1	Revision 1
2	Temperature and compositional dependences of $\mathrm{H_2O}$ solubility in majorite (Word
3	Count: 5387)
4	Dan Liu ¹⁻³ , Narangoo Purevjav ³ , Hongzhan Fei ^{3,4} , Anthony C. Withers ³ , Yu Ye ² , Tomoo
5	Katsura ³
6	¹ Gemmological Institute, China University of Geosciences, Wuhan, 430074, China
7	² State Key Laboratory of Geological Processes and Mineral Resources, China University of
8	Geosciences, Wuhan, 430074, China
9	³ Bayerisches Geoinstitut, University of Bayreuth, Bayreuth, 95440, Germany
10	⁴ Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, School of
11	Earth Sciences, Zhejiang University, Hangzhou, 310058, China
12	
13	Corresponding author:
14	Dan Liu (<u>danliu@cug.edu.cn</u>)
15	Narangoo Purevjav (<u>Narangoo.Purevjav@uni-bayreuth.de</u>)
16	

17 Abstract

We systematically investigated H_2O solubility in majorite as a function of temperature at 1670 -18 2270 K under a pressure condition of 20 GPa using multi-anvil experimental techniques. The 19 H₂O solubility in majorite decreases with increasing temperature. In addition, the H₂O content is 20 relatively independent of the concentrations of Al₂O₃ and SiO₂ in majorite. Majorite can store 21 more H₂O than bridgmanite in the lower mantle. Therefore, when a slab sinks into the lower 22 mantle, hydrous melt could be produced not only by the phase transformation from ringwoodite 23 to bridgmanite + ferropericlase near 660-km depth, but also by the majorite to bridgmanite 24 transformation over a wide range of depth from 660 km up to ~800 km, at which depth majorite 25 dissolves completely in bridgmanite. 26

27

28 Keywords: majorite; H₂O solubility; transition zone; hydrous melt

29

30 **1 Introduction**

31 The mantle transition zone is a potential H_2O reservoir in the Earth's interior (e.g., Fei et al. 2017; Hirschmann 2006; Pearson et al. 2014) because the H₂O solubility of its dominant 32 minerals, wadsleyite and ringwoodite, reaches $1 \sim 2$ wt.% (Demouchy et al. 2005; Druzhbin et 33 34 al. 2021; Fei and Katsura 2020a, 2021; Kohlstedt et al. 1996; Litasov et al. 2011; Purevjav et al. 2014, 2016). The H₂O solubility refers to the H₂O content of a mineral equilibrated with hydrous 35 melt (Hirschmann et al. 2005). These values are distinctly higher than those of other major 36 37 mantle minerals such as olivine, pyroxene, bridgmanite, and ferropericlase (Fei and Katsura 2020b; Férot and Bolfan-Casanova 2012; Fu et al. 2019; Guo et al. 2020; Kohlstedt et al. 1996; 38 Litasov 2010; Liu et al. 2021; Purevjav et al. 2023; Smyth et al. 2006; Withers and Hirschmann 39

2008). Therefore, hydrous melts are expected to be formed by a back transformation at 410 km
depth from wadsleyite to olivine and a forward transformation at 660 km depth from ringwoodite
to bridgmanite + ferropericlase. The presence of hydrous melt may affect mantle dynamics
significantly (Revenaugh and Sipkin 1994; Schmandt et al. 2014; Vinnik and Farra 2007).

Majorite, which contributes up to ~40 vol.% of the transition zone, persists in the lower mantle down to ~800 km depth until the dissolution of majorite in bridgmanite is completed (Ishii et al. 2018, 2019; Ringwood 1991; Stixrude and Lithgow-Bertelloni 2007). As majorite may contain higher amounts of H₂O than bridgmanite (Fu et al. 2019; Katayama et al. 2003; Liu et al. 2021), a hydrous melt may be produced by the majorite-bridgmanite transformation (Panero et al. 2020).

Nevertheless, the H_2O solubility of majorite is poorly constrained, while the H_2O 50 solubility of wadsleyite and ringwoodite has been studied extensively. Katayama et al. (2003) 51 52 reported an H₂O solubility of about 1200 wt. ppm in majorite, but their temperature range was limited (1670 - 1770 K). Accordingly, the temperature dependence is unknown despite the fact 53 54 that the H₂O solubility in minerals is strongly correlated to temperature (e.g., Demouchy et al. 2005; Fei and Katsura 2020a, 2021; Litasov et al. 2011). Moreover, even though the composition 55 of majorite can vary significantly in the Earth's mantle (Frost 2008), the compositional 56 dependence of H₂O solubility is also unknown. Therefore, a systematic study of the effects of 57 temperature and composition on H₂O solubility in majorite is required to assess hydrous melting 58 at the top of the lower mantle. 59

In this study, we determined the temperature and compositional dependences of H_2O solubility in majorite at temperatures of 1670 to 2270 K and a pressure of 20 GPa using a multi-

anvil press. Our results suggest that majorite can store 900 \sim 3000 wt. ppm H₂O in the deep mantle and may play an important role in the dehydration melting at the topmost lower mantle.

