1	Revision 2						
2	Word Count: 5500						
3	Zhengminghuaite, Cu ₆ Fe ₃ As ₄ S ₁₂ , a new sulfosalt mineral from the Zimudang						
4	Carlin-type gold deposit in southwestern Guizhou, China						
5	Xuexiang Gu ^{1, 2*} , Yongmei Zhang ^{1, 2} , Guang Fan ³ , Ting Ll ³ , Shuyi Dong ⁴ , Yiwei						
6	PENG ⁴ , YINGSHUAI ZHANG ² , LING LI ² , AND ZHANLIN GE ⁵						
7	¹ State Key Laboratory of Geological Processes and Mineral Resources, China						
8	University of Geosciences, Beijing 100083, China						
9	² School of Earth Sciences and Resources, China University of Geosciences, Beijing						
10	100083, China						
11	³ Beijing Research Institute of Uranium Geology, Beijing 100029, China						
12	⁴ College of Earth Sciences, Chengdu University of Technology, Chengdu 610059,						
13	China						
14	⁵ Xi'an Center of Mineral Resources Survey, China Geological Survey, Xi'an 710100,						
15	China						
16	*E-mail: xuexiang_gu@163.com						
17	Abstract						
18	Zhengminghuaite, ideally Cu ₆ Fe ₃ As ₄ S ₁₂ , is a new Cu-Fe arsenosulfosalt found in						
19	the Zimudang Carlin-type gold deposit in southwestern Guizhou, China. It occurs as						
20	irregular, commonly fractured grains of several to a few tens μm in the brecciated						

21	gold ores and is paragenetically associated with the late ore-stage mineral assemblage					
22	including realgar, orpiment, pyrite, chalcopyrite, arsenopyrite, aktashite, christite,					
23	quartz, and calcite. Zhengminghuaite is opaque with a metallic lustre and a conchoidal					
24	or uneven fracture. The Vickers microhardness (VHN $_{10}$) is 219 kg/mm ² (range 192-					
25	247 kg/mm ²) and the calculated density is 4.77(5) g/cm ³ . In reflected light,					
26	zhengminghuaite is whitish gray with weak bireflectance (whitish gray to pinkish					
27	tinted gray), very weak anisotropy, and no internal reflection. Electron microprobe					
28	analyses gave the empirical formula					
29	$(Cu_{5.92}Hg_{0.08})_{\Sigma 6.00}(Fe_{1.59}Hg_{1.07}Zn_{0.37})_{\Sigma 3.03}(As_{3.94}Sb_{0.02})_{\Sigma 3.96}S_{11.93} \text{ on the basis of total}$					
30	cations = 13, with the simplified formula $Cu_6(Fe,Hg,Zn)_3(As,Sb)_4S_{12}$.					
31	Zhengminghuaite is trigonal, with space group R3. Unit-cell parameters determined					
32	from the single-crystal X-ray diffraction data are as follows: $a = 13.5373(17)$ Å, $c =$					
33	9.2354(13) Å, and $V = 1465.7(4)$ Å ³ (Z = 3). The eight strongest lines in the X-ray					
34	diffraction pattern are [d (Å) (I, %) (hkl)]: 3.0785 (67) (003), 3.0670 (100) (131),					
35	2.6586 (89) (132), 1.8825 (97) (134), 1.8773 (82) (520), 1.6060 (89) (135), 1.6028					
36	(81) (523), and 1.6012 (83) (261). The crystal structure of zhengminghuaite belongs					
37	to the nowackiite group and can be described as formed by (0001) layers composed of					
38	corner-sharing FeS_4 and CuS_4 tetrahedra that delimit two triangular cavities.					
39	Zhengminghuaite is the Fe-dominant analogue at the divalent cations site of					
40	nowackiite (Cu ₆ Zn ₃ As ₄ S ₁₂) and aktashite (Cu ₆ Hg ₃ As ₄ S ₁₂). Paragenetic relationships					
41	indicate that zhengminghuaite and associated Hg- and Tl-sulfosalts precipitated in					
42	response to the increase in sulfidation state and decrease in temperature of the late-ore					

43 stage hydrothermal fluid.

44 KEY WORDS: zhengminghuaite, nowackiite group, sulfosalt, crystal-structure
45 refinement, Carlin-type gold deposit, Zimudang, Southwest China.

46

INTRODUCTION

47	Sulfosalts are a large family of minerals that have been reported in a wide variety of						
48	hydrothermal gold and other metal deposits, including porphyry Cu-(Mo-Au) deposits						
49	(Sillitoe, 2000; Sinclair, 2007), volcanogenic massive sulfide (VMS) deposits						
50	(Hannington et al., 1997; Franklin et al., 2005; Dubé et al., 2007; Galley et al., 2007),						
51	epithermal gold and Cu-Pb-Zn-(Au-Ag) deposits (Cooke and Simmons, 2000; Taylor,						
52	2007; Zhang et al., 2017; Slater et al., 2019; Altenberger et al., 2022), orogenic lode						
53	gold deposits (Jian et al., 2014), intrusion-related gold deposits (Thompson and						
54	Newberry, 2000; Li et al., 2019), etc. Carlin-type gold deposits often contain Hg-Tl-						
55	As-Sb sulfides (e.g., realgar, orpiment, stibnite, cinnabar, and carlinite) and sulfosalts						
56	(e.g., aktashite $Cu_6Hg_3As_4S_{12}$, christite $HgTlAsS_3$, laffittite $AgHgAsS_3$, galkhaite						
57	(Cs,Tl)(Hg,Cu,Zn,Tl) ₆ (As,Sb) ₄ S ₁₂ , lorandite TlAsS ₂ , weissbergite TlSbS ₂ , and ellisite						
58	Tl ₃ AsS ₃ ; Botinelly et al., 1973; Radtke et al., 1974, 1977; Dickson and Radtke, 1978;						
59	Dickson et al., 1979; Balić-Žunić et al., 1995; Hofstra and Cline, 2000; Maroun et al.,						
60	2017; Vikentyev et al., 2019), consistent with the typically anomalous enrichment of						
61	Hg-Tl-As-Sb in this type of gold deposits. For example, The Vorontsovskoye gold						
62	deposit in Northern Urals, Russia contains 75 sulfosalt minerals including abundant						
63	Hg-Tl-As-Sb sulfosalts (Kasatkin et al., 2022a, b; and references therein).						

