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Abstract	10 
Heat	 capacity	 data	 are	 unavailable	 or	 incomplete	 for	 many	 minerals	 at	 geologically	 relevant	11 

temperatures.		Despite	the	availability	of	entropy	and	enthalpy	values	in	numerous	thermodynamic	12 

tables	(even	sometimes	at	elevated	temperatures),	there	remains		need	forextrapolation	beyond	or	13 

interpolation	between	temperatures.		This	approach	inevitably	results	in	estimates	for	entropy	and	14 

enthalpy	 values	 because	 the	 heat	 capacity	 coefficients	 required	 for	 optimal	 thermodynamic	15 

treatment	 are	 less	 frequently	 available.	 	 Here	 we	 propose	 	 a	 simple	 method	 for	 obtaining	 heat	16 

capacity	coefficients	of	minerals.		This	method	requires	only	the	empirically	measured	temperature-17 

specific	heat	capacity	for	calculation	via	a	matrix	algorithm.		The	system	of	equations	solver	is	written	18 

in	 the	 Python	 computing	 language	 and	 has	 been	 made	 accessible	 in	 an	 online	 repository.		19 

Thermodynamically,	the	solution	to	a	system	of	equations	represents	the	heat	capacity	coefficients	20 

that	satisfy	the	mineral-specific	polynomial.		Direct	coefficient	calculation	will	result	in	more	robust	21 

thermodynamic	data	which	is	not	subject	to	fitting	uncertainties.		Using	hematite	as	an	example,	this	22 

method	provides	results	which	are	comparable	to	conventional	means	and	is	applicable	to	any	solid	23 

material.		Coefficients	vary	within	the	traditional	large	950	K	temperature	interval,	indicating	that	24 

best	 results	 should	 instead	utilize	a	smaller	400	K	 temperature	 interval.	 	Examples	of	 large-scale	25 



implications	include	refinement	of	geothermal	gradient	estimation	in	rapidly	subsiding	sedimentary	26 

basins,	or	metamorphic	or	hydrothermal	evolution.	27 

Keywords:	Gaussian	elimination,	heat	capacity,	hematite,	system	of	equations	28 

Introduction	29 
Earth	 systems	 are	 rarely,	 if	 ever,	 truly	 at	 standard	 temperature	 and	pressure,	 the	30 

effect	 of	 these	 parameters	 must	 be	 considered	 for	 robust	 thermodynamic	 treatment.		31 

Regarding	 systems	at	non-standard	 temperatures,	mineralogists	 and	petrologists	 employ	32 

(directly	or	indirectly)	the	heat	capacity	(CP)	for	the	selected	material(s)	for	purposes	such	33 

as	studying	the	effects	of	temperature	and	pressure	for	basin	modeling	or	maturity	modeling	34 

(Waples	 and	Waples,	 2004).	 	 However,	 despite	 the	wide	 availability	 of	CP	data	 for	many	35 

minerals,	in	most	cases,	the	numbers	are	often	applicable	to	narrow	temperature	ranges.		In	36 

other	cases,	the	entropy	(ΔS)	and	enthalpy	(ΔH)	must	either	be	extrapolated	or	interpolated	37 

to	the	desired	temperature	(Robie	and	Hemingway,	1995),	or	the	final	free	energy	(ΔGf)	is	38 

obtained	via	 linear	 regression	 (Toulmin	and	Barton,	1964).	Considering	 that	CP	 follows	a	39 

polynomial	trend	for	temperature,	it	is	expected	that	linear	regressions	of	free	energy	may	40 

introduce	uncertainty	(although	linear	behavior	may	provide	reasonable	estimates	for	free	41 

energy	using	small	ΔT	intervals).		One	limitation	within	the	present	heat	capacity	literature	42 

may	be	 found	 for	 the	mineral	 hematite	 in	Hemingway	 (1990),	where	 there	 is	 a	 function	43 

discontinuity	 occurring	 at	 950	 K;	 between	 the	 lower	 (T<950	 K)	 and	 upper	 (T>950	 K)	44 

temperature	 domains.	 	 The	 heat	 capacity	 of	 a	 solid	 is	 typically	 continuous	 except	 for	45 

occasional	 discontinuities	 and	 has	 been	 attributed	 to	 crystallographic/phase	 transitions	46 