- 64 **2 Materials and Methods**
- 65 **2.1 Starting material**

Four compositionally different starting materials, hereafter referred to as starting 66 67 materials A, B, C, and D, were prepared from SiO₂, FeO, Al₂O₃, Mg(OH)₂, and Ca(OH)₂ powders (Table 1). The SiO₂ and Al₂O₃ powders were heated at 1270 K for two hours in an 68 69 ambient-pressure furnace, whereas the $Mg(OH)_2$ and $Ca(OH)_2$ powders were heated at 400 K in 70 a vacuum oven prior to use. The five powders were weighed and then well-mixed by grinding in 71 an agate mortar. Starting material A had a bulk composition close to pyrolite-minus-olivine 72 (Irifune and Ringwood 1987) plus H₂O. Starting material B had a lower Al_2O_3 content because 73 the Al₂O₃ component tends to be incorporated in majorite rather than melt. Starting materials C and D had higher MgO and CaO contents and lower SiO₂ contents to suppress the formation of 74 75 stishovite in the run products. The bulk H₂O contents were all 12 wt.%. All the mixed powders were stored in a vacuum oven at 400 K before use. 76

77

78

2.2 High-pressure experiments

High-pressure experiments were carried out in a 1000-ton multi-anvil press at the Bayerisches Geoinstitut, University of Bayreuth. The starting materials were welded into $Pt_{95}Rh_5$ capsules with inner and outer diameters of 1.0 and 1.2 mm, respectively. The capsule lengths after completion were 1.0 - 1.2 mm, except for run H5405, in which the capsule length was 2.0 mm. The sample assembly consisted of a Cr₂O₃-doped MgO octahedral pressure medium with an

edge length of 10 mm, a ZrO₂ sleeve for thermal insulation, and a LaCrO₃ heater. One or two
capsules were loaded into an MgO sleeve in the heater. The assembly was pressurized to a
pressure of 20 GPa using eight tungsten carbide anvils with truncated edge lengths of 4 mm,
followed by heating to target temperatures of 1670 to 2270 K with a ramp rate of 70 K/min.
Temperatures were monitored using a type-D (W97Re3/W75Re25) thermocouple. The run
duration at the target temperature was 20 or 24 hours.

90

91 **2.3 Sample analyses**

92 The recovered run products were embedded in epoxy resin, and cross-sections were 93 prepared by grinding using silicon carbide grinding paper and lapping using diamond powder. 94 The phases present in the capsules were identified using a Bruker AXS D8 Discover micro-95 focused X-ray diffractometer (XRD) equipped with a two-dimensional solid-state detector and a 96 Co-Kα radiation source operated at 40 kV and 500 µA. An example of the XRD patterns is 97 shown in **Fig. 1a**.

The textures of the samples within the capsules were observed using a scanning electron microscope (SEM) with a backscattered-electron detector (BSE). The BSE images of all recovered capsules can be found in the Supplementary Materials (**Fig. S1**), with an example given in **Fig. 1b.** The phases identified by XRD were also confirmed by compositional measurements using an energy-dispersive X-ray spectrometer (EDS).

103 Chemical compositions of the run products were obtained using a JEOL JXA-8200 104 electron probe microanalyzer (EPMA) equipped with wavelength-dispersive spectrometers 105 (WDS) operated at an acceleration voltage of 15 kV and a beam current of 15 nA. Enstatite was 106 used as a standard for Mg and Si, and corundum, metallic Fe, and diopside for Al, Fe, and Ca,

respectively. A focused beam was used to analyze the solid phases, while a defocused beam was
used for the melt phase. The counting time for each analysis was 20 sec.

109

110 **2.4 Determination of H₂O contents in majorite**

The H₂O contents in majorite were determined by Fourier-transform infrared (FTIR) spectroscopy analysis using a Bruker IFS 120 high-resolution spectrometer coupled with a Bruker IR microscope. After polishing to thicknesses of 50-100 μ m, unpolarized FTIR spectra were taken on the samples. Any inclusions or microcracks visible under an optical microscope were avoided in the analysis. Infrared analyses were made using a visible light source, CaF₂ beamsplitter, and liquid-N₂-cooled MCT detector. Each spectrum was collected by accumulating 100 scans at a resolution of 2 cm⁻¹. Two to six spectra were collected for each sample.

Peak-fitting of the FTIR spectra was performed by fitting the sum of two Gaussian functions. The first peak at a wavenumber of 3615 cm⁻¹ is related to hydrogen in majorite (Bolfan-Casanova et al. 2000; Liu et al. 2021), while the second at a wavenumber of 3430 cm⁻¹ is expected to be from inclusions or sub grain boundaries which are invisible under the optical microscope (Katayama et al. 2003; Liu et al. 2021).

123 Subsequently, the H₂O content C_{H_2O} in majorite, expressed as wt. ppm H₂O, was 124 calculated using the Beer-Lambert law,

125
$$C_{\rm H_20} = \frac{10^6 \times 18.02}{\epsilon \tau \rho} \times \int H(v) dv,$$
 (1)

where H(v) is the infrared absorbance of the sample at a wavenumber of v, ε is the integral molar absorption coefficient (see below), τ is the sample thickness, and ρ is the density (3670 g/L). The

integration was made for the infrared absorption bands at 3615 cm⁻¹ given by the peak-fitting
process.

Thomas et al. (2015) reported a wavenumber-dependent infrared absorption coefficient for majorite, which was $\varepsilon = 6000 \text{ L/(mol.cm}^2)$ at a $v = 3615 \text{ cm}^{-1}$. This value was used for the calculation of $C_{\text{H}_2\text{O}}$ in this study. The $C_{\text{H}_2\text{O}}$ was also calculated using the calibrations reported by Bell et al. (1995) (specific to garnet) and by Paterson (1982) (for general silicate minerals and glasses) and listed in Table 2 for comparison.