64 In this contribution, we describe the new Cu-Fe-sulfosalt mineral zhengminghuaite

that was found at the Zimudang Carlin-type gold deposit in southwestern Guizhou, 65 China. This deposit, with a reserve of over 60t Au at a grade of ~6 g/t, lies in the 66 67 region called the Gold Triangle at the junction of the Yunnan, Guizhou and Guangxi Provinces in southwest China that contains numerous sedimentary rock-hosted, 68 69 disseminated gold deposits similar to those in Nevada, USA. The new mineral is 70 named in honor of Prof. Zheng Minghua (born October 23, 1934), a famous geologist and expert of gold deposits from the College of Earth Sciences, Chengdu University 71 72 Technology, China. Both the name and the new mineral (the proposal IMA 2022-047) 73 were approved by the Commission on New Minerals, Nomenclature and 74 Classification of the International Mineralogical Association (IMA-CNMNC). The 75 holotype specimen is deposited in the collections of the Geological Museum of China, Yangrou Hutong No. 16, Xisi, Beijing 100031, People's Republic of China, with 76 77 registration number 16136.

78

OCCURRENCE

79 Specimens containing zhengminghuaite were collected from the underground tunnel of the Zimudang gold deposit, approximately 220 km southwest of the capital 80 81 city Guiyang of Guizhou Province, southwestern China (105°28'53.4"E, 25°34'33.6"N). A detailed description of geology, geochemistry, and ore genesis of the 82 83 deposit can be found elsewhere (e.g., Peters et al., 2007; Su et al., 2009; Gu et al., 84 2012; Cline et al., 2013; Peng et al., 2014; Liu et al., 2015). The deposit is hosted in Upper Permian and Lower Triassic thin- to medium-bedded, organic-rich, bioclastic 85 86 limestone and marl interbedded with calcareous siltstone and shale. Gold

87	mineralization occurs both as stratabound ore layers and as lens-shaped ore bodies
88	within fault and fracture zones in altered rocks (Fig. 1a). Hydrothermal mineral
89	assemblages of the deposit include an early stage of quartz \pm pyrite, a main ore-stage
90	of auriferous quartz + arsenian pyrite + arsenopyrite + marcasite, and a late ore-stage
91	of quartz + calcite + realgar \pm orpiment \pm native arsenic \pm stibnite \pm cinnabar \pm
92	dolomite. The early stage quartz, occasionally containing anhedral to euhedral, Au-
93	and As-poor pyrite, occurs most commonly as milky white narrow veins/veinlets and
94	is locally fractured and cemented or crosscut by the main-ore and late-ore stage
95	minerals. The main-ore stage assemblage consists of gold-bearing arsenian pyrite,
96	arsenopyrite, and marcasite that are most commonly enclosed in pervasive or patchy
97	jasperoidal quartz and, less commonly, disseminated in quartz veinlets in the ore. The
98	late-ore stage quartz, calcite, realgar, and minor to trace amounts of orpiment,
99	chalcopyrite, pyrite, stibnite, aktashite, christite, native arsenic, and cinnabar
100	commonly fill open spaces created by fracturing and limestone dissolution, either as
101	ore breccia cements or as the veins/veinlets that locally crosscut and/or enclose the
102	early and main ore-stage mineral assemblages (Fig. 1b-d). Paragenetic sequences of
103	the hydrothermal minerals are summarized in Figure 2. The gold ore is considered to
104	have precipitated in an immiscible, gold- and hydrocarbon-bearing, basinal fluid
105	system (Gu et al., 2012, 2013; Peng et al., 2014).

106 Zhengminghuaite was found in fault-controlled gold ores composed of limestone 107 and marl breccias cemented mainly by realgar and minor orpiment (Fig. 1b). It is 108 observed only under microscope and paragenetically associated with the late ore-stage

109 mineral assemblage, including realgar, pyrite, chalcopyrite, arsenopyrite, aktashite,

- 110 quartz, and calcite (Fig. 3).
- 111

PHYSICAL AND OPTICAL PROPERTIES

Under the microscope, zhengminghuaite occurs as irregular, commonly fractured 112 grains ranging from several to a few tens µm in size (Fig. 3). It is opaque in 113 114 transmitted light and exhibits a metallic lustre. No cleavage is observed, and the fracture is conchoidal or uneven. The new mineral is brittle and does not exhibit any 115 116 fluorescence under UV radiation. The Vickers microhardness (VHN, 10 g load) is 219 kg/mm² (range 192–247 kg/mm²), corresponding to a Mohs hardness of ~4. The 117 density calculated based on the empirical formula (Z = 3) and the unit-cell volume 118 determined from the single-crystal X-ray diffraction (XRD) data is 4.77(5) g/cm³. 119

120 In reflected light, zhengminghuaite is whitish gray in color, with weak bireflectance 121 (whitish gray to pinkish tinted gray). Anisotropy is very weak and only visible with 122 slightly opened analyzer. No internal reflection is observed under crossed polars. 123 Quantitative reflectance measurements were performed in oil (refractive index 1.518) relative to a SiC standard using a CRAIC508PV CoalPro microspectrophotometer 124 125 (USA) equipped on a Nikon Eclipse Ni-U ore microscope (Japan). Reflectance percentages of R_{max} and R_{min} for the four wavelengths required by the IMA-COM are 126 127 28.84, 22.11 (470 nm); 29.00, 23.04 (546 nm); 31.71, 26.31 (589 nm); and 34.38, 128 28.31 (650 nm).

1	29

CHEMICAL COMPOSITION

130	The chemical composition of zhengminghuaite was determined using a JXA-8100						
131	electron microprobe (EMP) at the Analytical Center of Beijing Research Institute of						
132	Uranium Geology, operating in wavelength-dispersive mode with an acceleration						
133	voltage 20 kV, a beam current 10 nA, and a beam diameter 1 μ m. The standards						
134	employed were: cinnabar for S and Hg, synthetic GaAs for As, synthetic Sb_2Te_3 for						
135	Sb, chalcopyrite for Cu, marcasite for Hg, and sphalerite for Zn. Analytical data for 8						
136	points are given in Table 1.						
137	The empirical formula (based on the total cations = 13) is $(Cu_{5.92}Hg_{0.08})_{\Sigma 6.00}$						
138	$(Fe_{1.59}Hg_{1.07}Zn_{0.37})_{\Sigma 3.03}(As_{3.94}Sb_{0.02})_{\Sigma 3.96}S_{11.93}$. The simplified formula is						
139	$Cu_6(Fe,Hg,Zn)_3(As,Sb)_4S_{12}$. The ideal formula is $Cu_6Fe_3As_4S_{12}$, which requires Cu						
140	30.92, Fe 13.58, As 24.30, S 31.20, total 100 wt.%.						