(e.g.,	 Guyot	 et	 al.,	 1993).	 	Heat	 capacity	 function	 discontinuities	will	 be	 translated	 to	 the	47 

calculated	or	regressed	polynomial	coefficients.		Ideally,	the	characteristic	mineral	specific	48 



CP	coefficients	have	been	determined	and	published,	allowing	for	exact	calculation	of	entropy	49 

and	enthalpy	at	a	given	temperature.		Unfortunately,	these	coefficients	are	often	unavailable	50 

throughout	 the	 literature,	 one	 notable	 exception	 being	 the	 compilation	 in	 Robie	 and	51 

Hemingway	(1995).		52 

Fundamentally,	the	heat	capacity	of	a	material	is	effectively	the	input	energy	required	53 

to	raise	the	thermal	energy	of	that	same	material.		The	heat	capacity	is	vital	to	mineralogical,	54 

petrological,	and	geochemical	research.		It	is	quantified	for	a	selected	material	using	various	55 

calorimetric	 techniques	 and	 when	 plotted	 against	 temperature,	 takes	 the	 form	 of	 a	56 

polynomial	(e.g.,	Klemme	and	van	Miltenburg,	2003;	Benisek	et	al.,	2012).		The	CP	polynomial	57 

order	and	the	number	of	coefficients	varies	throughout	the	literature.		For	example,	the	form	58 

in	Xiong	et	al.	(2016)	contains	seven	coefficients	and	is	a	third-order	polynomial,	while	the	59 

Shomate	equation	(e.g.,	NIST)	has	five	coefficients	and	is	also	a	third-order	polynomial,	while	60 

the	progenitor,	the	Maier-Kelley	form	contains	only	three	coefficients	and	is	a	second	order	61 

polynomial	(Maier	and	Kelley,	1932).		The	form	commonly	found	associated	with	geological	62 

solids	 or	 minerals	 is	 the	 second	 order	 polynomial	 with	 five	 coefficients	 as	 given	 by	63 

Hemingway	 et	 al.	 (1978).	 	 Finally,	 the	 CP	 polynomial	 formula	 is	 often	 determined	 by	64 

regression	of	existing	data	to	fit	aspecific	polynomial	form	(Hemingway,	1990;	Waples	and	65 

Waples,	2004).		The	primary	goal	of	this	study	is	to	evaluate	the	polynomial	through	direct	66 

means.	This	approach	allows	 for	smaller	ΔT	 to	be	utilized	and	eliminates	any	 introduced	67 

fitting	bias	 (e.g.,	 overfitting)	 (Gamsjäger	and	Wiessner,	2018).	 	Therefore,	employing	 this	68 

direct	coefficient	calculation	technique	relies	solely	upon	the	empirical	CP,	ensuring	that	the	69 

polynomial	retains	fidelity.		In	other	words,	as	the	direct	calculation	is	axiomatically	correct,	70 

the	values	obtained	from	the	equation	proposed	in	this	contribution	will	remove	much	of	the	71 



errors	associated	with	measurements	from	interpolated	and	extrapolated	values	available	72 

in	 the	 literature	 so	 far.	 	 Finally,	 this	 method	 can	 be	 used	 to	 directly	 calculate	 thermal	73 

diffusivity,	 a	 crucial	 physical	 parameter	 of	 geological	 systems	 that	 reflects	 the	 ability	 to	74 

conduct	 thermal	 energy	 relative	 to	 its	 ability	 to	 store	 the	 energy	 (Fuchs	 et	 al.,	 2021).	75 

Applications	of	accurate	heat	capacity	measurement	are	in	the	fields	of	geothermal	gradient	76 

determination	in	active	basins,	basin	modelling	and	studying	geodynamic	transformations	77 

in	tectonically	active	regions.		78 

Methodology	79 

Theoretical	Background	80 
Here,	we	offer	a	simple	method	for	the	determination	of	the	characteristic	coefficients	81 

requiring	only	a	suite	of	five	CP	values	at	their	corresponding	temperatures.		For	solids,	the	82 

relationship	between	heat	capacity	and	temperature	is	non-linear	(e.g.,	Robie	et	al.,	1978;	83 