135

136 **3 Results and discussion**

3.1 Phase assemblages of the run products

Majorite crystals with grain sizes of $50 \sim 300 \,\mu m$ coexisting with hydrous melts 138 139 (crystallized to small grains during quenching) were found in all of the recovered capsules (Table 2, Fig. 1, Fig. S1), indicating that experiments were H₂O-saturated. Stishovite crystals 140 appeared in the experiments with high SiO₂-content starting materials A and B, while 141 142 davemaoite (CaSiO₃ perovskite) appeared in the experiments with low SiO₂-content starting 143 materials C and D. Magnesite and dense hydrous magnesium silicate phases (superhydrous phase 144 B and phase D) were formed under relatively low-temperature conditions (1670 K) with starting 145 material of C (Table 2).

147 **3.2 Chemical compositions of majorite**

Since compositionally different starting materials were used, the composition of majorite and melt from different runs cannot be compared directly (**Table 3, Table 4**). However, the composition of majorite synthesized from the same starting material (B) shows a systematic change with temperature, i.e., the Si atomic concentration increases, while the Al and Fe concentrations decrease with increasing temperature. Meanwhile, the Mg concentration increases from 1670 to 1870 K and decreases at higher temperatures, whereas the Ca concentration shows an opposite trend to Mg (**Fig. 2**).

The atomic concentrations of Si and Mg+Fe+Ca, where Fe is assumed to be ferrous, are plotted against the Al concentration for all samples (**Fig. 2**). It is found that both Mg+Fe+Ca and Si concentrations are inversely correlated with the Al concentrations, indicating the dilution of Al₂O₃ by the incorporation of the (Mg,Fe,Ca)SiO₃ component in majorite.

159

160

3.3 FTIR spectra of majorite

All of the majorite samples obtained in this study show asymmetric infrared absorption bands between 3000 and 3800 cm⁻¹ with peak positions at $3610 \sim 3120$ cm⁻¹ and a broad shoulder from about 3500 to 3000 cm⁻¹ (**Fig. 3**). Although the shapes and peak positions in the spectra are identical in different samples, suggesting the same dominant proton incorporation mechanisms in majorite with different compositions, the peak height decreases with increasing temperature, indicating temperature-dominated water contents of the samples in this study.

By deconvolution of the spectra, the infrared absorption peak at 3615 was obtained, which could be attributed to majorite (Bolfan-Casanova et al. 2000; Liu et al. 2021). In contrast,

Thomas et al. (2015) and Katayama et al. (2003) reported infrared absorption peaks at slightly lower wavenumbers (3550 ~ 3580 cm⁻¹). The 3430 cm⁻¹ peak likely arises from H₂O in inclusions, so it was not considered for the calculation of water content in this study. Even though we have followed previous studies in assigning the broad absorption band to water H₂O from inclusions (Liu et al. 2021), we cannot rule out a contribution from bonded hydroxyl in majorite. If the broad absorption band is included in the calculation of $C_{\rm H_2O}$, the values are roughly doubled.

176

3.4 Temperature dependence of H₂O solubility in majorite

Although the water solubility in majorite has already been reported previously (Bolfan-177 178 Casanova et al. 2000; Katayama et al. 2003; Panero et al. 2020; Thomas et al. 2015), all previous 179 studies focused on a fixed temperature or composition without a systematic investigation. Since 180 majorite coexists with hydrous melt in all runs in this study, the H_2O contents obtained in this 181 study should represent the H₂O solubility of majorite under the corresponding pressure and 182 temperature conditions. Based on the FTIR calibration of Thomas et al. (2015), the H₂O content 183 in our majorite samples decreases from about 2900 to 400 wt. ppm with increasing temperature from 1670 to 2270 K, regardless of the difference in starting materials (Table 1, Fig. 4). 184 Therefore, our results indicate a systematic decrease of H₂O solubility in majorite with 185 186 temperature.

187 The temperature dependence of H_2O solubility can be understood thermodynamically. 188 Majorite is equilibrated with melt by the reaction,

189 Silicate (Majorite) + H_2O (melt) = H_2O (majorite) + silicate (melt) (2)

Assuming that activity is proportional to mole fraction, the change in Gibbs energy of the above reaction $(\Delta G_{(2)})$ is,

192
$$\Delta G_{(2)} = -RT \ln \frac{c_{\text{H2O}}^{maj} \times c_{\text{silicate}}^{melt}}{c_{\text{H2O}}^{melt} \times c_{\text{silicate}}^{maj}}$$
(3)

193 where C_M^N is the fraction of the component of M in the phase N. Because of $C_{\text{silicate}}^{maj} \approx 1$, 194 we have,

195
$$C_{\rm H2O}^{maj} = \frac{c_{H_2O}^{melt}}{c_{silicate}^{melt}} \exp(-\frac{\Delta G_{(2)}}{RT})$$
(4)

196 $C_{H_2O}^{melt}$ should decrease with increasing temperature as the melt fraction increases (e.g., 197 Fei 2021; Hirschmann et al. 2005), resulting in the decrease of $\frac{C_{H_2O}^{melt}}{C_{silicate}^{melt}}$ with temperature. On the 198 other hand, H₂O is preferentially incorporated in melt rather than solid minerals, thus, $\Delta G_{(2)} > 0$. 199 As a result, $C_{silicate}^{melt}$ decreases with temperature approximately following a logarithmic function. 200 The fitting of data points gives,

201
$$C_{H_2O}^{maj} = exp\left(\frac{9810}{T} + 1.90\right)$$
 (5)

where $C_{H_2O}^{maj}$ is the H₂O content in majorite based on the FTIR calibration of Thomas et al. (2015).