141 X-RAY DIFFRACTION AND STRUCTURAL REFINEMENT

142 The powder XRD data for zhengminghuaite given in Table 2 were calculated based on single-crystal structural refinement data. A single-crystal fragment of 143 zhengminghuaite with an approximate dimension of 0.005×0.010×0.015 mm, 144 extracted from the same polished section for the EMP analysis using a Focus ion 145 beam field emission scanning electron microscope at the Institute of Microstructure 146 and Property of Advanced Materials, Beijing University of Technology, was used for 147 the single-crystal XRD experiment. The diffraction experiment was performed at 148 room temperature using a Bruker D8 QUEST diffractometer (IµS Tube, 100W, MoKa, 149

 $\lambda = 0.71073$ Å) and a PHOTON 100 CMOS detector at the Analytical Center of 150 Beijing Research Institute of Uranium Geology. The crystal structure of 151 zhengminghuaite was determined and refined using the SHELX Software (Sheldrick, 152 2015a, b). Details of the data collection and crystal structure refinement are given in 153 Appendix Table 1. 154 The total exposure time was 16.62 h. The frames were integrated with the Bruker 155 SAINT Software Package using a narrow-frame algorithm. The integration of the data 156 157 using a trigonal unit-cell yielded a total of 6250 reflections to a maximum θ angle of 158 30.48° (0.70 Å resolution), of which 1977 reflections were independent (average 159 redundancy 3.161, completeness = 100.0%, $R_{int} = 10.04\%$, $R_{sig} = 14.05\%$) and 822 data (41.58%) were greater than 2σ (F^2). The final cell constants of a = 13.5373(17) Å, 160 c = 9.2354(13) Å, and V = 1465.7(4) Å³ (Z = 3) are based upon the refinement of the 161 XYZ-centroids of 432 reflections above 20 $\sigma(I)$ with 8.235°<2 θ <54.99°. Data were 162 corrected for absorption effects using the Multi-Scan method (SADABS). The ratio of 163 minimum to maximum apparent transmission was 0.441. 164 165 The structure was solved and refined by the Bruker SHELXTL Software Package, using the space group R3, with Z = 3 for the formula unit, Cu₆Fe_{1.98}Hg_{1.02}As₄S₁₂. The 166

167 final anisotropic full-matrix least-squares refinement on F^2 with 78 variables 168 converged at $R_1 = 0.0690$ and $wR_2 = 0.0784$ for the observed data. The goodness-of-169 fit was 0.931. The largest peak in the final difference electron density synthesis 170 was 1.219 e⁷/Å³ and the largest hole was -1.106 e⁷/Å³ with an RMS deviation 171 of 0.270 e⁷/Å³. On the basis of the final model, the calculated density

172	was 4.694 g/cm ³ and F(000) was 1893 e ⁻ . Atom coordinates, site occupancies, and
173	displacement parameters are given in Appendix Table 2. Selected bond distances are
174	listed in Table 3, and refined site-scattering values are given in Table 4. The
175	Crystallographic Information File (CIF) is available as Supplemental Material.
176	The structure refinement revealed that Fe and Hg are at the same Me^{2+} site, but
177	Fe>Hg. The crystal structure of zhengminghuaite belongs to the nowackiite group
178	with the ideal formula $Cu_6Fe_3As_4S_{12}$. It can be described as formed by (0001) layers
179	composed of corner-sharing FeS_4 and CuS_4 tetrahedra, delimiting two triangular
180	cavities (Fig. 4). In the larger one, three As1 polyhedra are hosted, whereas the
181	smaller one hosts a single As2 site (Biagioni, 2014). The bond-lengths of Cu1 and
182	Cu2 tetrahedra range from 2.272(8) to 2.349(8) Å and from 2.316(11) to 2.332(9) Å,
183	respectively. The Fe tetrahedron bond-length ranging from 2.378(8) to 2.432(11) Å is
184	shorter than the Hg tetrahedron bond-length of aktashite (2.470(2) to 2.502(2) Å)
185	observed by Biagioni et al. (2014), indicating the substitution of a smaller cation Fe^{2+}
186	(0.63 Å) for Hg^{2+} (0.96 Å). The two independent As sites show bond distances
187	ranging from 2.253(7) to 2.298(9) Å and are bonded, through corner-sharing, with
188	CuS_4 and FeS_4 tetrahedra. The unusual feature of zhengminghuaite with the same
189	structure as aktashite is that $[AsS_3]^{3-}$ ions are grouped as quadruplets $[(AsS_3)_4]^{12-}$ (Fig.
190	5), where highly charged cations As^{3+} form tetrahedral $[As_4]^{12+}$ cluster with a vacant
191	anion position in the center (Gabuda et al, 2009).

192

DISCUSSION

193 Relation to other species

According to the IMA-COM Sulfosalt Sub-Committee report (Moëlo et al., 2008), sulfosalt mineral species is subdivided into large chemical groups. Within each group, subdivisions are generally based on well-defined structure types. Zhengminghuaite belongs to the nowackiite isotypic series of Cu-rich sulfosalts with an excess of small (univalent) cations (Cu) relative to (As), in which the ratio (ΣMe)/S is > 1.

There are three named species in the nowackiite isotypic series sulfosalts before 200 the approval of zhengminghuaite. They are nowackiite, Cu₆Zn₃As₄S₁₂ (Marumo, 201 202 1967), aktashite, $Cu_6Hg_3As_4S_{12}$ (Kaplunnik et al., 1980), and gruzdevite, 203 $Cu_6Hg_3Sb_4S_{12}$ (Spiridonov et al., 1981). In the system of Smith and Nickel (2007), a 204 mineral similar to zhengminghuaite is not found. According to "The IMA-CNMNC 205 dominant-constituent rule revisited and extended" (Hatert and Burke, 2008; Nickel 206 and Grice, 1998), zhengminghuaite can be regarded as a new member of nowackiite isotypic series. It is the Fe-dominant analogue at the divalent cations site of 207 nowackiite and aktashite (Table 5). Zhengminghuaite shows a regular tetrahedral 208 coordination around Fe site with an average <Fe-S> bond distance of 2.397 Å that is 209 210 shorter than the <Hg-S> bond distance of 2.481 Å in aktashite (Biagioni et al., 2014) but is slightly longer than the <Zn-S> bond distance of 2.34 Å in nowackiite (Marumo, 211 1967). This is in agreement with the decreasing order of ionic radii of Hg²⁺ (0.96 Å) > 212 Fe^{2+} (0.63 Å) > Zn^{2+} (0.60 Å) in tetrahedral site (Shannon, 1976), suggesting that the 213

smaller the divalent cations, the shorter the $\langle Me^{2+}-S \rangle$ bond distances.

