the extent of the plateau of transition temperature as a function of composition towards $\mathrm{KAlSi}_{3} \mathrm{O}_{8}$ for the displacive transition temperature near $\sim 1325 \mathrm{~K}$ in
albite, $\mathrm{NaAlSi}_{3} \mathrm{O}_{8}$, implies that the effective strain field around K^{+}has a diameter of 20-40 \AA (Carpenter et al. 1999). Length scales of 10 's of \AA overlap with estimates of the length scales of phonons that are sampled in vibrational spectroscopy. The sensitivity of phonons to all the structural variations in natural plagioclase crystals is seen in Raman spectra, for example (Bersani et al. 2018). According to Atkinson et al. (1999) for feldspars, phonon length scales of 2-5 \AA at $1500 \mathrm{~cm}^{-1}$ would become $\sim 8-25 \AA$ at $500 \mathrm{~cm}^{-1}$ and $\sim 60-150 \AA$ at $50 \mathrm{~cm}^{-1}$. The essential point is that phonon spectroscopy provides, in principle, a probe with the correct length scale to detect and characterise structural heterogeneity related to local strain relaxation in silicates.

The present study follows on from the Hard Mode IR powder absorption spectroscopy study of local structural heterogeneity in natural and heat treated plagioclase feldspars by Atkinson et al. (1999). It was designed to take advantage of a suite of synthetic anorthite samples prepared with a sequence of metastable structural states starting from a high degree of $\mathrm{Al} / \mathrm{Si}$ disorder, through incommensurate states with intermediate degrees of order to the equilibrium state with ordering based on $I \overline{1}$ symmetry. A key advantage of this suite is that the composition is fixed $\left(\mathrm{CaAl}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}\right)$ and, hence, that all changes in spectral, physical and thermodynamic properties are due directly or indirectly to changes in $\mathrm{Al} / \mathrm{Si}$ order alone.

EXPERIMENTAL METHODS

Synthesis and characterisation

The two series of synthetic anorthite samples used in the present study were selected from a larger suite of samples crystallised by heating glass of anorthite composition in air (Carpenter 1991a, 1991b, 1992). The first, referred to as a kinetic series, consisted of eight samples with crystallisation times ranging from 1 minute to 17 days at $1400{ }^{\circ} \mathrm{C}$. The second, referred to as an equilibrium series, consisted of six samples equilibrated at temperatures between $850{ }^{\circ} \mathrm{C}$ and $1540{ }^{\circ} \mathrm{C}$. A sample crystallised at $1100{ }^{\circ} \mathrm{C}$ for 15 minutes, ANC19, has been used as a reference state for maximum
disorder of Al and Si . Times and temperatures for the original synthesis conditions are listed in Table 1, together with details of structural states characterised by transmission electron microscopy, powder Xray diffraction and high temperature solution calorimetry (from Carpenter 1991a, 1991b, 1992).

The synthetic crystals all contained submicroscopic twinning parallel to (010) on the basis of albite and Carlsbad twin laws (Carpenter 1991a, Xu et al. 1997). The presence of type-e and/or type-b reflections in electron diffraction patterns defined whether the $\mathrm{Al} / \mathrm{Si}$ order scheme was incommensurate or had evolved through to the commensurate $I \overline{1}$ state. Spacings and orientations of pairs of e-reflections in samples from the kinetic series initially resembled the pattern seen in natural plagioclase samples with the e_{2} structure, starting at composition $\sim \mathrm{An}_{30}$ and evolving continuously through to the pattern for crystals with composition $\sim \mathrm{An}_{55}$. With further annealing, the spacing between e-reflections increased, but without further changes in orientation: $\sim 25 \AA$ for ANC19, $\sim 30 \AA$ for ANC60, extending to $\sim 90 \AA$ for ANC73. Evolution of the microstructure was then of type-b antiphase domains with dimensions increasing from $\sim 200 \AA$ in ANC73 \AA to $\sim 1,550$ in ANC35. The size of type-b antiphase domains in crystals from the equilibrium series was in the range $\sim 2,000-3,000 \AA$, but was not determined for ANC74/H2.

Diffuse type-c reflections arising from the $I \overline{1} \rightarrow P \overline{1}$ transition were present in diffraction patterns from all the samples, and type-d reflections were seen in diffraction patterns from the most ordered samples. The type-c and type-d reflections were sharp in diffraction patterns from ANC74/H2, which had been prepared initially by crystallisation from glass in air at $1400{ }^{\circ} \mathrm{C}$ and then annealed in the presence of water at $850{ }^{\circ} \mathrm{C}$ (Carpenter 1992). This treatment resulted in the highest degree of $\mathrm{Al} / \mathrm{Si}$ order of all the samples listed in Table 1.

Macroscopic distortion of the structure due to $\mathrm{Al} / \mathrm{Si}$ ordering was quantified in terms of the scalar strain, ε_{s} (Carpenter 1991b, 1992). Values were determined by first calculating six individual strain components, $e_{1}-e_{6}$, from changes in room temperature lattice parameters of each sample with respect to ANC19 as the reference state $\left(e_{1}-e_{6}=0\right)$ and then diagonalising the strain matrix to determine three
principal strains $\varepsilon_{1}-\varepsilon_{3}$ (Carpenter et al. 1990). The scalar strain was given by $\varepsilon_{\mathrm{s}}=\sqrt{\sum_{1-3} \varepsilon_{i}^{2}}$ andincreased with increasing degree of $\mathrm{Al} / \mathrm{Si}$ order. $\Delta H_{\text {soln }}$ is the enthalpy of solution in lead borate flux at $700^{\circ} \mathrm{C}$ (Carpenter 1991b, 1992). Samples with the lowest enthalpy (most ordered) have the largest values of $\Delta H_{\text {soln }}$.

Powder absorption infrared spectroscopy

Preparation of pellets used for powder absorption infrared spectroscopy measurements in the present study followed the procedure set out in detail in Atkinson et al. (1999). This involved a carefully repeated pattern of grinding the samples for 20 minutes in an agate ball mortar using a Spex microball mill, mixing in fixed proportions with CsI or polyethylene powder as the matrix phase and pressing under vacuum. CsI pellets weighed 300 mg and contained a ratio of sample to matrix of 1:450. Polyethylene pellets weighed 100 mg and contained a mixture of sample to matrix in the ratio 1:50.

Primary spectra were collected under vacuum at room temperature using a Bruker 113V FT-IR spectrometer and a Bruker 66V FT-IR spectrometer. Each spectrum was calculated by Fourier transformation of 512 interferometer scans and recorded as absorbance, $a=-\log _{10}\left(I_{\text {sample }} / I_{\text {reference }}\right)$, where I is the single beam transmission intensity. The frequency ranges for spectra from the CsI pellets were $150-700 \mathrm{~cm}^{-1}$ and $400-2000 \mathrm{~cm}^{-1}$, with an instrumental resolution of $2 \mathrm{~cm}^{-1}$. The frequency range of spectra obtained from the polyethylene pellets was $50-500 \mathrm{~cm}^{-1}$, with an instrumental resolution of 4 cm^{-1}. Individual spectra were merged to produce the complete spectra shown in Figure 1 using OPUS/IR (software of Bruker Analytische Messtechnik GmbH) by matching up sections in the region $\sim 200-400 \mathrm{~cm}^{-1}$ where they overlap.