We emphasize that the $C_{\rm H2O}$ determined from infrared spectroscopy relies on the FTIR calibrations, i.e., the infrared absorption coefficients reported previously. Using different absorption coefficients (e.g., Bell et al. 1995; Paterson 1982) linearly affects the absolute values of H₂O solubility (**Table 2**). However, the temperature dependence should remain the same. We also note that the H₂O solubility in majorite determined in this study is within the experimental

uncertainty comparable with those of Katayama et al. (2003), Thomas et al. (2015), Panero et al. (2020), and Liu et al. (2021) at identical temperatures, In the referenced studies, H₂O contents were determined by secondary ion mass spectrometry, electron recoil detection analysis, and infrared spectroscopy. Therefore, the different techniques for $C_{\rm H2O}$ determination should not affect our conclusion significantly.

214

215

3.5 Compositional dependence of C_{H2O} and the proton incorporation mechanism

Although different starting materials were used in this study, resulting in compositionally different majorite samples, the C_{H2O} in the run products do not show systematic variations with composition (**Fig. 5**). This suggests that protons in majorite are incorporated into the dodecahedral and/or tetrahedral sites $(M^{2+}_{\text{VIII}} \leftrightarrow (2H^{+})_{\text{VIII}} \text{ and } \text{Si}^{4+}_{\text{IV}} \leftrightarrow (4H^{+})_{\text{IV}}$, respectively) rather than the coupled $H^{+}+\text{Al}^{3+}$. This is because if Si^{4+} or divalent cations (M^{2+}) were substituted by $H^{+}+\text{Al}^{3+}$, the H₂O content would be positively correlated with the Al₂O₃ content, which is not the case in this study (**Table 3**).

The Si⁴⁺_{IV} \leftrightarrow (4H⁺)_{IV} substitution (hydrogarnet substitution) is more likely in this study because it shows an infrared absorption band at 3630 cm⁻¹ in pyrope (Ackerman et al. 1983; Geiger and Rossman 2018), similar to the infrared absorption peaks for majorite (**Fig. 3**). The Si⁴⁺_{IV} \leftrightarrow (4H⁺)_{IV} substitution is also suggested by first-principle calculations, which show that the (4H⁺)_{IV} defect is more energetically favorable than the (2H⁺)_{VIII} defect in MgSiO₃-majorite (Pigott et al., 2015).

4 Implications for the role of majorite for water storage in the deep mantle

Majorite is an important mineral in the mantle transition zone and the topmost lower 231 mantle (Irifune and Ringwood 1987; Ringwood 1991), corresponding to a temperature condition 232 233 of $1800 \sim 2000$ K according to the typical mantle geotherm (Katsura 2022). Over this temperature range, majorite can contain about $900 \sim 1500$ wt. ppm. This value is much lower 234 than wadslevite and ringwoodite, the dominant minerals in the mantle transition zone (~ 1.0 235 wt.%, Demouchy et al. 2005; Druzhbin et al. 2021; Fei and Katsura 2020, 2021; Kohlstedt et al. 236 1996: Litasov et al. 2011). However, H₂O solubility is significantly higher than in bridgmanite 237 (<100 ~ 900 wt. ppm, Fu et al. 2019; Liu et al. 2021; Purevjav et al. 2023) and ferropericlase 238 (<100 wt. ppm, Bolfan-Casanova et al. 2002, 2003; Litasov et al. 2010) in the lower mantle. 239 240 Therefore, majorite is expected to be the major H_2O reservoir in the topmost lower mantle within 241 its stability field, i.e., down to ~ 800 km depth before complete phase transformation to bridgmanite (Ishii et al. 2018, 2019; Ringwood 1991; Stixrude and Lithgow-Bertelloni 2007). 242

H₂O can be transported into the deep mantle by slab subduction. When slabs sink into the 243 244 lower mantle, hydrous ringwoodite within the slabs transforms to bridgmanite and ferropericlase, 245 forming a hydrous melt layer just below the 660-km discontinuity due to the contrasting H_2O solubilities in ringwoodite, bridgmanite, and ferropericlase (Schmandt et al. 2014). The hydrous 246 melt should saturate majorite within the slabs. Due to the relatively low temperature of slabs 247 (~1600 K near the 660 km discontinuity, Litasov et al. 2013; Tan et al. 2002), majorite can 248 contain about 3000 wt. ppm H_2O , which is significantly higher than bridgmanite (Fu et al. 2019; 249 250 Liu et al. 2021; Purevjav et al. 2023). As majorite transforms to bridgmanite gradually, a thick hydrous melt layer is expected at the top of the lower mantle depths of 660 ~ 800 km (Panero et 251 252 al. 2020), which may lower the slab viscosity significantly.

253

254 Acknowledgments

We appreciate the help of H. Fisher for high-pressure cell assembly preparation and R. Njul 255 256 for sample polishing. The manuscript benefited from comments and suggestions from reviewers 257 Steve Jacobsen and Joshua Muir. D.L. is funded by the China Scholarship Council. The project 258 was supported by the "CUG Scholar" Scientific Research Funds at China University of 259 Geosciences (Wuhan) (Project No. 2022117) and China Postdoctoral Science Foundation (No.2023M733297). N.P. and H.F. are supported by the BGI. The BGI covered all experimental 260 261 costs. The raw EPMA, FTIR and XRD data are available in the online Supporting Information 262 and at https://zenodo.org/uploads/10073791.