215 Ore paragenetic sequence and formation of zhengminghuaite

216 Integrated petrographic studies on textures, crosscutting relationships, and mineral 217 assemblages of the Zimudang gold deposit indicate that zhengminghuaite, 218 accompanied by quartz, realgar, calcite, and minor to trace amounts of orpiment, 219 chalcopyrite, pyrite, arsenopyrite, stibnite, aktashite, christite, native arsenic, and cinnabar, formed in the late ore-stage after the deposition of bulk Au-bearing arsenian 220 221 pyrite and arsenopyrite. The late ore-stage started with the precipitation of quartz that 222 typically occurs as open space-filling, euhedral crystals (drusy quartz) concentrated 223 on the walls of fractures and pores or rimmed on wall-rock breccias. In some 224 instances, tiny (commonly $<5 \mu$ m), euhedral to subhedral pyrite and arsenian pyrite grains are present along the growth zones of drusy quartz, indicating that gold 225 226 mineralization may have continued to the early phase of the late ore-stage (Gu et al., 227 2012). The drusy quartz was commonly overgrown by realgar and calcite, with minor 228 to trace amounts of Cu-Fe-Hg-Tl-As sulfides and sulfosalts, suggesting decreasing Au 229 and increasing As, Hg, and Tl in the ore fluid as realgar and associated sulfides and 230 sulfosalts formed. Overgrowth relationships show a typical paragenetic sequence from early to late of drusy quartz + pyrite \pm arsenopyrite \pm chalcopyrite, zhengminghuaite + 231 232 aktashite + christite + native arsenic \pm stibnite \pm cinnabar, and realgar + orpiment + 233 calcite, though formation of these minerals often overlapped with each other (Fig. 2). 234 Under the microscope in the studied specimen, zhengminghuaite is observed almost always together with chalcopyrite, realgar, and anhedral pyrite that has irregular fuzzy 235

crystal boundaries (Fig. 3). Chalcopyrite was typically replaced by zhengminghuaite, whereas the latter was commonly fractured and cemented or replaced by realgar, but at least partially is in mutual contact with realgar. This observation suggests that the formation of zhengminghuaite postdated chalcopyrite, but was prior to and partly overlapped with the precipitation of realgar. Such a relationship implies that the following reaction may have existed:

242
$$6CuFeS_2 + 6As + 4S_2 = Cu_6Fe_3As_4S_{12} + 2AsS + 3FeS_2$$
 (1)

243 The precipitation of zhengminghuaite can be caused by increase in sulfur fugacity 244 (f_{S2}) or by continuous decrease in temperature. Fluid inclusion studies showed that the 245 Carlin-type gold deposits in the southwestern Guizhou formed from low temperature 246 (typically <250 °C) fluids with low salinities (mostly <6 wt% NaCl equivalent) (Su et al., 2009; Gu et al., 2012; Peng et al., 2014). Two-phase, liquid-rich aqueous 247 inclusions and two- or three-phase aqueous-carbonic (H₂O-CO₂) inclusions of the 248 249 main ore-stage quartz veinlets at Zimudang homogenized mostly between 180 and 240 °C with a mode around 210 °C (Peng et al., 2014). Fluid inclusions in the late ore-250 251 stage drusy quartz from the nearby Shuiyindong gold deposit has a similar homogenization temperature range of 190 to 245 °C with a mode around 220 °C (Su 252 et al., 2009), while those in the late ore-stage calcite coexisting with realgar at 253 254 Zimudang homogenized mostly between 120 and 180 °C with a mode around 150 °C 255 (Peng et al., 2014). As indicated in Figure 6, the transition from the deposition of drusy quartz + pyrite \pm arsenopyrite to the bulk deposition of realgar during the late 256 257 ore-stage could be caused by a combination of decrease in temperature and increase in

258	sulfur fugacity (f_{S2}) of the hydrothermal fluid. Decrease in temperature alone could
259	not explain the bulk deposition of realgar, whereas increase in sulfidation state alone
260	is inconsistent with the wide variation in temperature as recorded by fluid inclusions.
261	Consequently, it is reasonable to infer that zhengminghuaite and associated sulfosalts
262	(aktashite and christite) formed during the transition from Fe-Cu sulfides (pyrite \pm
263	arsenopyrite \pm chalcopyrite) to As-sulfides (realgar \pm orpiment) due to the decreasing
264	temperature and increasing sulfidation state (more oxidized conditions) of the late
265	ore-stage hydrothermal fluid.

266 Gold-bearing arsenian pyrite and arsenopyrite of the main ore-stage as well as 267 pyrite \pm arsenopyrite in the early phase of the late ore-stage probably formed from an 268 ore fluid with f_{S2} between the pyrrhotite-pyrite and arsenopyrite-pyrite-arsenic buffers, which is constrained approximately between -15 and -13.8 log units at 210-220 °C 269 270 (Fig. 6), suggesting that gold mineralization took place under a relatively oxidizing 271 condition (intermediate sulfidation state). The lower limit of f_{S2} for the bulk 272 deposition of realgar \pm orpiment is constrained by the chalcopyrite-pyrite-bornite 273 buffer, while the maximum f_{S2} is somewhere slightly above the realgar-orpiment 274 buffer, which constrains f_{S2} to between -13.5 and -11.5 log units at 150 °C and 275 suggests a high sulfidation state and moderately oxidizing conditions. However, the 276 occurrence of orpiment only in trace amounts implies that conditions were rarely 277 oxidizing enough to result in the bulk deposition of orpiment. Therefore, deposition of 278 zhengminghuaite and associated sulfosalts (aktashite and christite) at Zimudang took 279 place most probably during the transition as f_{S2} of the ore fluid increased by 1-2 log

units and the temperature decreased from 220 to $150 \,^{\circ}\text{C}$.