Klemme	and	van	Miltenburg,	2003;	Benisek	et	al.,	2012;	Xiong	et	al.,	2016;	Ulian	et	al.,	2020;	84 

Vassiliev	and	Taldrik,	2021),	 implying	 that	 linear	determination	of	ΔGf	 is	 likely	 to	 induce	85 

uncertainty	of	over(under)estimation	compared	to	a	polynomial	fit.		For	a	CP	equation	with	86 

five	coefficients,	there	are	five	vectors-each	at	five	unique	temperatures	with	accompanying	87 

scalars.		Note	that	the	scalars	are	equal	to	the	coefficients	(which	of	course	are	the	same	for	88 

all	 vectors	 (i.e.,	 all	 temperatures)).	 	 The	 intersection	of	 the	 vectors	 is	 the	 solution	 to	 the	89 

system	of	equations,	where	there	are	an	equal	number	of	scalar	coefficients	which	satisfy	all	90 

CP	 equations	at	each	 temperature	simultaneously.	 	Once	 the	scalar	coefficients	have	been	91 

evaluated,	ΔS,	ΔH,	and	ultimately	ΔGf	at	a	selected	temperature	may	be	determined.	92 

For	a	CP	polynomial	with	n	equations	and	n	coefficients,	there	is	a	square	n*n	matrix,	93 

written	in	the	general	form	Ax=b,	or	94 
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This	method	may	be	employed	for	any	solid	substance	in	which	existing	CP	data	is	known	at	96 

a	 corresponding	 temperature.	 	 As	 an	 illustrative	 example	 calculation,	 let	 us	 consider	 an	97 

example	for	hematite	using	CP	polynomial	found	in	Hemingway	(1990),	where	98 

𝐶# = 𝐴 − 𝐵𝑇 + 𝐶𝑇$ −𝐷𝑇%&.( + 𝐸𝑇%$.																																																																																																																																	𝐸𝑄. 2	99 

This	form	has	five	coefficients	and	is	a	second-order	polynomial.		Now,	for	an	n	x	n	matrix,	100 

there	are	five	reported	CP	at	five	temperatures	requiring	five	equations.		Combining	the	CP	101 

polynomial	with	EQ.1,	Ax=b	becomes	(approximately)	102 

⎣
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⎢
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⎡
1 400 1.6𝐸 + 5 0.050 8.25𝐸 − 6
1 500 2.5𝐸 + 5 0.045 4.00𝐸 − 6
1 600 3.6𝐸 + 5 0.041 2.78𝐸 − 6
1 700 4.9𝐸 + 5 0.038 2.04𝐸 − 6
1 800 6.4𝐸 + 5 0.035 1.56𝐸 − 6⎦
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Note	that	b	to	the	right	of	 the	equals	sign	 in	EQ.3	contains	the	temperature-specific	CP	 in	104 

Hemingway	 (1990	 from	 400	 to	 800	 K.	 	 The	 coefficients	 are	 obtained	 through	 Gaussian	105 

elimination	 and	by	 taking	 the	 augmented	matrix	 to	 reduced	 row	echelon	 form	 (rref)	 via	106 

elementary	row	operations.		Rewriting,	we	find	the	augmented	matrix	becomes	A|b	107 
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1 500 2.5𝐸 + 5 0.045 4.00𝐸 − 6
1 600 3.6𝐸 + 5 0.041 2.78𝐸 − 6
1 700 4.9𝐸 + 5 0.038 2.04𝐸 − 6
1 800 6.4𝐸 + 5 0.035 1.56𝐸 − 6
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The	five	coefficients,	after	the	xn	scalar	matrix	transpose	and	substitution	become	109 
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where	A	 =	 x1	 and	 E	 =	 x5.	 	 Upon	 coefficient	 back-substitution	 into	 the	CP	 polynomial,	 the	111 

empirical	CP	is	returned	at	each	temperature	sub-equation.		One	limitation	of	this	approach	112 



is	that	it	requires	a	square	n	x	n	matrix,	and	thus,	the	number	of	temperature	sub-equations	113 

are	limited	to	the	number	of	coefficients	in	the	polynomial.		If	there	are	more	temperatures	114 