263

264 **Reference**

- Ackermann, L., Cemič, L., and Langer, K. (1983). Hydrogarnet substitution in pyrope: a possible
- location for "water" in the mantle. Earth and Planetary Science Letters, 62(2), 208–214.
- Bell, D.R., Ihinger, P.D., and Rossman, G.R. (1995). Quantitative analysis of trace OH in garnet
 and pyroxenes. American Mineralogist, 80(5-6), 465–474.
- 269 Bolfan-Casanova, N., Keppler, H., and Rubie, D.C. (2000). Water partitioning between
- nominally anhydrous minerals in the MgO-SiO₂-H₂O system up to 24 GPa: implications for
- the distribution of water in the Earth's mantle. Earth and Planetary Science Letters, 182(3),
- 272 209–221.

273	Bolfan-Casanova, N., Keppler, H., and Rubie, D.C. (2003). Water partitioning at 660 km depth
274	and evidence for very low water solubility in magnesium silicate perovskite. Geophysical
275	Research Letter, 30, 1905.
276	Bolfan-Casanova, N., Mackwell, S., Keppler, H., McCammon, C., and Rubie, D.C. (2002).
277	Pressure dependence of H solubility in magnesiowüstite up to 25 GPa: implications for the
278	storage of water in the Earth's lower mantle. Geophysical Research Letter, 29 (10), 1449.
279	Demouchy, S., Deloule, E., Frost, D.J., and Keppler, H. (2005). Pressure and temperature-
280	dependence of water solubility in Fe-free wadsleyite. American Mineralogist, 90(7), 1084-
281	1091.
282	Druzhbin, D., Fei, H., and Katsura, T. (2021). Independent hydrogen incorporation in wadsleyite
283	from oxygen fugacity and non-dissociation of H ₂ O in the reducing mantle transition zone.
284	Earth and Planetary Science Letters, 557, 116755.
285	Fei, H. (2021). Water content of the dehydration melting layer in the topmost lower mantle.
286	Geophysical Research Letters, 48, e2020GL090973.
287	Fei, H., and Katsura, T. (2020a). High water solubility of ringwoodite at mantle transition zone
288	temperature. Earth and Planetary Science Letters, 531, 115987.
289	Fei, H., and Katsura, T. (2020b). Pressure dependence of proton incorporation and water
290	solubility in olivine. Journal of Geophysical Research: Solid Earth, 125, e2019JB018813.
291	Fei, H., and Katsura, T. (2021). Water solubility in Fe-bearing wadsleyite at mantle transition
292	zone temperatures. Geophysical Research Letters, 48, e2021GL092836.
293	Fei, H., Yamazaki, D., Sakurai, M., Miyajima, N., Ohfuji, H., Katsura, T., and Yamamoto, T.
294	(2017). A nearly water-saturated mantle transition zone inferred from mineral viscosity.
295	Science Advances, 3, e1603024.

- and Katsura, T. (2018). Pressure, temperature, water content, and oxygen fugacity
 dependence of Mg grain-boundary diffusion coefficient in forsterite. American
 Mineralogist, 103, 1354–1361.
- 300 Férot, A., and Bolfan-Casanova, N. (2012). Water storage capacity in olivine and pyroxene to 14
- 301 GPa: implications for the water content of the Earth's upper mantle and nature of seismic

discontinuities. Earth and Planetary Science Letters, 349-350, 218–230.

- Frost, D.J. (2008). The upper mantle and transition zone. Elements, 4 (3), 171-176.
- ³⁰⁴ Fu, S., Yang, J., Karato, S., Vasiliev, A., Presniakov, M.Y., Gavrilliuk, A.G., Ivanova, A.G.,
- 305 Hauri, E.H., Okuchi, T., Purevjav, N., and Lin, J.F. (2019). Water concentration in single-

306 crystal (Al,Fe)-bearing bridgmanite grown from the hydrous melt: implications for

- 307 dehydration melting at the topmost lower mantle. Geophysical Research Letters, 46, 10346–
 308 10357.
- Geiger, C.A., and Rossman, G.R. (2018). IR spectroscopy and OH⁻ in silicate garnet: the long
 quest to document the hydrogarnet substitution. American Mineralogist, 103(3), 384–393.
- Guo, X., Bai, J., Wang, C., Wu, X., and Zhou, X. (2020). CO₂ induced a small water solubility in
- orthopyroxene and its implications for water storage in the upper mantle. Journal of
 Geophysical Research: Solid Earth, 125, e2019JB018745.
- Hirschmann, M.M. (2006). Water, melting, and the deep Earth H₂O cycle. Annual Review of
- Earth and Planetary Sciences, 1(34), 629–653.
- Hirschmann, M.M., Aubaud, C., and Withers, A. C. (2005) Storage capacity of H₂O in nominally
- anhydrous minerals in the upper mantle. Earth and Planetary Science Letters, 236, 167-181.