Quantitative analysis of primary spectra

Rather than following the conventional approach of identifying individual absorption peaks and assigning their symmetries, the objective of the quantitative analysis presented here was to extract spectral parameters that relate specifically to the structural state and thermodynamic evolution of anorthite with respect to $\mathrm{Al} / \mathrm{Si}$ order. This analysis was undertaken on the original, unmerged spectra, following the methodologies set out in Atkinson et al. (1999).

Three sections of the spectra were selected for peak fitting on the basis that they showed the emergence of peaks as the degree of $\mathrm{Al} / \mathrm{Si}$ order increased. The emerging peaks included a pair in the interval $300-320 \mathrm{~cm}^{-1}$ (Fig. 2a, b) and another pair in the interval $460-500 \mathrm{~cm}^{-1}$ (Fig. 2c, d). For each pair, the area under a wider frequency interval was first normalised so as to minimise the influence of any slight variations of the concentration of sample in the pellets or of background levels in the spectrometers. This reduced scatter but did not change the trend shown by the same analysis of the original, un-normalised, spectra. Figure 3 illustrates six fits using Lorentzian profiles for individual peaks in the frequency interval $\sim 260-340 \mathrm{~cm}^{-1}$, including shoulders of the peaks to either side of the group of interest in order to obtain a realistic background. The frequencies, $\omega_{1,320}, \omega_{2,320}$, and line widths, $\Gamma_{1,320}, \Gamma_{2,320}$, of the two peaks had uncertainties from the fits on the order of $0.2 \mathrm{~cm}^{-1}$ (Salje et al. 1989) for most of the spectra. The uncertainties were greater than this for spectra from the least ordered samples. Areas of all the Lorentzian peaks within the group were summed to give a single overall intensity, I_{320}. This value had less scatter than the individual peak intensities as the relative sizes of the peaks within the group were not well constrained by the fitting procedure. The same procedure as set out above for the pair of peaks in the interval $300-320 \mathrm{~cm}^{-1}$ was used to determine values of frequencies, $\omega_{1,470}, \omega_{2,470}$, width, $\Gamma_{1,470}, \Gamma_{2,470}$, and combined intensity, I_{470}, of the two peaks between 460 and $500 \mathrm{~cm}^{-1}$ in Figure 2c, d.

The third focus of peak fitting was on an absorption peak with frequency close to $602 \mathrm{~cm}^{-1}$, using the same approach as for the peaks near 320 and $470 \mathrm{~cm}^{-1}$. By comparison with spectra from natural samples across the plagioclase solid solution (Atkinson et al. 1999) and the temperature dependence of
spectra through the $I \overline{1} \leftrightarrow P \overline{1}$ transition in anorthite (Redfern and Salje 1992), this peak emerges most clearly when the crystals have $P \overline{1}$ symmetry. It is not visible in the spectrum from ANC19 (0.25 hours at $1100^{\circ} \mathrm{C}$), but developed with increasing intensity in the kinetic series (Fig. 1a) and is visible in all spectra for the equilibrium series (Fig. 1b). It can also be seen in Figure 1 of Atkinson et al. (1999) which includes spectra from natural samples with compositions in the range $\sim \mathrm{An}_{71}-\mathrm{An}_{100}$ and heat treated natural samples in the range $\sim \mathrm{An}_{78}-\mathrm{An}_{100}$. In the stack of spectra shown for Monte Somma anorthite as a function of temperature in Figure 2 of Redfern and Salje (1992), it emerges as an increasingly distinct peak below $\sim 700 \mathrm{~K}$, ahead of the $I \overline{1} \leftrightarrow P \overline{1}$ transition at $515 \pm 5 \mathrm{~K}$.

Following the principles set out in Salje et al. (2000) and the approach of Atkinson et al. (1999) for analysing essentially the same groups of absorption peaks in spectra from natural plagioclase samples, the autocorrelation function was used to obtain an effective average linewidth for three different segments of the spectra: $270-450 \mathrm{~cm}^{-1}, 450-800 \mathrm{~cm}^{-1}$, and $800-1500 \mathrm{~cm}^{-1}$. These have been assigned labels Δ corr $_{350}, \Delta$ corr $_{600}$ and Δ corr $_{1000}$, respectively. Δ corr values in Atkinson (1999) for natural samples were for frequency ranges $260-530,515-830,820-1400 \mathrm{~cm}^{-1}$.

RESULTS

Primary spectra shown in Figure 1 closely resemble those reported previously from natural plagioclase samples (Salje et al. 1989; Redfern and Salje 1992; Atkinson et al. 1999). Low symmetry and large unit cell sizes result in multiple overlapping peaks with peak frequency variations, line widths, intensities and line broadening parameters that are sensitive to the degree of $\mathrm{Al} / \mathrm{Si}$ order.

Figure 4 contains data for ω and Γ from fitting of the emerging peaks with frequencies near 320 and $470 \mathrm{~cm}^{-1}$ in Figure 2 and near $600 \mathrm{~cm}^{-1}$ in Figure 1. The kinetic and equilibrium series exhibit a welldefined trend of varying peak widths and almost no change in peak frequencies, with overlap for samples which contained type-b reflections in electron diffraction patterns ($I \overline{1}$ structure). There is no obvious break in slope at the point where type-e reflections gave way to type-b reflections. Data points
for ANC 19 , the sample with the lowest degree of $\mathrm{Al} / \mathrm{Si}$ order, plot off the main trends but are relatively poorly constrained by the fitting procedure because the individual peaks were only weakly resolved in the primary spectra. Variations in peak widths correlate with changes in other parameters extracted from the spectra, such as peak intensities (Figure 5).

Each of the autocorrelation parameters $\Delta \operatorname{corr}_{350}, \Delta \operatorname{corr}_{600}$, and $\Delta \operatorname{corr}_{1000}$, including those for ANC19, decreases systematically with increasing $\mathrm{Al} / \mathrm{Si}$ order. Δ corr $_{350}, \Delta$ corr $_{600}$ correlate linearly with each other (Fig. 6a). Comparison of $\Delta \operatorname{corr}_{350}$ and $\Delta \operatorname{corr}_{600}$ with $\Delta \operatorname{corr}_{1000}$ shows data points for the most ordered sample (which gave sharp type-c and type-d reflections) as deviating from a linear correlation (Fig. 6b). Figure 6 c shows that decreasing Δ corr values correlate in a nonlinear manner with fitted peak widths, and that the nonlinearity increases with increasing order.

Line broadening parameters, Γ and Δ corr, provide measures of the local heterogeneity within each sample via the spread of frequencies of specific absorption modes on the phonon length scale. A measure of the changes in $\mathrm{Al} / \mathrm{Si}$ order averaged over a longer length scale, corresponding to at least the coherence length of X-ray diffraction, and hence to the macroscopic order parameter(s), is provided by the scalar strain, $\varepsilon_{\mathrm{s}} . \Delta$ corr values display a nonlinear dependence on ε_{s} (Fig. 7a), but Γ for the peak near $600 \mathrm{~cm}^{-1}$ has a linear dependence (Fig. 7b). Data in Figure 7 taken from Atkinson et al. (1999) and Atkinson (1999) for two natural samples of anorthite before and after being heat treated at $1300^{\circ} \mathrm{C}$ or $1360^{\circ} \mathrm{C}$ have been added and are consistent with the overall pattern of correlations.