281 IMPLICATIONS

282 The discovery of zhengminghuaite and its paragenetic relationship to other ore and gangue minerals provide insights into the evolution history of hydrothermal fluids and 283 the physicochemical conditions of ore formation for the Carlin-type gold deposits. 284 After the bulk gold mineralization of the main ore-stage, the appearance of drusy 285 quartz with minor pyrite \pm arsenopyrite signals the beginning of the transition to the 286 287 late-ore stage in the Zimudang gold deposit (Fig. 2). With ore-stage collapse and system cooling, sulfosalt minerals became stable, and zhengminghuaite, aktashite, and 288 christite precipitated and consumed remaining available Cu, Fe, Hg, and Tl in the 289 290 hydrothermal fluid. The greater abundance of zhengminghuaite relative to aktashite 291 and christite is probably related to higher Fe/Hg availability. With decrease in 292 temperature and increase in sulfidation state (f_{S2}), plus with a decreasing availability 293 of Cu, Fe, Hg, and Tl in the hydrothermal fluid, realgar became increasingly stable 294 and precipitated from the fluid. Zhengminghuaite and associated Hg- and Tl-sulfosalts precipitated in response to the increasing f_{S2} by 1-2 log units and the decreasing 295 296 temperature by up to 100 °C during the transitional period from the main-ore to lateore stage. However, little is known about the solubility behavior of zhengminghuaite 297 298 and related sulfosalts, and their specific precipitation mechanisms and role in ore 299 formation are not yet very clear. Obviously, experiments and thermodynamic data are required to clarify the stability relationships of zhengminghuaite with its associated 300 301 minerals and to more accurately constrain the physicochemical conditions under

302 which they formed.

303

ACKNOWLEDGMENTS AND FUNDING

304 We would like to thank and acknowledge Xia Yong and Fu Shaohong from 305 Institute of Geochemistry, Chinese Academy of Sciences, Yang Chengfu and Liu Jianzhong from No. 105 Geological Team, Guizhou Bureau of Geology and Mineral 306 307 Exploration and Development, and all of the individuals from the Zimudang gold 308 mine for their help during the field work. The manuscript has been improved from the 309 valuable editorial efforts and constructive comments of Associate Editor Bin Chen, 310 the Technical Editor, and two anonymous reviewers. The research was jointly funded by the National Natural Science Foundation of China (grants 42130804, 42002044, 311 40930423, and 40772060) and the Tianchi Talent Program of Xinjiang Uygur 312 313 Autonomous Region of China.

314

REFERENCES CITED

- Altenberger, F., Raith, J.G., Bakker, R.J., and Zarasvandi, A. (2022) The Chah-Mesi
- epithermal Cu-Pb-Zn-(Ag-Au) deposit and its link to the Meiduk porphyry
 copper deposit, SE Iran: Evidence from sulfosalt chemistry and fluid inclusions.
 Ore Geology Reviews, 142, 104732.
- Balić-Žunić, T., Makovicky, E., Moëlo, Y. (1995) Contributions to the crystal
 chemistry of thallium sulphosalts. III. The crystal structure of lorandite (TlAsS₂)
 and its relation to weissbergite (TlSbS₂). Neues Jahrbuch für Mineralogie-
- 322 Abhandlungen, 168, 213–235.

- 323 Biagioni, C., Bonaccorsi, E., Moëlo, Y., and Orlandi P. (2014) Mercury-arsenic
- sulfosalts from the Apuan Alps (Tuscany, Italy). III. Aktashite, Cu₆Hg₃As₄S₁₂,
- and laffittite, AgHgAsS₃, from the Monte Arsiccio mine: Occurrence and crystal
- 326 structure. Periodico di Mineralogia, 83, 1–18.
- 327 Botinelly, T., Neuerburg, G.J., and Conklin, N.M. (1973) Galkhaite, (Hg,Cu,Tl,Zn)
- 328 (As,Sb)S₂, from the Getchell mine, Humboldt County, Nevada. Journal of
- Research of the U.S. Geological Survey, 1, 515–517.
- 330 Cline, J.S., Muntean, J.L., Gu, X.X., and Xia, Y. (2013) A comparison of Carlin-type
- 331 gold deposits: Guizhou Province, Golden Triangle, Southwest China, and
 332 Northern Nevada, USA. Earth Science Frontiers, 20, 1–18.
- 333 Cooke, D.R., and Simmons, S.F. (2000) Characteristics and genesis of epithermal

334 gold deposits. Reviews in Economic Geology, 13, 221–244.

335 Dickson, F.W., and Radtke, A.S. (1978) Weissbergite, TISbS₂, a new mineral from the

336 Carlin gold deposit, Nevada. American Mineralogist, 63, 720–724.

- 337 Dickson, F.W., Radtke, A.S., and Peterson, J.A. (1979) Ellisite, Tl₃AsS₃, a new
- mineral from the Carlin gold deposit, Nevada, and associated sulfide and
 sulfosalt minerals. American Mineralogist, 64, 701–707.
- 340 Dubé, B., Gosselin, P. Mercier-Langevin, P., Hannington, M., and Galley, A. (2007)
- 341 Gold-rich volcanogenic massive sulphide deposits. In W.D. Goodfellow, Ed.,
- 342 Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District
- 343 Metallogeny, the Evolution of Geological Provinces, and Exploration Methods.
- 344 Geological Association of Canada, Mineral Deposits Division, Special

- 345 Publication, 5, 75–94.
- Einaudi, M.T., Hedenquist, J.W., and Inan, E.E. (2003) Sulfidation state of fluids in
- active and extinct hydrothermal systems: Transitions from porphyry to
 epithermal environments. Society of Economic Geologists Special Publication,
- **349** 10, 285–313.
- Franklin, J.M., Gibson, H.L., Jonasson, I.R., and Galley, A.G. (2005) Volcanogenic
 massive sulfide deposits. Economic Geology 100th Anniversary Volume, 523–
 560.
- Gabuda, S., Kozlova, S., Rizhikov, M., and Borisov, S. (2009) Closed-shell
 interaction in the tetranuclear cluster As₄ in Cu₆Hg₃As₄S₁₂ crystal. Journal of
 Molecular Structure: TEOCHEM, 907, 62–65.
- 356 Galley, A.G., Hannington, M.D., and Jonasson, I.R. (2007) Volcanogenic massive
- 357 sulphide deposits. In W.D. Goodfellow, Ed., Mineral Deposits of Canada: A
- Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of
 Geological Provinces, and Exploration Methods. Geological Association of
 Canada, Mineral Deposits Division, Special Publication, 5, 141–161.
- Gu, X.X., Zhang, Y.M., Li, B.H., Dong, S.Y., Xue, C.J., and Fu, S.H. (2012)
 Hydrocarbon-and ore-bearing basinal fluids: A possible link between gold
 mineralization and hydrocarbon accumulation in the Youjiang basin, South China.
- 364 Mineralium Deposita, 47, 663–682.
- 365 Gu X.X., Zhang, Y.M., Wu, C.Y., Peng, Y.W., Li, B.H., Fu, S.H., Xia, Y., and Dong,
- 366 S.Y. (2013) The genetic relationship between Carlin-type gold deposits and