²⁹⁶ Fei, H., Koizumi, S., Sakamoto, N., Hashiguchi, M., Yurimoto, H., Marguardt, K., Miyajima, N.,

318	Irifune, T., and Ringwood, A.E. (1987). Phase transformations in primitive MORB and pyrolite
319	compositions to 25 GPa and some geophysical implication. In: Manghnani, M.H., Syono,
320	Y. (Eds.), High Pressure Research in Mineral Physics (pp.31-242). American Geophysical
321	Union, Washington, DC.
322	Ishii, T., Kojitani, H., and Akaogi, M. (2018). Phase relations and mineral chemistry in pyrolitic
323	mantle at 1600-2200 °C under pressures up to the uppermost lower mantle: phase
324	transitions around the 660-km discontinuity and dynamics of upwelling hot plumes. Physics
325	of the Earth and Planetary Interiors, 274, 127–137.
326	Ishii, T., Kojitani, H., and Akaogi, M. (2019). Phase relations of Harzburgite and MORB up to
327	the uppermost lower mantle conditions: precise comparison with Pyrolite by multisample
328	cell high-pressure experiments with implication to dynamics of subducted slabs. Journal of
329	Geophysical Research: Solid Earth, 124(4), 3491–3507.
330	Katayama, I., Hirose, K., Yurimoto, H., and Nakashima, S. (2003). Water solubility in majoritic
331	garnet in subducting oceanic crust. Geophysical Research Letters, 30(22), 2155.
332	Katsura, T., A revised adiabatic temperature profile in the mantle. (2022). Journal of
333	Geophysical Research: Solid Earth, 127, e2021JB023562.
334	Keppler, H., and Bolfan-Casanova. (2006). Thermodynamics of water solubility and partitioning.
335	Reviews in Mineralogy and Geochemistry, 62, 193-230.
336	Kohlstedt, D.L., Keppler, H., and Rubie, D.C. (1996). Solubility of water in the α , β , and γ
337	phases of (Mg, Fe) ₂ SiO ₄ . Contributions to Mineralogy and Petrology, 123, 345–357.
338	Litasov, K. (2010). The influence of Al ₂ O ₃ on the H ₂ O content in periclase and ferropericlase at
339	25 GPa. Russian Geology and Geophysics, 51 (6), 644–649. doi:10.1016/j.rgg.2010.05.005

- Litasov, K. D., Shatskiy, A., and Ohtani, E. (2013). Earth's mantle melting in the presence of C-
- O-H bearing fluid. In: Karato, S. I. (Ed.), Physics and chemistry of the deep Earth (pp. 38–
 65). John Wiley and Sons.
- Litasov, K.D., Shatskiy, A., Ohtani, E., and Katsura, T. (2011). Systematic study of hydrogen
- incorporation into Fe-free wadsleyite. Physics and Chemistry of Minerals, 38, 75–84.
- Liu, Z., Fei, H., Chen, L., McCammon, C., Wang, L., Liu, R., Wang, F., Liu, B., and Katsura, T.
- 346 (2021). Bridgmanite is nearly dry at the top of the lower mantle. Earth and Planetary
 347 Science Letters, 570, 117088.
- Panero, W.R., Thomas, C., Myhill, R., Pigott, J.S., Raepsaet, C., and Bureau, H. (2020).
- 349 Dehydration melting below the undersaturated transition zone. Geochemistry, Geophysics,
 350 Geosystems, 21(2).
- Paterson, M.S. (1982). The determination of hydroxyl by infrared absorption in quartz, silicate
 glass and similar materials. Bulletin de Minéralogie, 105, 20–29.
- 353 Pearson, D.G., Brenker, F.E., Nestola, F., McNeil, J., Nasdala, L., Hutchison, M.T., Matveev, S.,
- Mather, M., Silversmit, G., Schmitz, S., Vekemans, B., and Vincze, L. (2014). Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature, 507, 221–224.
- Pigott, J.S., Wright, K., Gale, J.D., and Panero, W.R. (2015). Calculation of the energetics of
 water incorporation in majorite garnet. American Mineralogist, 100(5-6), 1065–1075.
- 359 Purevjav, N., Okuchi, T., Tomioka, N., Abe, J., and Harjo, S. (2014) Hydrogen site analysis of
- 360 hydrous ringwoodite in mantle transition zone by pulsed neutron diffraction. Geophysical
- 361 Research Letters, 41, 6718–6724.

- 362 Purevjav, N., Okuchi, T., Tomioka, N., Wang, X., and Hoffmann, C. (2016) Quantitative
- analysis of hydrogen sites and occupancy in deep mantle hydrous wadsleyite using single
 crystal neutron diffraction. Scientific Reports, 6.
- 365 Purevjav, N., Tomioka. N., Yamashita, S., Shinoda, K., Kobayashi, S., Shimizu, K., Ito, M., Fu,
- S., Gu, J., Hoffmann, C., Lin, J.F., and Okuchi, T. (2023) Hydrogen incorporation mechanism in the lower-mantle bridgmanite. American Mineralogist, doi:
- 368 https://doi.org/10.2138/am-2022-8680 (in press).
- Revenaugh, J., and Sipkin., S.A. (1994) Seismic evidence for silicate melt atop the 410-km
 mantle discontinuity. Nature, 369, 474–476
- Ringwood, A.E. (1991). Phase transformations and their bearing on the constitution and
 dynamics of the mantle. Geochimica et Cosmochimica Acta, 55, 2083–2110.
- Schmandt, B., Jacobsen, S. D., Becker, T. W., Liu, Z., and Dueker, K. G. (2014). Dehydration
 melting at the top of the lower mantle. Science, 344, 1265–1268.
- 375 Smyth, J.R., Frost, D.J., Nestola, F., Holl, C.M., and Bromiley, G. (2006). Olivine hydration in
- the deep upper mantle: effects of temperature and silica activity. Geophysical Research
 Letters, 33(15), 311–324.
- 378 Stixrude, L., and Lithgow-Bertelloni, C. (2007). Influence of phase transformations on lateral
- heterogeneity and dynamics in Earth's mantle. Earth and Planetary Science Letters, 263, 45–
 55.
- Tan, E., Gurnis, M., and Han, L. (2002). Slabs in the lower mantle and their modulation of plume
 formation. Geochemistry Geophysics Geosystems, 3, 1067.