DISCUSSION

The clear outcome from analysing IR spectra from synthetic anorthite samples in this way is that the dominant influence of $\mathrm{Al} / \mathrm{Si}$ disorder is seen as broadening of absorption peaks. In direct contrast, peak frequencies change very little through the full sequence of metastable states from those with the weakest development of incommensurate ordering through to equilibrium degrees of order based on the
$I \overline{1}$ structure. ε_{s} represents the total long range elastic relaxation of the structure which occurs when more or less rigid AlO_{4} and SiO_{4} tetrahedra arrange themselves in crystals of anorthite such that, in the limit, there are no remaining Al-O-Al linkages. If ordering is incomplete, the net macroscopic strain, as defined with respect to the disordered state, is less and local distortions where the arrangements of adjacent tetrahedra do not conform to Al-avoidance occur instead. Line broadening parameters obtained from the IR spectra provide a view of the resulting local strain heterogeneity depending on the length scale of the phonons being sampled. As noted in the introduction above, these lengths scales are not well defined but are likely to be in the range $\sim 10-100 \AA$. In this case, the observed Δ corr variations are indicative of local structural heterogeneity on a scale of at least $\sim 1-5$ unit cells

Hard modes and two order parameters

A conventional expectation of hard mode spectroscopy is that changes in peak widths, peak frequencies and peak intensities will scale, in lowest order, with the square of the order parameter (Salje 1992, 1994; Salje and Bismayer 1997). If this was simply $Q_{\text {od }}$ for Al/Si ordering accompanying the change in macroscopic symmetry $C \overline{1} \rightarrow I \overline{1}$, each of the parameters, ω, Γ, Δ corr and Intensity would be expected to vary linearly both with each other and with the macroscopic strain, since each would be expected to scale with Q_{od}^{2}. While there is a general correlation among the line broadening parameters and strain, the trends are not linear and a contributary factor to this must be that, in anorthite at room temperature, these parameters depend on both Q_{od}^{2} for the $C \overline{1} \rightarrow I \overline{1}$ transition and Q_{displ}^{2} for the $I \overline{1} \rightarrow$ $P \overline{1}$ transition.

Samples with the highest degree of order display the most obvious deviations from linear relationships between spectral parameters. They also have changes in the intensity and sharpness of the type-c and type-d reflections arising from the displacive transition which indicate that they have the largest values of $Q_{\text {displ }}$. It is well understood that there is strong, biquadratic coupling between the two
order parameters, ie with the form $\lambda Q_{\mathrm{od}}^{2} Q_{\mathrm{displ}}^{2}$, where λ is the coupling coefficient (Salje 1987; Redfern and Salje 1987; Redfern et al. 1988; Redfern 1992). The linear relationship between Γ for the peak near $600 \mathrm{~cm}^{-1}$ and the scalar strain seen in Figure 7b implies that both record the two order parameters in the same proportion. Likewise, the linear relationship shown in Figure 6a implies that $\Delta \operatorname{corr}_{350}$ and $\Delta \operatorname{corr}_{600}$ also have a dependence on the same proportions of the two order parameters as each other. Non-linear relationships seen in Figures $6 \mathrm{~b}, \mathrm{c}$ and Figure 7 a imply that the dependence of $\Delta \operatorname{corr}_{1000}$ and Γ for peaks near 320 and $470 \mathrm{~cm}^{-1}$ depend on a combination of Q_{od}^{2} and Q_{displ}^{2} which differs from those of Γ for the $600 \mathrm{~cm}^{-1}$ peak, $\Delta \operatorname{corr}_{350}, \Delta \operatorname{corr}_{600}$ and ε_{5}. Some additional measure of the order parameters would be needed to separate these dependences quantitatively, however.

$\boldsymbol{I} \overline{\mathbf{1}} \rightarrow P \overline{1}$ transition

Due to biquadratic coupling, local variations in the degree of $\mathrm{Al} / \mathrm{Si}$ order are necessarily accompanied by local variations in displacements relating to the $P \overline{1}$ structure. Although the degree of $\mathrm{Al} / \mathrm{Si}$ order in the synthetic samples has not been determined directly, $Q_{\text {od }}$ is known to vary between 0.92 for a natural metamorphic anorthite sample and 0.78 after equilibration at $\sim 1535{ }^{\circ} \mathrm{C}$ (Angel et al. 1990; Carpenter et al. 1990). The observation that samples with relatively high degrees of $\mathrm{Al} / \mathrm{Si}$ disorder gave diffuse type-c and type-d reflections in electron diffraction patterns is consistent with the original observation by Bruno et al. (1976) that anorthite crystals quenched from $\sim 1530{ }^{\circ} \mathrm{C}$ did not have type-c and type-d reflections in single crystal X-ray diffraction patterns.

Salje (1987) considered that the length scale of correlated displacements of atoms on the basis of $P \overline{1}$ symmetry would be reduced to less than $\sim 200 \AA$, as an estimate for the typical length scale of X-ray diffraction, by local strain heterogeneity arising from the introduction of $\mathrm{Al} / \mathrm{Si}$ disorder. This would also cause the $I \overline{1} \rightarrow P \overline{1}$ transition to become smeared rather than occurring at a discrete temperature. Spontaneous strain data extracted from lattice parameters measured as a function of temperature for a
sample equilibrated at $1302 \pm 4{ }^{\circ} \mathrm{C}$ did not show evidence of such smearing (Redfern 1992), but the effect of disordering was seen increasingly in spontaneous strains from lattice parameters collected as a function of pressure through the related transition as a function of pressure in crystals equilibrated at temperatures between $\sim 1350 \pm 5^{\circ} \mathrm{C}\left(Q_{\mathrm{od}}=0.87\right)$ and $\sim 1533 \pm 5^{\circ} \mathrm{C}\left(Q_{\mathrm{od}}=0.78\right)$ (Angel 1992, 1994). Confirmation of the local heterogeneity responsible for this behaviour has been provided by the IR spectroscopy results reported here.

Elastic strain heterogeneity and enthalpy

Figure 8 contains a compilation of Δ corr data for synthetic anorthites from the present study with data from Atkinson et al. (1999) and Atkinson (1999) plotted as a function of composition. Dashed lines are guides to the eye illustrating linear extrapolation to An_{100} of fits to data in the range $\sim \mathrm{An}_{20^{-}}$ An_{60} for heat treated series samples which have $C \overline{1}$ symmetry. Each of the Δ corr parameters has the same pattern of a break in slope when $C \overline{1}$ members of the solid solution give way to $I \overline{1}$ members. Each also hasvalues for synthetic anorthites which spread between natural, ordered anorthite and the extrapolated limit for $C \overline{1}$ structures. When expressed simply in terms of these parameters alone, deviations from the trend for a solid solution with $C \overline{1}$ symmetry are clearly due to the $\mathrm{Al} / \mathrm{Si}$ ordering.