367	paleo-petroleum reservoirs in SW Guizhou, China: Evidence from organic
368	petrology. Earth Science Frontiers, 20, 92–106 (in Chinese with English abstract).
369	Hannington, M.D., Poulsen, K.H., Thompson, J.F.H., and Sillitoe, R.H. (1997)
370	Volcanogenic gold in the massive sulfide environment. Reviews in Economic
371	Geology, 8, 325–356.
372	Hatert, F., and Burke, E.A.J. (2008) The IMA-CNMNC dominant-constituent rule
373	revisited and extended. Canadian Mineralogist, 46, 717-728.
374	Hofstra, A.H., and Cline, J.S. (2000) Characteristics and models for carlin-type gold
375	deposits. Reviews in Economic Geology, 13, 163-220.
376	Jian, W., Lehmann, B., Mao, J., Ye, H., Li, Z., Zhang, J., Zhang, H., Feng, J., and Ye,
377	Y. (2014) Telluride and Bi-sulfosalt mineralogy of the Yangzhaiyu gold deposit,
378	Xioqinling region, central China. The Canadian Mineralogist, 52, 883–898.
379	Kaplunnik, L.N., Pobedimskaya, E.A., and Belov, N.V. (1980) The crystal structure of
380	aktashite, Cu ₆ Hg ₃ As ₄ S ₁₂ . Doklady Akademii Nauk SSSR, 251, 96–98 (in
381	Russian).
382	Kasatkin, A.V., Plasil, J., Makovicky, E., Skoda, R., Agakhanov, A.A., and Tsyganko,
383	M.V. (2022a) Pokhodyashinite, $CuTlSb_2(Sb_{1-x}Tl_x)AsS_{7-x}$, a new thallium sulfosalt
384	from the Vorontsovskoe gold deposit, Northern Urals, Russia. Journal of
385	Geosciences, 67, 41–51.

- 386 Kasatkin, A.V., Plášil, J., Makovicky, E., Chukanov, N.V., Škoda, R., Agakhanov,
- 387 A.A., and Tsyganko, M.V. (2022b) Gungerite, $TlAs_5Sb_4S_{13}$, a new thallium
- 388 sulfosalt with a complex structure containing covalent As-As bonds. American

- 389 Mineralogist, 107, 1164–1173.
- Li, W., Cook, N.J., Ciobanu, C.L., Xie, G.Q., Wade, B.P., and Gilbert, S.E. (2019)
- 391 Trace element distributions in (Cu)-Pb-Sb sulfosalts from the Gutaishan Au-Sb
- 392 deposit, South China: Implications for formation of high fineness native gold.
- American Mineralogist, 104, 425–437.
- Liu, Y., Hu, K., Han, S.C., and Sun, Z.H. (2015) The nature of ore-forming fluids of
- the Carlin-type gold deposit in Southwest China: A case from the Zimudang golddeposit. Resource Geology, 65, 136–159.
- 397 Maroun, L.R.C., Cline, J.S., Simon, A., Anderson, P., and Muntean, J. (2017) High-
- 398 grade gold deposition and collapse breccia formation, Cortez Hills Carlin-type

399 gold deposit, Nevada, USA. Economic Geology, 112, 707–740.

- 400 Marumo, F. (1967) The crystal structure of nowackiite, $Cu_6Zn_3As_4S_{12}$. Zeitschrift für
- 401 Kristallographie, 124, 352–368.
- 402 Momma, K., and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of
- 403 crystal, volumetric and morphology data. Journal of Applied Crystallography, 44,
 404 1272–1276.
- 405 Moëlo, Y., Makovicky, E., Mozgova, N.N., Jambor, J.L., Cook, N., Pring., A., Paar,
- 406 W.H., Nickel, E.H., Graeser, S., Karup-Møller, S., Balić-Žunić, T., Mumme,
- 407 W.G., Vurro, F., Topa, D., Bindi, L., Bente, K. and Shimizu, M. (2008) Sulfosalt
- 408 systematics: A review report of the sulfosalt sub-committee of the IMA
- 409 Commission on Ore Mineralogy. European Journal of Mineralogy, 20, 7–46.
- 410 Nickel, E. H., and Grice, J. D. (1998). The IMA Commission on New Minerals and

- 411 Mineral Names: Procedures and guidelines on mineral nomenclature, 1998.
- 412 Mineralogy and Petrology, 64, 237–263.
- 413 Nowacki, W. (1982) Isotypy in aktashite $Cu_6Hg_3As_4S_{12}$ and nowackiite $Cu_6Zn_3As_4S_{12}$.
- 414 Soviet Physics-Crystallography, 27, 26–27.
- 415 Peng, Y.W., Gu, X.X., Zhang, Y.M., Liu, L., Wu, C.Y, and Chen, S.Y. (2014) Ore-
- 416 forming process of the Huijiabao gold district, southwestern Guizhou Province,
- 417 China: Evidence from fluid inclusions and stable isotopes. Journal of Asian Earth
- 418 Sciences, 93, 89–101.
- 419 Peters, S.G., Huang, J.Z., Li, Z.P., and Jing, C.G. (2007) Sedimentary rock-hosted Au
- deposits of the Dian–Qian–Gui area, Guizhou, and Yunnan Provinces, and
 Guangxi District, China. Ore Geology Reviews, 31, 170–204.
- 422 Radtke, A.S., Dickson, F.W., Slack, J.F., and Brown, K.L. (1977) Christite, a new
- thallium mineral from the Carlin gold deposit, Nevada. American Mineralogist,
 62, 421–425.
- 425 Radtke, A.S., Taylor, C.M., Erd, R.C., and Dickson, F.W. (1974) Occurrence of
- 426 lorandite TlAsS₂, at the Carlin gold deposit, Nevada. Economic Geology, 69,
 427 121–123.
- Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of
 interatomic distances in halides and chalcogenides. Acta Crystallographica, A32,
 751–767.
- 431 Sheldrick, G.M. (2015a) SHELXT–Integrated space-group and crystal-structure
 432 determination. Acta Crystallographica, A71, 3–8.