- 383 Thomas, S., Wilson, K., Koch-Müller, M., Hauri, E.H., McCammon, C., Jacobsen, S.D., Lazarz,
- J., Rhede, D., Ren, M., Blair, N., and Lenz, S. (2015). Quantification of water in majoritic
- 385 garnet. American Mineralogist, 100(5-6), 1084–1092.
- 386 Withers, A. C., and Hirschmann, M. M. (2008). Influence of temperature, composition, silica
- 387 activity, and oxygen fugacity on the H₂O storage capacity of olivine at 8 GPa. Contributions
- to Mineralogy and Petrology, 156, 595–605.
- 389 Withers, A.C., Wood, B.J., and Carroll, M.R. (1998). The OH content of pyrope at high pressure.
- 390 Chemical Geology, 147(1), 161–171.
- 391 Vinnik, L., and Farra, V. (2007). Low S velocity atop the 410-km discontinuity and mantle
- 392 plumes. Earth and Planetary Science Letters, 2007, 262(3-4), 398–412.
- Zhu, F., Li, J., Liu, J., Dong, J., and Liu, Z. (2019). Metallic iron limits silicate hydration in
- Earth's transition zone. Proceedings of the National Academy of Sciences of the United
- 395 States of America, 116(45), 22526–22530.

Table 1. Nominal compositions of starting materials A, B, C, and D.

398

	A	В	С	D
SiO ₂ (wt.%)	51.89	54.58	42.96	48.08
Al ₂ O ₃ (wt.%)	12.17	7.01	5.52	6.17
FeO (wt.%)	2.94	2.97	3.98	3.54
MgO (wt.%)	23.67	19.07	25.57	22.71
CaO (wt.%)	9.33	16.37	21.95	19.49
H ₂ O (wt.%)	11.94	12.11	12.09	12.17

399

- 401 **Table 2.** A list of run conditions, phases in the recovered capsules, and water contents in
- 402 majorite based on various infrared calibrations. Mj: majorite, St: stishovite, Dm: davemaoite
- 403 (CaSiO₃ perovskite), hy-PhB: superhydrous phase B, PhD: phase D, Mgs: magnesite.

Run	Starting	T (K)	Duration	Phases present	7 (um)	${}^{a}C_{H_{2}O}$	${}^{b}C_{H_{2}O}$	${}^{c}\mathcal{C}_{H_{2}O}$
No.	material	I (K)	(h)	riases present	τ (μm)	(wt. ppm)	(wt. ppm)	(wt. ppm)
H5450	В	1670	24	Mj, St, Dm, melt	82	2591 (277)	2318 (248)	910 (92)
H5450	С	1670	24	Mj, hy-PhB, Mgs _, PhD, melt	82	2913 (453)	2606 (405)	999 (122)
H5405	В	1870	24	Mj, St, melt	75	1423 (30)	1272 (27)	492 (16)
H5423	C	1870	20	Mj, Dm, melt	70	930 (157)	832 (140)	322 (64)
H5423	D	1870	20	Mj, Dm, melt	70	812 (168)	727 (151)	275 (57)
H5416	А	2070	20	Mj, St, melt	104	871 (64)	779 (57)	314 (17)
H5416	В	2070	20	Mj, St, melt	104	894 (90)	800 (81)	322 (32)
H5419	А	2270	4	Mj, St, melt	69	412 (74)	368 (66)	149 (27)
H5419	В	2270	4	Mj, melt	70	636 (289)	569 (259)	248 (136)

404 C_{H_2O} : the H₂O content in majorite

405 *a*: Based on Thomas et al. (2015) calibration.

406 *b*: Based on Bell et al. (1995) calibration.

407 *c*: Based on Paterson (1982) calibration.