Correlations between enthalpy and local strain heterogeneity from Δ corr for plagioclase feldspars were discussed in detail by Atkinson et al. (1999) and are confirmed in Figure 9. Figure 9a shows almost linear relationships between Δ corr and $\Delta H_{\text {soln }}$ for $\mathrm{Al} / \mathrm{Si}$ ordering in anorthite, apart from the value of $\Delta H_{\text {soln }}$ for ANC19 which is considered to be lower than would be expected for the most disordered crystalline state due to the presence of a small amount of residual glass (Carpenter 1991b). Any non-linearity would be due predominantly to the additional contributions of $Q_{\text {displ }}^{2}$ to Δ corr but might also include a slight dependence of the enthalpy of ordering on higher order terms than Q_{od}^{2} alone (Carpenter 1992). Figure 9 b is the equivalent for $\Delta H_{\text {soln }}$ as a function of composition to the Δ corr
variations shown in Figure 8. Just as with Δ corr, the spread of $\Delta H_{\text {soln }}$ values for synthetic anorthites is between values for ordered anorthite and the extrapolated end member of a solid solution with $C \overline{1}$ symmetry.

Spectral parameters showing line broadening in anorthite clearly correlate with enthalpy changes due to ordering, and the data in Figure $9 b$ confirm the previous conclusion that deviations from ideality in the enthalpy of mixing for the solid solution of plagioclase in "high" structural states arises from $\mathrm{Al} / \mathrm{Si}$ ordering in anorthite-rich compositions. The enthalpy of ordering in anorthite and anorthite-rich compositions is also closely associated with the elimination of local strain heterogeneity.

Structural evolution from incommensurate to commensurate ordering

The initial $\mathrm{Al} / \mathrm{Si}$ ordering scheme that develops in anorthite crystallised from chips of glass in air displays characteristic features in diffraction patterns which mimic closely those of the incommensurate structures in natural samples with intermediate compositions in the plagioclase solid solution (Carpenter 1991a). NMR spectroscopy on the same samples has shown that changes with annealing time occur by apparently continuous reductions in the number of Al-O-Al linkages (Phillips et al. 1992). Elimination of Al-O-Al linkages might conventionally be understood in terms of the long established principle of Al-avoidance or Loewenstein's rule whereby Al in silicates avoids occupying tetrahedral sites adjacent to others also occupied by Al. However, as discussed at length by Dove et al. (1996), this view is simplistic because the $\mathrm{Al} / \mathrm{Si}$ ordering transition temperature for some silicates is so low that ordering does not occur even on a geological timescale.

At the length scale of phonons, between the coherence length of X-ray diffraction and the near neighbour scale of NMR, local ordering in the incommensurate structure of anorthite evolving into that of the $I \overline{1}$ structure is accompanied by elimination of local strain. On this basis, the driving force for ordering comes from the need to minimise the elastic strain energy in structures where a disordered configuration of more or less rigid AlO_{4} and SiO_{4} tetrahedra with different sizes cannot be
accommodated in a given structure without introduction of local strain heterogeneity. The stable incommensurate arrangement of tetrahedra in intermediate plagioclase and the related metastable arrangement in incommensurate anorthite just provides one way in which AlO_{4} and SiO_{4} units can be arranged to reduce the local strain energy. At intermediate compositions it provides the lowest energy scheme, while ordering on the basis of the commensurate $I \overline{1}$ structure allows further elimination of the local strains in anorthite.

Advanced refinements of the structure of the e_{1} form of the incommensurate structure in a sample with composition An_{51} from a metamorphic rock have revealed additional structural changes accompanying $\mathrm{Al} / \mathrm{Si}$ ordering (Jin and Xu 2017). The modulation period of $\sim 30 \mathrm{~A}$ for this sample is within the length scale over which local strain fields related to the arrangements of AlO_{4} and SiO_{4} tetrahedra would extend. Adjustments of Na and Ca positions in response to relaxations of the local heterogeneity provide additional stabilisation of the incommensurate structure and involve a small degree of chemical segregation.

Finally, a high degree of short range order in the $C \overline{1}$ solid solution provides further demonstration of the fact that the three dimensional feldspar framework structure is singularly unsuitable for accommodating disordered arrangements of AlO_{4} and SiO_{4} tetrahedra without introducing large local strain fields.

Strain and elasticity in thermodynamic mixing models of silicate solid solutions

A defining role for local and macroscopic strain energies fits with understanding of the mixing properties of silicate solid solutions more widely. The two dominant properties controlling excess enthalpies of mixing on cation sites are the difference in size of the substituting ions and the elastic constants of the host crystal (Carpenter and Boffa Ballaran 2001; Tarantino et al. 2003). Particularly striking in this context is the jadeite $\left(\mathrm{NaAlSi}_{2} \mathrm{O}_{6}\right)$ - augite $\left(\mathrm{Ca}\left(\mathrm{Mg}, \mathrm{Fe}^{2}\right) \mathrm{Si}_{2} \mathrm{O}_{6}\right)$ solid solution for which changes in Δ corr and $\Delta H_{\text {soln }}$ due to ordering of cations at intermediate compositions are exactly the
reverse of changes due to mixing of the disordered structure (Boffa Ballaran et al. 1998; Carpenter and Boffa Ballaran 2001). As in the case of anorthite presented in the present paper, cation ordering involves the conversion of local strain fields into a single, homogeneous macroscopic strain. It is unlikely that pairwise atomic interaction models will be able to mimic this behaviour unless they include the longer range strain relaxations.

Elastic moduli for trace element partitioning between plagioclase crystals and silicate melt

As discussed above for cation ordering and solid solution formation, the model of Blundy and Wood (1984) for partitioning of trace elements between crystals and melt in silicate systems attributes the energies involved to the elastic strain energy associated with substitution of one cation by another with a different size. It depends on an effective Young's modulus for the site on which the substitution occurs and this, in turn, is related to the Young's modulus of the bulk crystal. Mutch et al. (2022) recently reviewed treatments of the partitioning of Mg^{2+} between plagioclase crystals and melt that had included a smooth variation of properties with composition across the plagioclase solid solution. They found that a better match with experimental data was obtained if an inflection point was included in the composition dependence of the partition coefficient at temperatures and compositions corresponding to the locus of the $C \overline{1} \leftrightarrow I \overline{1}$ transition. They also noted, however, that the values of bulk and shear moduli reported by Brown et al. (2016) do not show any equivalent reversal in trends at anorthite-rich compositions. Instead, they attributed the change in partitioning behaviour to a crossover from preferential location of Mg^{2+} in M sites to preferential occupancy of tetrahedral sites across the $C \overline{1} \leftrightarrow$ $I \overline{1}$ boundary.