(rows)	than	coefficients	(columns),	then	A	cannot	be	taken	to	rref,	and	the	system	does	not	115 

have	a	solution.		It	is	worth	noting,	that	the	accuracy	and	uncertainty	of	this	method	it	is	of	116 

course	limited	to	the	quality	of	the	reported	CP	input	data.	117 

Software	Implementation	118 
Manually	solving	a	system	of	equations	by	rref	is	a	lengthy	process-particularly	for	119 

non-integer	numbers.	 	To	 this	end,	 it	 is	advantageous	 to	employ	a	calculator	(e.g.,	online,	120 

computer	 code,	 etc.).	 	 We	 have	 developed	 CP	 Coefficent	 Calculator	 (C3)	 to	 calculate	 the	121 

coefficients	 using	 the	 rref	 method	 above.	 	 Modifying	 Python3	 code	 found	 in	 Kong	 et	 al.	122 

(2020),	C3	is	offered	under	the	MIT	license,	and	is	available	(along	with	a	README	manual)	123 

at	https://github.com/WVUStableIsotopeLab/CodeswithPython.	124 

Results	and	Discussion	125 
As	an	example,	hematite	CP	coefficients	obtained	from	rref	calculation	are	provided	126 

in	Table	1	(subinterval	#2)	and	are	presented	in	Figure	1.		These	data	are	computed	across	127 

two	major	temperature	domains	(298.15	to	950	K,	and	950	to	1800	K)	(Hemingway,	1990).		128 

Given	the	sensitivity	of	the	coefficients,	the	rref	direct-calculated	results	compare	favorably	129 

to	 the	 hematite	 values	 reported	 by	 Robie	 and	 Hemingway	 (1995).	 	 For	 the	 upper-130 

temperature	interval	(950	K	to	1800	K)	our	proposed	method	yields	an	additional	coefficient	131 

that	 is	 not	 available,	 as	 noted	 in	 the	 existing	 literature.	 	 Robie	 and	 Hemingway	 (1995)	132 

provide	a	line	of	best-fit	regression	coefficients	over	the	range	of	298	K	to	1800	K	for	A,	B,	133 

and	 C	 of	 -808.9,	 0.2466,	 and	 -8.423E-5,	 respectively.	 	 This	 is	 	 compared	 to	 the	 direct	134 

calculation	method	presented	here,	where	five	coefficients	are	calculated	over	a	much	more	135 



condensed	temperature	range	from	400	K	to	800	K,	in	100	K	increments.		We	believe	that	136 

our	 approach	 is	 likely	 to	 be	 more	 accurate	 as	 the	 temperature	 interval	 is	 significantly	137 

reduced	and	does	not	cross	any	phase	transition	(e.g.,	950	K	in	Figure	2).		In	addition,	because	138 

the	 relationship	 between	 temperature	 and	Cp	 is	 non-linear,	 the	 curve-fitting	 approach	 is	139 

particularly	susceptible	to	extrapolation	since	the	rate	of	change	is	not	constant	(i.e.,	d2y/dx2	140 

≠0).	 	 Regarding	 interpolation,	 empirical	Cp(T)	 data	 used	 in	 both	 curve-fitting	 and	 direct	141 

calculation	may	be	improved	by	reducing	the	temperature	interval	between	interpolations.		142 

These	 temperature	 intervals	 are	 often	 given	 in	 100	 K	 increments	 (e.g.,	 Robie	 and	143 

Hemingway,	 1995).	 	 It	 is	 worth	 mentioning	 that	 the	 direct	 calculation	 method	 is	 an	144 

interpolative	 approach	 and,	 thus,	 is	 subject	 to	 the	 quality	 of	 the	 CP(T)	 data	 and	 the	145 

temperature	increments.		If,	for	example,	the	temperature	increment	was	decreased	to	50	K,	146 

the	resulting	CP(T)	would	likely	lead	to	even	more	accurate	coefficients.	In	this	scenario,	five	147 

coefficients	could	still	be	determined	but	over	a	tighter	temperature	interval	(400	K,	450	K,	148 