409	Table 3. Chemical	composition of the recover	red majorite analyzed by EPMA.
4 07		composition of the recover	

4	10												
	Run No.	N	Al ₂ O ₃ (wt.%)	SiO ₂ (wt.%)	MgO (wt.%)	CaO (wt.%)	FeO (wt.%)	Total (wt.%)	Al (atomic)	Si (atomic)	Mg (atomic)	Ca (atomic)	Fe (atomic)
	H5450B	19	16.25 (0.3)	46.26 (0.2)	26.10 (0.29)	7.68 (0.32)	2.86 (0.11)	99.15 (0.38)	1.35 (0.02)	3.25 (0.01)	2.73 (0.02)	0.58 (0.03)	0.17 (0.01)
	H5450C	21	15.88 (0.36)	46.10 (0.20)	25.41 (0.32)	8.40 (0.38)	3.71 (0.26)	99.49 (0.33)	1.32 (0.03)	3.25 (0.01)	2.67 (0.03)	0.63 (0.03)	0.22 (0.02)
	H5405B	12	15.81 (0.29)	46.53 (0.26)	21.50 (0.45)	12.96 (0.27)	2.20 (0.05)	99.01 (0.41)	1.32 (0.02)	3.31 (0.02)	2.28 (0.04)	0.99 (0.02)	0.13 (0.00)
	H5423C	19	9.75 (0.48)	50.12 (0.31)	26.25 (0.27)	10.47 (0.21)	3.06 (0.10)	99.65 (0.33)	0.81 (0.04)	3.53 (0.02)	2.75 (0.03)	0.79 (0.02)	0.18 (0.01)
	H5423D	16	10.86 (0.50)	48.26 (0.40)	24.39 (0.41)	11.97 (0.35)	3 .90 (0.14)	99.37 (0.24)	0.92 (0.04)	3.44 (0.02)	2.59 (0.04)	0.91 (0.03)	0.23 (0.01)
	H5416A	10	17.54 (0.35)	46.38 (0.36)	26.96 (0.27)	6.34 (0.2)	2.48 (0.12)	99.70 (0.39)	1.44 (0.03)	3.22 (0.02)	2.79 (0.02)	0.47 (0.02)	0.14 (0.01)
	H5416B	13	15.47 (0.90)	46.50 (0.37)	22.15 (0.38)	12.49 (0.53)	2.48 (0.18)	99.09 (0.39)	1.30 (0.07)	3.31 (0.03)	2.35 (0.04)	0.95 (0.04)	0.15 (0.01)
	H5419A	16	20.51 (0.41)	44.72 (0.18)	26.78 (0.15)	4.77 (0.20)	1.94 (0.10)	98.70 (0.33)	1.68 (0.03)	3.11 (0.01)	2.78 (0.02)	0.36 (0.02)	0.11 (0.01)
	H5419B	15	11.06 (0.72)	49.21 (0.36)	26.39 (0.40)	10.47 (0.57)	1.92 (0.10)	99.06 (0.25)	0.92 (0.06)	3.47 (0.03)	2.77 (0.03)	0.79 (0.05)	0.11 (0.01)

411 The data in parentheses are one standard deviation of the N analyzed points for each sample. The FeO content in

412 wt.% is obtained by assuming all iron to be ferrous.

413

414 I able 4. Chemical composition of the ment analyzed by LF MF	414	Table 4. Chemical composition of the melt analyzed by EPMA.
--	-----	---

Run No.	N	Al ₂ O ₃ (wt. %)	SiO ₂ (wt. %)	MgO (wt. %)	CaO (wt. %)	FeO (wt. %)	Total (wt. %)
H5450B	8	1.9(0.3)	17.9(2.8)	16.9(1.7)	4.5(0.6)	26.1(2.4)	67.2(1.4)
H5450C	14	1.9(0.5)	13.4(1.6)	20.0(2.7)	5.0(0.7)	24.5(2.3)	64.7(1.3)
H5405B	17	2.4(1.0)	31.7(2.2)	18.5(2.2)	3.9(0.3)	21.7(2.0)	78.1(2.5)
H5423C	10	0.8(0.1)	28.8(1.3)	20.4(1.9)	3.4(0.5)	26.3(1.9)	79.7(1.5)
H5423D	11	0.8(0.1)	20.4(1.3)	24.2(1.7)	3.6(0.2)	25.8(1.6)	74.8(1.3)
H5416A	10	1.9(0.2)	21.1(2.0)	17.6(2.4)	4.7(0.2)	23.9(1.7)	69.2(2.1)
H5416B	10	2.2(0.4)	30.2(1.5)	21.0(1.7)	3.8(0.2)	19.2(0.8)	76.4(1.2)
H5419A	8	4.2(0.3)	28.4(0.9)	13.7(0.5)	3.9(0.3)	20.2(0.5)	70.5(1.8)
H5419B	15	1.3(0.1)	35.0(1.1)	18.3(1.5)	2.7(0.1)	30.6(1.2)	87.8(0.7)

416 The data in parentheses are one standard deviation of the N analyzed points for each sample. The FeO content in

417 wt.% is obtained by assuming all iron to be ferrous.

418

415

- 420 Figure 1. (a) Micro-focused XRD pattern taken on the recovered sample H5405B. (b) BSE
- 421 image of the sample H5405B. Majorite, stishovite, and quenched melt coexist in the sample
- 422 capsule. Mj: majorite. St: stishovite.

423

424

425

- 427 **Figure 2.** (a) The relationships of Si (blue symbols) and Mg+Fe+Ca (red symbols) to Al atomic
- 428 contents in majorite. (b) The temperature dependences of Si, Mg, Fe, Ca and Al contents in
- 429 majorite synthesized from the same starting material.

430

431 432

- 434 **Figure 3.** FTIR spectra of the samples after baseline subtraction and thickness normalization to 1
- 435 cm. The peaks at \sim 3615 cm⁻¹ and \sim 3430 cm⁻¹, and fitting curves are obtained by leastsquares 436 fitting of the FTIR spectra, and represent the infrared absorption bands of majorite,
- 437 noncrystalline OH, and their summation, respectively.

- 439 **Figure 4.** Temperature dependence of H₂O contents in majorite in the recovered samples and
- 440 comparison with previous studies. The data points from this study are based on the Thomas et al.
- 441 (2015) FTIR calibration.

442

- 444 **Figure 5.** Compositional dependence of H₂O content in majorite. (A) Al content dependence. (B)
- 445 Si content dependence.

446