No single dataset is yet available for the Young's modulus of plagioclase crystals with different degrees of $\mathrm{Al} / \mathrm{Si}$ order corresponding to those that would develop at the pressure/temperature conditions in the earth where crystals would coexist with melt. Shear and bulk moduli given by Brown et al. (2016) were all obtained at room temperature using natural crystals from a mixture of geological
environments. As such, they are unlikely to reveal any systematic dependence of the elastic moduli on the degree of $\mathrm{Al} / \mathrm{Si}$ order. An additional consideration is that the $I \overline{1} \rightarrow P \overline{1}$ transition must necessarily contribute to changes in elastic properties of anorthite-rich crystals measured at room temperature, as opposed to the temperatures at which trace element partitioning occurs. The influence of coupling between $Q_{\text {displ }}$ and strain has not been determined but would give changes in moduli with the form typical of a co-elastic transition, ie not dissimilar from the pattern shown through the $\alpha \leftrightarrow \beta$ transition in quartz (Carpenter et al. 1998; Carpenter and Salje 1998) and on the order of a few percent to low tens of percent. On the other hand, the compilation of data shown in Figure 10 for the bulk modulus determined by single crystal X-ray diffraction measurements as a function of pressure is sufficient to suggest there is indeed a significant change in elastic properties associated with the $C \overline{1} \leftrightarrow I \overline{1}$ transition. Data for crystals with different compositions were taken from Figure 5 of Brown et al. (2016) and data for anorthite crystals with different degrees of $\mathrm{Al} / \mathrm{Si}$ order were taken from Table 2 of Angel (1994).

The data for K_{o} in Figure 10 show two overlapping trends: increasing values with increasing anorthite content and decreasing values with increasing $\mathrm{Al} / \mathrm{Si}$ disorder. Information about the disordering is provided by the observation of a displacive phase transition, $P \overline{1} \rightarrow I \overline{1}$, with increasing pressure (Angel et al. 1988, 1989; Angel 1988, 1992, 1994). Although the high pressure structure of anorthite with $\bar{I} \overline{1}$ symmetry has some subtle differences from the $I \overline{1}$ structure at high temperatures, K_{o} for the former varies systematically according to the temperature at which the crystals had previously been annealed. Anorthite crystals equilibrated at $1533 \pm 5{ }^{\circ} \mathrm{C}\left(Q_{\text {od }}=0.78\right)$ gave $K_{\mathrm{o}}=66.3 \pm 1.7 \mathrm{GPa}$, crystals equilibrated at $1350 \pm 5^{\circ} \mathrm{C}\left(Q_{\mathrm{od}}=0.87\right)$ gave $K_{\mathrm{o}}=77.1 \pm 1.7 \mathrm{GPa}$, and crystals equilibrated during slow cooling in nature $\left(Q_{\text {od }}=0.92\right)$ gave $K_{\mathrm{o}}=88.6 \pm 3.7 \mathrm{GPa}$ (Angel 1994). A similar dependence of K_{o} on $Q_{\text {od }}$ for other plagioclase crystals with $I \overline{1}$ symmetry would decrease with reducing anorthite content towards the $C \overline{1} / I \overline{1}$ boundary.

For reasons of stoichiometry, full ordering on the basis of $C \overline{1}$ symmetry is restricted to pure albite, and members of the solid solution with compositions that fall on the $C \overline{1}$ side of the $C \overline{1} / I \overline{1}$ line do not show the same extent of $\mathrm{Al} / \mathrm{Si}$ order variation. The small break in slope at $\sim 50 \% \mathrm{An}$ for K_{o} of natural samples in Figure 10 is not outside realistic experimental uncertainty limits but would be amplified significantly if the anorthite-rich crystals had a degree of $\mathrm{Al} / \mathrm{Si}$ disorder. The expectation, therefore, is that for temperatures corresponding to those at which plagioclase crystals coexist with a basaltic liquid there should be a maximum in K_{o} half way across the solid solution. In the Blundy and Wood model, such a break in slope of bulk modulus with composition would contribute to the pattern of partition coefficients for Mg^{2+} between plagioclase and melt reported by Mutch et al. (2022), though the magnitude of the contribution remains undefined.

In the absence of a more comprehensive data set for crystals with wide ranges of composition and order, variations of spectral parameters such as $\Delta \operatorname{corr}_{570}$ and $\Delta \operatorname{corr}_{1000}$ can provide a prediction of the form of variations of K_{o} because of their sensitivity to $\mathrm{Al} / \mathrm{Si}$ ordering. The relationship is explicit for anorthite because observed values of K_{o} for both the high pressure $I \overline{1}$ structure and the $P \overline{1}$ structure vary linearly with Q_{od}^{2}, due to a coupling term between spontaneous strain, e, and Q_{od} of the form $\lambda e^{2} Q_{\mathrm{od}}^{2}$ (Carpenter 2006). On this basis, the data in Figure 8 imply that the dependence of K_{o} on the degree of $\mathrm{Al} / \mathrm{Si}$ order should be greatest for pure albite and pure anorthite and smallest for crystals with compositions in the range $\sim 20-50 \%$ An. The sensitivity of K_{o} to Q_{od} should increase with anorthite content and there should be a non-linear variation of K_{o} with composition for suites of crystals which have crystallised at more or less the same temperature. The same arguments apply to the shear modulus but there are currently no data available to separate any influence of the $I \overline{1} \rightarrow P \overline{1}$ transition from the room-temperature data of Brown et al. (2016). In order to correlate the real influence of changing bulk and shear moduli on trace element partitioning, it will be necessary to determine their values for
samples with degrees of Al/Si order equilibrated at liquidus temperatures as measured at temperatures above the $I \overline{1} \rightarrow P \overline{1}$ transition.

A final consideration in this context is that, because there must be some degree of strain variation through twin walls in a crystal, partition coefficients between bulk crystal and melt must be different from those for partitioning between twin walls and melt. Changes in the concentration of cations have been seen at transformation twin walls in anorthoclase, for example (Hayward et al. 1998). Albite-rich crystals typically have a higher density of growth twins than An-rich crystals and this ought to influence the overall pattern of partitioning with composition. It remains to be determined whether the number of crystallographic sites on and immediately adjacent to twin walls, as a proportion of the total number of sites in a crystal, would be sufficient for this effect to be detectable.

CONCLUSIONS

Autocorrelation analysis of line broadening in IR powder absorption spectra from synthetic anorthite samples with a wide range of structural states has shown that the predominant effect of $\mathrm{Al} / \mathrm{Si}$ ordering in the feldspar structure is to reduce local strain heterogeneity. Close correlation of line broadening parameters with calorimetric data has then shown that the enthalpy of ordering can be understood in terms of the accompanying reduction in elastic strain energy. Comparisons of line broadening parameters with calorimetric data for members of the plagioclase solid solution confirm the view that the thermodynamic mixing properties of plagioclase feldspars depend essentially on these order/disorder processes. Given that strain fields generate long ranging interactions within a structure, it follows that mean field models, such as Bragg Williams or Landau, should provide physically realistic descriptions of the overall thermodynamic behaviour. More generally, the Al-avoidance principle or Loewenstein's rule is expected to apply when the geometry of a structure does not allow relaxation of local strain effects arising from the difference in size of AlO_{4} and SiO_{4} tetrahedra but not when the geometry allow local strains to be eliminated by relaxation. The same constraints of strain
and elasticity that apply to solid solution formation also apply to incorporation of trace elements and, hence, to partition coefficients.