500	K,	550	K,	and	600	K).	149 

	 One	 of	 the	most	 striking	 observations	 of	 the	 tabulated	 data	 is	 that	 it	may	display	150 

discontinuous	behavior	when	plotted	graphically,	particularly	at	the	interface	between	the	151 

low	and	high-temperature	domain	intervals	(~950	K)	(Figure	2).		Moreover,	note	the	change	152 

in	the	concavity	between	the	low	and	high-temperature	domain	intervals.	 	The	highest	CP	153 

value	 across	 the	 entire	 temperature	 range	 is	 at	 950	 K,	 and	 the	 significant	 trough	 about	154 

~1300	K.		This	observation	along	with	the	discontinuity	at	950	K	indicate	that	the	resulting	155 

coefficients	will	be	subsequently	affected.	 	Indeed,	when	temperature	intervals	of	~400	K	156 

are	utilized,	the	coefficients	are	not	static	but	drift	(Table	1).	 	It	is	apparent	that	the	most	157 

accurate	coefficients	are	 those	which	minimize	temperature	drift	obtained	by	performing	158 



the	rref	calculation	over	a	small	ΔT	interval.		Since	entropy	and	enthalpy	are	produced	from	159 

integrating	 CPo/T	 and	 CP	 (where	 CP	 is	 the	 selected	 polynomial	 with	 commensurate	160 

coefficients)	over	a	range	starting	at	298.15	K,	it	is	reasonable	to	use,	say,	for	a	temperature	161 

of	780	K	to	use	coefficients	that	pertain	to	a	subinterval	(i.e.,	subintervals	#2	or	#3	in	Figure	162 

2	and	Table	1)	instead	of	conventional	coefficients	for	the	entire	298.15	to	950	K	domain.		163 

For	the	temperature	intervals	<950	K,	the	behavior	is	relatively	linear	(subintervals	#1	to	#4	164 

in	Figure	2).		In	comparison,	the	temperature	intervals	>950	K	are	parabolic	about	the	local	165 

minimum	at	~1300	K.		This	behavior	is	translated	to	the	CP	values	as	well	(subinterval	#6	in	166 

Figure	2	and	Table	1).	167 

Implications	168 
The	heat	capacity	is	a	fundamental	aspect	not	only	limited	to	minerals	but	also	liquids,	169 

gases,	and	dissolved	species.	 	 It	underlies	 thermodynamics	as	 it	 is	necessary	 for	entropy,	170 

enthalpy,	and,	ultimately,	free	energy	calculations.		The	direct	calculation	method	provided	171 

above	requires	only	empirical	CP	for	data	input,	thus	avoiding	curve-fitting	uncertainties	or	172 

human-induced	bias.		Therefore	the	utility	of	this	method	is,	vast	and	has	direct	application	173 

to	fluid-rock	interactions.	,	Specific		examples	including	slab-subduction	(i.e.,	Peacock,	1987),	174 

hydrothermal	 or	 geothermal	 systems,	 and	 equilibrium	 speciation	 modeling.	 	 While	 the	175 

mineral	 hematite	 was	 used	 as	 an	 illustrative	 example,	 this	 method	 has	 been	 applied	 to	176 

diamond	due	to	its	use	in	high-temperature	mantle	research	(e.g.,	Stachel	et	al.,	2022)	and	to	177 

quartz	 because	 of	 its	 ubiquity.	 	 In	 addition,	 we	 have	 applied	 this	 method	 to	 mineral	178 

assemblages	 used	 in	 geothermometry,	 including	 galena-pyrite-sphalerite	 (Smith	 et	 al.,	179 