- 433 Sheldrick, G.M. (2015b) Crystal structure refinement with SHELXL. Acta
 434 Crystallographica, C71, 3–8.
- 435 Sillitoe, R.H. (2000) Gold-rich porphyry deposits: Descriptive and genetic models and
 436 their role in exploration and discovery. Reviews in Economic Geology, 13, 315–
- 437 345.
- Simon, G., Kesler, S.E., and Chryssoulis, S. (1999) Geochemistry and textures of
 gold-bearing arsenian pyrite, Twin Creeks, Nevada: Implications for deposition
 of gold in Carlin-type deposits. Economic Geology, 94, 405–421.
- 441 Sinclair, W.D. (2007) Porphyry deposits. In W.D. Goodfellow, Ed., Mineral Deposits
- of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the
 Evolution of Geological Provinces, and Exploration Methods. Geological
 Association of Canada, Mineral Deposits Division, Special Publication, 5,
 223–243.
- Slater, E.T., McDonald, A.M., and Kontak, D.J. (2019) Resolving primary and
 retrograde sulfide and sulfosalt textures in the epithermal Ag-Zn-Pb-Sn-rich
 Cortaderas Zone, Pirquitas Mine, Argentina. The Canadian Mineralogist, 57,
 117–143.
- Smith, D.G.W., and Nickel, E.H. (2007) A system for codification for unnamed
 minerals: report of the Subcommittee for Unnamed Minerals of the IMA
 Commission on New Minerals, Nomenclature and Classification. Canadian
 Mineralogist, 45, 983–1055.
- 454 Spiridonov, E.P., Krapiva, L.Y., Gapeev, A.K., Stepanov, V.I., Prushinskaya, E.Y., and

455	Volgin, V.Y. (1981) Gruzdevite Cu ₆ Hg ₃ Sb ₄ S ₁₂ —a new mineral from the Chauvai					
456	antimony-mercury deposit, Central Asia. Doklady Akademii Nauk SSSR, 261,					
457	971–976.					
458	Su, W.C., Heinrich, C.A., Pettke, T., Zhang, X.C., Hu, R.Z., and Xia, B. (2009)					
459	Sediment-hosted gold deposits in Guizhou, China: Products of wall-rock					

460 sulfidation by deep crustal fluids. Economic Geology, 104, 73–93.

- 461 Taylor, B.E. (2007) Epithermal gold deposits. In W.D. Goodfellow, Ed., Mineral
- 462 Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny,
- 463 the Evolution of Geological Provinces, and Exploration Methods. Geological
- 464 Association of Canada, Mineral Deposits Division, Special Publication, 5,
 465 113–139.
- 466 Thompson, J.F.H., and Newberry, R.J. (2000) Gold deposits related to reduced
 467 granitic intrusions. Reviews in Economic Geology, 13, 377–400.
- 468 Vasil'ev, V.I., Pervukhina N.V., Borisov S.V., Magarill S.A., Naumov D.Yu., and
- 469 Kurat'eva N.V. (2010) Aktashite $Cu_6Hg_3As_4S_{12}$ from the Aktash deposit, Altai,
- 470 Russia: Refinement and crystal chemical analysis of the structure. Geology of Ore
 471 Deposits, 52, 656–661.
- 472 Vikentyev, I.V., Tyukova, E.E., Vikent'eva, O.V., Chugaev, A.V., Dubinina, E.O.,
- 473 Prokofiev, V.Y., and Murzin, V.V. (2019) Vorontsovka Carlin-style gold deposit
- in the North Urals: Mineralogy, fluid inclusion and isotope data for genetic
 model. Chemical Geology, 508, 144–166.

476

Zhang, Z.L., Yang, T.Y., Yang, S.H., Chen, L., Mao, Q, Ma, Y.G., He, W.T, and Ding,

K.S. (2017). Sulfosalt minerals of Ag and Pb-Bi-Cu, and its directing
significance for minerogenic temperature in Dongjun Pb-Zn-Ag deposit of
Erguna district, Inner Mongolia, China. Acta Petrologica Sinica, 33, 1827–1840.

481 FIGURE CAPTIONS

482 FIGURE 1. Photographs showing occurrence of the gold ore containing 483 zhengminghuaite and associated hydrothermal minerals in the Zimudang gold 484 deposit. (a) Fault- and fracture-controlled gold ore in bioclastic limestone consists mainly of realgar and calcite. (b) Hand specimen of zhengminghuaite-485 bearing gold ore composed of limestone and marl breccias cemented mainly by 486 487 realgar and minor orpiment. (c) Late ore-stage mineral assemblage of drusy 488 quartz, calcite, native arsenic, realgar, and orpiment, showing native arsenic 489 replaced by realgar. (d) Main ore-stage quartz-pyrite veinlets crosscut and 490 dislocated by a calcite-realgar veinlet. Photomicrographs c and d were taken under reflected plane-polarized light. Rlg = realgar; Orp = orpiment; As = native 491 arsenic; Pv = pvrite; Oz = quartz; Cal = calcite. 492

493 FIGURE 2. Paragenetic sequences of hydrothermal minerals in the Zimudang gold
494 deposit.

FIGURE 3. Microscopic photographs and related back-scattered electron images
showing zhengminghuaite and associated minerals. (a, b) Zhengminghuaite is
fractured and occurs with aktashite, chalcopyrite, realgar, and pyrite. (c, d)
Chalcopyrite was replaced by zhengminghuaite, while the latter was partially

499	replaced by realgar and coexists with tinny, fuzzy pyrite. Note also that
500	zhengminghuaite partially has a straight boundary with realgar (upper right
501	corner). (e, f) Earlier stage anhedral to subhedral pyrite is enclosed by
502	zhengminghuaite, which coexists with aktashite and replaced chalcopyrite. All
503	these minerals are overgrown and partially replaced by realgar.
504	Photomicrographs a, c, and e were taken under reflected plane-polarized light,
505	and b , d , and f are back-scattered electron images. $Zmh = zhengminghuaite$; Ats
506	= aktashite; Ccp = chalcopyrite; other symbols as in Figure 1.
507	FIGURE 4. Crystal structure of zhengminghuaite as seen down [0001]. Polyhedra:
508	ochre = Fe site; dark cyan = Cu1 site; blue = Cu2 site. Circles: green = As1 site;
509	violet = $As2$ site; yellow = S sites.

510 FIGURE 5. $[As_4S_{12}]^{12-}$ group in the structure of zhengminghuaite. Symbols as in 511 Figure 4.

FIGURE 6. Log f_{S2} vs. *T* diagram showing stability fields of Fe minerals (bold lines), As minerals, Sb minerals, and As-S liquid (dashed lines). Deposition fields of drusy quartz + pyrite ± arsenopyrite and realgar in the late ore-stage at Zimudang are highlighted by dark and medium shading, respectively. The shaded arrow shows the change trajectory of mineral assemblages due to the decreasing temperature and increasing sulfidation state of the ore fluid. Modified after Simon et al. (1999) and Einaudi et al. (2003).