IMPLICATIONS

Key outcomes are firstly that the dominant effect of $\mathrm{Al} / \mathrm{Si}$ disordering in anorthite is to give rise a high degree of local strain heterogeneity, secondly that Al-avoidance can be understood completely in terms of the need to minimise the strain associated with accommodating the different sizes of relatively rigid AlO_{4} and SiO_{4} tetrahedra in a framework structure, and thirdly that the reduction of the local heterogeneity with increasing order correlates with changes in macroscopic strain and enthalpy. While activity models of the plagioclase solid solution can skate over these effects, any physically accurate description of the structures will need to incorporate the effects of strain relaxation on a scale of at least a few unit cells. This treatment completes the picture of strain and elasticity as being the predominant factors in determining the properties of minerals which undergo displacive transitions, such as in stishovite (Carpenter et al. 2000), the driving mechanism for cation ordering transitions, such as in omphacite (Boffa Ballaran et al. 1998) and anorthite (this study), the mixing behaviour of solid solutions such as feldspars, pyroxenes, amphiboles and garnet (Carpenter and Boffa Ballaran 2001), and partitioning of trace elements such as in the Blundy-Wood model (Blundy and Wood 1994).

ACKNOWLEDGEMENTS AND FUNDING

Funding is acknowledged from St. John's College, Cambridge, (PhD studentship to AA), and from the Natural Environment Research Council of Great Britain (grant no. GR3/5547A to MAC for calorimetry).

REFERENCES CITED

Angel, R.J. (1988) High-pressure structure of anorthite. American Mineralogist, 73, 1114-1119.

Angel, R.J. (1992) Order-disorder and the high-pressure and $P \overline{1}-I \overline{1}$ transition in anorthite. American Mineralogist, 77, 923-929.

Angel, R.J. (1994) Feldspars at high pressure. In I. Parsons, Ed. Feldspars and their reactions, C421, p. 271-312. Kluwer Academic Publishers, Dordrecht.

Angel, R.J., Hazen, R.M., McCormick, T.C., Prewitt, C.T., and Smyth, J.R. (1988) Comparative compressibility of end-member feldspars. Physics and Chemistry of Minerals, 15, 313-318.

Angel, R.J., Redfern, S.A.T., and Ross, N.L. (1989) Spontaneous strain below the $I \overline{1}-P \overline{1}$ transition in anorthite at pressure. Physics and Chemistry of Minerals, 16, 539-544.

Angel, R.J., Carpenter, M.A., and Finger, L.W. (1990) Structural variation associated with compositional variation and order-disorder behavior in anorthite-rich feldspars. American Mineralogist, 75, 150-162.

Atkinson, A. (1999) The role of strain in incommensurate plagioclase feldspars. Ph.D. thesis, University of Cambridge, UK.

Atkinson, A., Carpenter, M.A., and Salje, E.K.H. (1999) Hard mode infrared spectroscopy of plagioclase feldspars. European Journal of Mineralogy, 11, 7-21.

Benisek, A., Kroll, H., and Cemic, L. (2004) New developments in two-feldspar thermometry. American Mineralogist, 89, 1496-1504.

Benisek, A., Dachs, E., and Kroll, H. (2010) A ternary feldspar-mixing model based on calorimetric data: development and application. Contributions in Mineralogy and Petrology, 160, 327-337.

Bersani, D., Aliatis, I., Tribaudino, M., Mantovani, L., Benisek, A., and Carpenter, M.A. (2018) Plagioclase composition by Raman spectroscopy. Journal of Raman Spectroscopy, 49, 684-698.

Blundy, J., and Wood, B. (1984) Prediction of crystal-melt partition coefficients from elastic moduli. Nature, 372, 452-454.

Boffa Ballaran, T., Carpenter, M.A., Domeneghetti, M.C., Salje, E.K.H., and Tazzoli, V. (1998) Structural mechanisms of solid solution and cation ordering in augite-jadeite pyroxenes: II. A microscopic perspective. American Mineralogist, 83, 434-443.

Brown, J.M., Angel, R.J., and Ross, N.L. (2016) Journal of Geophysical Research: Solid Earth, 121, 663-675.

Bruno, E., Chiari, G., and Facchinelli, A. (1976) Anorthite quenched from $1530{ }^{\circ} \mathrm{C}$. I. Structure refinement. Acta Crystallographica B, 32, 3270-3280.

Carpenter, M.A. (1991a) Mechanisms and kinetics of $\mathrm{Al} / \mathrm{Si}$ ordering in anorthite, I: Incommensurate structure and domain coarsening. American Mineralogist, 76, 1110-1119.

Carpenter, M.A. (1991b) Mechanisms and kinetics of $\mathrm{Al} / \mathrm{Si}$ ordering in anorthite, II: energetics and a Ginzburg-Landau rate law. American Mineralogist, 76, 1120-1133.

Carpenter, M.A. (1992) Equilibrium thermodynamics of $\mathrm{Al} / \mathrm{Si}$ ordering in anorthite. Physics and Chemistry of Minerals, 19, 1-24.

Carpenter, M.A. (1994) Subsolidus phase relations of the plagioclase feldspar solid solution. In I. Parsons, Ed. Feldspars and their reactions, C421, p. 221-269. Kluwer Academic Publishers, Dordrecht.

Carpenter, M.A., and Boffa Ballaran, T. (2001) The influence of elastic strain heterogeneities in silicate solid solutions. European Mineralogical Union Notes in Mineralogy, 3, 155-178.

Carpenter, M.A. (2002) Microscopic strain, macroscopic strain and the thermodynamics of phase transitions in minerals. European Mineralogical Union Notes in Mineralogy, 4, 311-346.

Carpenter, M.A. (2006) Elastic properties of minerals and the influence of phase transitions. American Mineralogist, 91, 229-246.

Carpenter, M.A., and Boffa Ballaran, T. (2001) The influence of elastic strain heterogeneities in silicate solid solutions. European Mineralogical Union Notes in Mineralogy, 3, 155-178.

Carpenter, M.A., and Ferry, J.M. (1984) Constraints on the thermodynamic mixing properties of plagioclase feldspars. Contributions to Mineralogy and Petrology, 87, 138-148.

Carpenter, M.A., and Salje, E.K.H. (1998) Elastic anomalies in minerals due to structural phase transitions. European Journal of Mineralogy, 10, 693-812.

Carpenter, M.A., McConnell, J.D.C., and Navrotsky, A. (1985) Enthalpies of ordering in the plagioclase feldspar solid solution. Geochimica et Cosmochimica Acta, 49, 947-966.

Carpenter, M.A., Salje, E.K.H., Graeme-Barber, A., Wruck, B., Dove, M.T., and Knight, K.S. (1998) Calibration of excess thermodynamic properties and elastic constant variations associated with the α $\leftrightarrow \beta$ phase transition in quartz. American Mineralogist, $83,2-22$.

Carpenter, M.A., Angel, R.J., and Finger, L.W. (1990) Calibration of $\mathrm{Al} / \mathrm{Si}$ order variations in anorthite. Contributions to Mineralogy and Petrology, 104, 471-480.