1977),	biotite-garnet	(as	pyrope	and	almandine)	(Ferry	and	Spear,	1978),	and	muscovite-180 

biotite	(e.g.,	Hoisch,	1989).	 	The	Cp	coefficients	for	almandine,	diamond,	muscovite,	pyrite,	181 



pyrope,	quartz,	and	sphalerite	have	been	calculated	over	at	least	two	temperature	domains	182 

and	are	compared	against	tabulated	values.		These	results	are	provided	as	Supplementary	183 

Information.		The	method	given	above,	however,	can	still	be	improved.		Future	work	could	184 

examine	coefficient	behavior	by	dividing	temperature	domains	into	smaller	ΔT	subsections.		185 

Generation	of	CP	coefficients	from	rref	direct	calculation	for	smaller	temperature	intervals	is	186 

expected	to	be	more	accurate	than	using	coefficients	under	the	conventional	‘two-domain’	187 

approach-especially	for	temperature	~900	to	1300	K	(Interval	#6	in	Table	2	and	Figure	2).		188 

Finally,	developing	an	understanding	of	the	interesting	local	minimum	at	~1300	K	would	189 

almost	certainly	prove	fruitful.	190 
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Figure	and	Table	Captions	253 

Figure	1:	Hematite	CP	coefficients	across	the	two	major	temperature	domains	as	found	in	254 
Hemingway	(1990).		The	low	temperature	domain	represents	the	coefficients	for	T<950	K,	255 
while	 the	high	 temperature	domain	represents	 the	coefficients	 for	T>950	K.	 	Coefficients	256 
calculated	through	rref	methodology	(400	to	800	K	(for	T<950	K)	and	1000	to	1400	K	(for	257 
T>950	K)	correspond	to	subintervals	#2	and	#6	in	Table	1	respectively)	are	compared	to	258 
those	reported	in	Robie	and	Hemingway	(1995).		A)	Coefficients	A,B,C,	and	D.		B)		Coefficient	259 
E.	260 

Figure	 2:	 Hematite	 heat	 capacity	 values	 as	 reported	 in	 Hemingway	 (1990)	 with	261 
corresponding	 temperature	 intervals	 (as	 given	 in	 Table	 1).	 	 The	 numbered	 temperature	262 
subintervals	are	those	which	were	used	to	evaluate	the	polynomial	coefficients	reported	in	263 
Table	1	at	each	interval.		Red	dots	and	blue	triangles	are	the	respective	<950	K	and	>950	K	264 
of	the	major	‘two-domain’	temperature	intervals.		Black	line	indicates	function	discontinuity	265 
at	950	K.	266 

Table	1:		Heat	capacity	coefficients	for	hematite	calculated	at	ΔT	of	~400	K	using	rref	and	267 
CP(T)	found	in	Hemingway	(1990).	268 

Tables	269 

Table	1	270 

T	Interval	
(K-K)	

Fig.	2	
Interval	

#	

	Hematite	Heat	Capacity	Coefficients	
A	 B	 C	 D	 E	

298.15-
700	

1	 841.57	 -0.65736	 3.3946E-04	 -1.0901E+04	 5.2795E+06	

400-800	 2	 994.40	 -0.78862	 3.9574E-04	 -1.3361E+04	 7.4669E+06	
500-900	 3	 1.1801E+03	 -0.92370	 4.4462E-04	 -1.6606E+04	 1.1139E+07	
600-950	 4	 1.3253E+03	 -1.0102	 4.7053E-04	 -1.9417E+04	 1.5526E+07	
	
950-
1300	

5	 -402.36	 -9.0874E-03	 5.7717E-05	 1.7680E+04	 -5.6871E+07	

1000-
1400	

6	 -1283.6	 0.34356	 -1.3459E-05	 3.8537E+04	 -1.1664E+08	



1100-
1500	

7	 -579.09	 -0.10303	 2.8004E-05	 2.0480E+04	 -5.0923E+07	

1200-
1600	

8	 -448.63	 5.9654E-02	 3.5304E-05	 1.7089E+04	 3.7975E+07	

1300-
1700	

9	 2.9410E+03	 -0.92811	 1.8031E-04	 -7.6875E+04	 3.9375E+08	

1400-
1800	

10	 88.544	 -5.8354E-02	 4.6708E-05	 416.67	 6.2500E+07	
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