519

520 TABLES

- 521 TABLE 1. Chemical composition (wt.%) and unit formula (apfu) for zhengminghuaite
- 522 based on electron microprobe data.
- 523 TABLE 2. X-ray powder diffraction data (d in Å) for zhengminghuaite.
- 524 **TABLE 3.** Selected bond lengths (in Å) for zhengminghuaite.
- 525 TABLE 4. Site occupancies, refined and calculated site scattering for Fe and Cu sites in
- 526 zhengminghuaite.
- 527 TABLE 5. Predominant-constituents in the structural sites of zhengminghuaite and the
- 528 known nowackiite isotypic series members.
- 529

530 SUPPLEMENTAL MATERIALS

- 531 APPENDIX TABLE 1. Crystal data and summary of parameters describing data
 532 collection and refinement for zhengminghuaite.
- 533 APPENDIX TABLE 2. Atomic coordinates, site occupancies, and equivalent isotropic
- and anisotropic atomic displacement parameters $(Å^2)$ for zhengminghuaite.
- 535 ONLINE MATERIAL: The Crystallographic Information File (CIF) for

536 zhengminghuaite.

Constituent	Mean (<i>n</i> = 8)	Range	S.D. (σ)	apfu	Probe standard
Cu	26.73	26.50–26.96	0.13	5.92	chalcopyrite
Fe	6.31	5.66-6.79	0.41	1.59	marcasite
Hg	16.31	15.51–17.56	0.63	1.15	cinnabar
Zn	1.73	1.48–2.34	0.28	0.37	sphalerite
As	20.98	20.43–21.21	0.24	3.94	synthetic GaAs
Sb	0.18	0.05–0.28	0.08	0.02	synthetic Sb ₂ Te ₃
S	27.16	26.75–27.56	0.31	11.93	cinnabar
Total	99.40	98.71–99.87	0.46		

TABLE 1. Chemical composition (wt.%) and unit formula (apfu) for zhengminghuaite based on electron

Notes : n = number of analyses, S.D. = standard deviation.

microprobe data

I _{cacl} (%)	d	h	k	Ι	$I_{\rm cacl}$ (%)	d	h	k	Ι
5	7.2548	1	0	1	20	1.9676	1	4	-3
21	6.7687	1	1	0	7	1.9539	0	6	0
23	4.9491	0	2	1	7	1.8867	-3	-4	1
11	4.2964	0	1	2	97	1.8825	1	3	4
10	3.9951	-2	-1	-1	82	1.8773	5	2	0
8	3.6274	2	0	2	5	1.6922	-4	-4	0
65	3.0785	0	0	3	6	1.6497	6	0	3
100	3.0670	-1	-3	-1	6	1.6451	0	5	4
10	2.8023	1	1	3	89	1.6060	1	3	-5
89	2.6586	-1	-3	2	81	1.6028	5	2	3
21	2.5583	4	1	0	83	1.6012	2	6	-1
6	2.4183	3	0	3	7	1.5392	0	0	6
5	2.3241	2	3	2	20	1.5335	2	6	2
8	2.2773	2	2	-3	55	1.3293	-2	-6	4
13	2.2726	5	0	-1	20	1.2225	1	3	7
8	2.2653	0	1	-4	21	1.2204	2	6	5
10	2.2562	3	3	0	10	1.2225	1	3	7
5	2.1544	2	4	1	19	1.2182	6	5	1
14	2.1482	0	2	4	5	1.1903	-5	-2	6
8	2.0907	5	0	2	20	1.0879	1	3	-8
9	2.0529	1	5	-1	18	1.0849	6	5	4
7	2.0476	2	1	4	18	1.0839	3	9	0
6	1.9975	2	4	-2					

TABLE 2. X-ray powder diffraction data (d in Å) for zhengminghuaite

Notes: Intensity as well as *d*, *h*, *k*, and *l* were calculated using the software VESTA (Momma and Izumi, 2011) on the basis of the structural model given in Table 3. Only reflections with $I_{calc} > 5$ % are listed. The intensities of the eight strongest lines are given in bold characters.

Fe1-S1	2.378(8)	Cu1-S2	2.272(8)	
Fe1-S1	2.383(11)	Cu1-S2	2.319(9)	
Fe1-S3	2.395(10)	Cu1-S3	2.319(9)	
Fe1-S4	2.432(11)	Cu1-S1	2.349(8)	
average	2.397	average	2.315	
Cu2-S4	2.316(11)	As1-S2	2.253(7)	
Cu2-S3	2.317(9)	As1-S1	2.259(9)	
Cu2-S2	2.326(10)	As1-S4	2.298(9)	
Cu2-S4	2.332(9)	average	2.270	
average	2.323			
		As2-S3	2.278(9) ^{×3}	

TABLE 3. Selected bond lengths (in Å) for zhengminghuaite

TABLE 4. Site occupancies, refined and calculated site scattering for Fe and Cu sites in zhengminghuaite

Site	Site occupancy	Calculated site scattering	Refined site scattering
Fe	$Fe_{0.53}Hg_{0.35}Zn_{0.12}$	45.4	44.4
Cu1	Cu _{1.00}	29.0	29.0
Cu2	Cu _{0.98} Hg _{0.02}	30.0	29.0

TABLE 5. Predominant-constituents in the structural sites of zhengminghuaite and the known nowackiite isotypic series members

Mineral name	Site occupation			Reference	
	Me ¹⁺	Me ²⁺	Pn	Ch	_
zhengminghuaite	Cu	Fe	As	S	This work
nowackiite	Cu	Zn	As	S	Marumo (1967); Nowacki (1982)
aktashite	Cu	Hg	As	S	Kaplunnik et al. (1980); Vasil'ev et al. (2010); Biagioni et al. (2014)
gruzdevite	Cu	Hg	Sb	S	Spiridonov et al. (1981)

Figure 1, Gu et al., AM

Mineral	Early stage	Main ore-stage	Late ore-stage
Quartz			(drusy)
Au-free pyrite			
Arsenian pyrite			
Arsenopyrite			
Marcasite			
Chalcopyrite			
Sphalerite			
Stibnite			
Native arsenic			
Zhengminghuaite			
Aktashite			
Christite			
Realgar			
Opiment			
Cinnabar			
Calcite			

Figure 2, Gu et al., AM

Figure 3, Gu et al., AM

Figure 4, Gu et al., AM

Figure 5, Gu et al., AM

Figure 6, Gu et al., AM