Carpenter, M.A., Boffa Ballaran, T., and Atkinson, A.J. (1999) Microscopic strain, local structural heterogeneity and the energetics of silicate solid solutions. Phase Transitions, 69, 95-109.

Carpenter, M.A., Hemley, R.J., and Mao, H.K. (2000) High-pressure elasticity of stishovite and the $P 4_{2} / \mathrm{mnm}$ - Pnnm phase transition. Journal of Geophysical Research, 105, 10807-10816.

Dove, M.T., Thayaparam, I.S., Heine, V., and Hammonds, K.D. (1996) The phenomenon of low Al-Si ordering temperatures in aluminosilicate framework structures. American Mineralogist, 81, 349362.

Dubacq, B. (2022) Thermodynamics of ordering and mixing in plagioclase feldspars: atomistic modelling in favour of Landau theory. Contributions to Mineralogy and Petrology, 177, 102.

Eshelby, J.D. (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society of London A, 241, 376-396.

Ghiorso, M. (1984) Activity/composition relations in the ternary feldspars. Contributions to Mineralogy and Petrology, 87, 282-296.

Hayward, S.A., Salje, E.K.H., and Chrosch, J. (1998) Local fluctuations in feldspar frameworks. Mineralogical Magazine, 62, 639-645.

Holland, T.J.B., and Powell, R. (1992) Plagioclase feldspars: activity-composition relations based upon Darken's quadratic formalism and Landau theory. American Mineralogist, 77, 53-61.

Holland, T.J.B., Green, E.C.R., and Powell, R. (2022) A thermodynamic model for feldspars in $\mathrm{KAlSi}_{3} \mathrm{O}_{8}-\mathrm{NaAlSi}_{3} \mathrm{O}_{8}-\mathrm{CaAl}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}$ for mineral equilibrium calculations. Journal of Metamorphic Geology, 40, 587-600.

Jin, S., and Xu, H. (2017) Solved: The enigma of labradorite feldspar with incommensurately modulated structure. American Mineralogist, 102, 21-32

Mutch, E.J.F., Maclennan, J., and Madden-Nadeau, A.L. (2022) The dichotomous nature of Mg partitioning between plagioclase and melt: implications for diffusion chronometry. Geochimica et Cosmochimica Acta, 339, 173-189.

Namur, O., Charlier, B., Toplis, M., and Vander Auwera, J. (2012) Prediction of plagioclase-melt equilibria in anhydrous silicate melts at 1 -atm. Contributions to Mineralogy and Petrology, 163, 133-150.

Phillips, B.L., Kirkpatrick, R.J., and Carpenter, M.A. (1992) Investigation of short-range A1/Si order in synthetic anorthite by ${ }^{29}$ Si MAS NMR spectroscopy. American Mineralogist, 77, 484-494.

Redfern, S.A.T. (1992) The effect of $\mathrm{Al} / \mathrm{Si}$ disorder on the $I \overline{1}-P \overline{1}$ Co-elastic phase transition in Carich plagioclase. Physics and Chemistry of Minerals, 19, 246-254.

Redfern, S.A.T., and Salje, E. (1987) Thermodynamics of plagioclase II: Temperature evolution of the spontaneous strain at the $I \overline{1}-P \overline{1}$ phase transition in anorthite. Physics and Chemistry of Minerals, 13, 189-195.

Redfern, S.A.T., and Salje, E. (1992) Microscopic dynamic and macroscopic thermodynamic character of the $I \overline{1}-P \overline{1}$ phase transition in anorthite. Physics and Chemistry of Minerals, 18, 526-533.

Redfern, S.A.T., Graeme-Barber, A., and Salje, E. (1988) Thermodynamics of plagioclase III: spontaneous strain at the $I \overline{1}-P \overline{1}$ phase transition in Ca-rich plagioclase. Physics and Chemistry of Minerals, 16, 157-163.

Salje, E. (1987) Thermodynamics of plagioclases I: Theory of the $\overline{1}-P \overline{1}$ phase transition in anorthite and Ca-rich plagioclases. Physics and Chemistry of Minerals, 14, 181-188.

Salje, E.K.H. (1992) Hard mode spectroscopy: experimental studies of structural phase transitions. Phase Transitions, 37, 83-110.

Salje, E.K.H. (1993) Phase transitions in ferroelastic and co-elastic crystals. Cambridge University Press, Cambridge .

Salje 1994 Phase Transitions and Vibrational Spectroscopy in Feldspars. In I. Parsons, Ed. Feldspars and their reactions, C421, p. 103-160. Kluwer Academic Publishers, Dordrecht.

Salje, E.K.H., and Bismayer, U. (1997) Hard mode spectroscopy: the concept and applications. Phase Transitions, 63, 1-75.

Salje, E.K.H., Güttler, B., and Ormerod, C. (1989) Determination of the degree of Al, Si order $Q_{\text {od }}$ in kinetically disordered albite using hard mode infrared spectroscopy. Physics and Chemistry of Minerals, 16, 576-581.

Salje, E.K.H., Carpenter, M.A., Malcherek, T., and Boffa Ballaran, T. (2000) Autocorrelation analysis of infrared spectra from minerals. European Journal of Mineralogy, 12, 503-519.

Tarantino, S., Carpenter, M.A., and Domeneghetti, M.C. (2003) Strain and local heterogeneity in the forsterite-fayalite solid solution. Physics and Chemistry of Minerals, 30, 495-502.

Xu, H., Buseck, P.R., and Carpenter, M.A. (1997) Twinning in synthetic anorthite: a transmission electron microscopy investigation. American Mineralogist, 82, 125-130.

FIGURE CAPTIONS

FIGURE 1. (a) Merged infrared powder absorption spectra for the kinetic series of synthetic anorthites. The annealing time for each sample is given in hours. All samples were heated at $1400{ }^{\circ} \mathrm{C}$ except the lowest in the figure, which was heated at $1100{ }^{\circ} \mathrm{C}$. (b) Merged spectra for the six equilibrium samples. Annealing temperatures are given in ${ }^{\circ} \mathrm{C}$. The spectrum of the sample equilibrated at $1400{ }^{\circ} \mathrm{C}$ (with an annealing time of 1102 hours) has been also included in (a).

FIGURE 2. Details from infrared powder absorption spectra showing the emergence of new peaks at around $\sim 320 \mathrm{~cm}^{-1}$ for (a) the kinetic series and (b) the equilibrium series samples and at $\sim 470 \mathrm{~cm}^{-1}$ for (c) kinetic and (d) equilibrium samples. Note the change in intensity with time or annealing temperature, reflecting changes in the degree of local order.

FIGURE 3. Examples of peak fitting of peak group at $300-320 \mathrm{~cm}^{-1}$ in spectra from synthetic anorthite samples with different degrees of $\mathrm{Al} / \mathrm{Si}$ order. Equilibrium series: (a) $850^{\circ} \mathrm{C}$, (b) $1400^{\circ} \mathrm{C}$, (c) $1536{ }^{\circ} \mathrm{C}$. Kinetic series: (d) 8.25 hrs , (e) 0.78 hrs , (f) 0.017 hrs . The fits are shown as solid lines and the original spectra as dashed lines. The number of peaks used in the fit was arbitrary and does not necessarily reflect the real number of modes present. The intensity of the peak group was obtained by the summation of the areas of the peaks used in the fit.

FIGURE 4. Values of ω and Γ from peak fitting of selected peaks in primary spectra. Experimental uncertainties are shown as $\pm 0.2 \mathrm{~cm}^{-1}$, but uncertainties in the data for sample ANC19 are larger than this. Data for samples with type-b reflections in the kinetic series generally overlap with data from the equilibrium series. Any sensitivity of phonon frequencies to $\mathrm{Al} / \mathrm{Si}$ order is clearly substantially less than the sensitivity of line widths. (a) Peak with the higher frequency of the pair near $320 \mathrm{~cm}^{-1}$ in Figure 2a,b. (b) The pair of peaks in Figure 2c,d. (c) Peak near $602 \mathrm{~cm}^{-1}$ in Figure 1.

FIGURE 5. Variation of linewidths, Γ, from peak fitting with respect to the integrated intensities of peaks. Γ values labelled as 320 were taken directly from the fits to the peak at $\sim 322 \mathrm{~cm}^{-1}$. Γ values labelled as 470 are averages for the two peaks at ~ 470 and $\sim 490 \mathrm{~cm}^{-1} . I_{320}$ and I_{470} are the sum of intensities for each of the two pairs of peaks. Black lines are guides to the eye showing linear dependences between Γ and intensity.

FIGURE 6. Variations in parameters from autocorrelation analysis. Δ corr $_{350}, \Delta$ corr $_{600}$ and Δ corr $_{1000}$ refer to frequency intervals $270-450 \mathrm{~cm}^{-1}, 450-800 \mathrm{~cm}^{-1}$, and $800-1500 \mathrm{~cm}^{-1}$, respectively. (a) Variations of Δ corr $_{350}$ and Δ corr $_{600}$ show essentially the same variation for the two frequency intervals. (b) $\Delta \operatorname{corr}_{350}$ and Δ corr $_{600}$ show linear correlation with $\Delta \operatorname{corr}_{1000}$ apart from data points for the most ordered sample (equilibrated at $850^{\circ} \mathrm{C}$). (c) Variations of Δ corr correlate with variations of peak width, Γ, from peak fitting but with increasing deviation from linearity with increasing $\mathrm{Al} / \mathrm{Si}$ order. $\Gamma 470$ is the average width of the two peaks near $470 \mathrm{~cm}^{-1}$ in Figures 2 c ,d. $\Gamma 600$ is the width of the peak near $600 \mathrm{~cm}^{-1}$ in Figure 1.

FIGURE 7. Comparison of spectral parameters, which relate to variations in structural state at a phonon length scale, with scalar strain, which represents structural state variations on an X-ray length scale. Data for two natural samples of anorthite $\left(\mathrm{An}_{100}\right.$, Val Pasmeda; An_{98}, Monte Somma) are from Atkinson et al. (1999) and Atkinson (1999). "nat" refers to the natural samples without heat treatment, "heat treated" refers to the natural samples after heat treatment at $1300{ }^{\circ} \mathrm{C}\left(\mathrm{An}_{100}\right)$ and $1360{ }^{\circ} \mathrm{C}\left(\mathrm{An}_{98}\right)$, as set out in Carpenter et al. (1985). (a) Δ corr values show a non-linear correlation with $\varepsilon_{\text {s. }}$. (b) Γ for the absorption peak near $600 \mathrm{~cm}^{-1}$ has a linear relationship with ε_{s}.

FIGURE 8. Variations of Δ corr values as a function of composition across the plagioclase feldspar solid solution. Data for natural and heated treated samples are from Atkinson et al. (1999) and Atkinson (1999). Heat treatment for samples represented by open triangles involved annealing in air at temperatures of $\sim 1100-1400{ }^{\circ} \mathrm{C}$ to induce a degree of $\mathrm{Al} / \mathrm{Si}$ disorder consistent with $C \overline{1}$ symmetry in the composition range $\sim \operatorname{An} 0$-An60 and $I \overline{1}$ ordering in the range $\sim A n 80-A n 100$. The most An-rich samples had $P \overline{1}$ symmetry at room temperature. Dashed lines are guides to the eye from fitting to data for heat treated samples in the range $\sim \operatorname{An} 20-A n 60$, with extrapolation to An100. Δ corr values for synthetic anorthite from the present study spread essentially between the value of the extrapolated straight line, $C \overline{1}$, and values for the most ordered natural anorthite samples.

FIGURE 9. Correlation of Δ corr data (coloured points $=$ this study, black $=$ from Atkinson et al. 1999 and Atkinson 1999) with ΔH soln data (Carpenter et al. 1985; Carpenter 1991b, 1992) for members of the plagioclase feldspar solid solution. $\Delta H_{\text {soln }}$ values for ANC19 were lower than would be expected for a disordered crystalline sample due to the presence of some residual glass from the starting material (Carpenter 1991b). Apart from these, there is a strong and almost linear correlation between Δ corr and $\Delta H_{\text {soln }}$ in (a). The pattern of $\Delta H_{\text {soln }}$ as a function of composition in (b) is almost exactly equivalent to the pattern of Δ corr values in Figure 8, with a spread between values for ordered samples and the extrapolated value for a solid solution with $C \overline{1}$ symmetry.

FIGURE 10. Values of the room pressure bulk modulus, K_{o}, of plagioclase feldspars determined by single-crystal high-pressure X-ray diffraction measurements at room temperature with the pressure dependence, K^{\prime}, set at 4 . Values of $Q_{\text {od }}$ refer to the degree of $\mathrm{Al} / \mathrm{Si}$ order of anorthite samples equilibrated at different temperatures. Given that K_{o} of pure anorthite decreases markedly with decreasing $\mathrm{Al} / \mathrm{Si}$ order and that crystals with less than $\sim 50 \%$ anorthite cannot change to the same
extent, the break in slope at $\sim 50 \%$ An would become more marked with increasing equilibration temperatures.

ANC56	1400 ± 1 then 1500 ± 1	356,301	b	$0.0060(2)$	61.97 ± 1.00
ANC48	1397 ± 1	1102	b	$0.0070(2)$	64.77 ± 0.88
ANC62	1392 ± 2 then 1300 ± 1	380,1342	b	$0.0073(2)$	66.27 ± 0.50
ANC71	1402 ± 2 then 1202 ± 2	331,2141	b	$0.0076(2)$	68.03 ± 0.75
ANC74/H2	1393 ± 6 then 850 ± 7,	$0.25,3166$	b	$0.0082(2)$	-
	$P_{\mathrm{H} 2 \mathrm{O}}=750$ bars				

675
676

677

678

679

680
681

682

683

684

FIGURES

Figure 2

Always consult and cite the final, published document. See http:/www.minsocam.org or GeoscienceWorld

Figure 3

Figure 4

Always consult and cite the final, published document. See http:/www.minsocam.org or GeoscienceWorld Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

717

Figure 10

