1 Revision 1 (Manuscript 9060)

2 Word Count: 5327

3	Different structural behavior of MgSiO ₃ and CaSiO ₃ glasses at high pressures
4 5	Nozomi M. Kondo ^{1, 2*} , Yoshio Kono ¹ , Itaru Ohira ³ , Rostislav Hrubiak ⁴ , Koji Ohara ⁵ , Kiyofumi Nitta ⁵ , Oki Sekizawa ⁵
6	¹ Geodynamics Research Center, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime
7	790-0826, Japan
8	² Now at Institute for Planetary Materials, Okayama University, 827 Yamada, Misasa,
9	Tottori 682-0193, Japan
10	³ Department of Chemistry, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588,
11	Japan
12	⁴ High Pressure Collaborative Access Team, X-ray Science Division, Argonne National
13	Laboratory, 9700 S.Cass Avenue, Argonne, IL 60439, United States
14	⁵ SPring-8 synchrotron facility, Japan Synchrotron Radiation Research Institute, 1-1-1
15	Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan

16	* Corresponding author: <u>nozomikondo@okayama-u.ac.jp</u> (N. M. Kondo)
17	Abstract
18	Knowledge of the structural behavior of silicate melts and/or glasses at high
19	pressures provides fundamental information in discussing the nature and properties of
20	silicate magmas in the Earth's interior. The behavior of Si-O structure under high pressure
21	conditions has been widely studied, while the effect of cation atoms on the high-pressure
22	structural behavior of silicate melts or glasses has not been well investigated. In this study,
23	we investigated the structures of MgSiO ₃ and CaSiO ₃ glasses up to 5.4 GPa by in-situ X-
24	ray pair distribution function measurements, to understand the effect of different cations
25	$(Mg^{2+} and Ca^{2+})$ on high pressure structural behavior of silicate glasses. We found that the
26	structural behavior of MgSiO3 and CaSiO3 glasses are different at high pressures. The
27	structure of MgSiO ₃ glass changes by shrinking of Si-O-Si angle with increasing pressures,
28	which is consistent with previous studies for SiO ₂ and MgSiO ₃ glasses. On the other hand,
29	CaSiO ₃ glass shows almost no change in Si-Si distance at high pressures, while the
30	intensities of two peaks at \sim 3.0 Å and \sim 3.5 Å change with increasing pressure. The
31	structural change in CaSiO ₃ glass at high pressure is interpreted as the change of the

32	fraction of the edge-shared and corner-shared CaO6-SiO4 structures. The different high-
33	pressure structural behavior obtained in MgSiO3 and CaSiO3 glasses may be structural
34	origin of the difference in the properties such as viscosity between MgSiO ₃ and CaSiO ₃
35	melts at high pressures, implying the importance of the different structural behavior due to
36	different cation atoms to discuss the nature and properties of silicate magmas in the Earth's
37	interior.
38	
39	Keywords: glass structure, MgSiO ₃ , CaSiO ₃ , pair distribution function, high pressure
40	
40 41	Introduction
40 41 42	Introduction Structures of silicate melts strongly influence physical properties such as density,
40 41 42 43	Introduction Structures of silicate melts strongly influence physical properties such as density, viscosity, and diffusivity (e.g., Sakamaki et al., 2013; Sanloup et al., 2013; Wang et al.,
40 41 42 43 44	Introduction Structures of silicate melts strongly influence physical properties such as density, viscosity, and diffusivity (e.g., Sakamaki et al., 2013; Sanloup et al., 2013; Wang et al., 2014; Bajgain et al., 2015), and therefore knowledge of the structural behavior of silicate
40 41 42 43 44 45	Introduction Structures of silicate melts strongly influence physical properties such as density, viscosity, and diffusivity (e.g., Sakamaki et al., 2013; Sanloup et al., 2013; Wang et al., 2014; Bajgain et al., 2015), and therefore knowledge of the structural behavior of silicate melts and/or glasses under high pressure conditions is fundamental in understanding the
40 41 42 43 44 45 46	Introduction Structures of silicate melts strongly influence physical properties such as density, viscosity, and diffusivity (e.g., Sakamaki et al., 2013; Sanloup et al., 2013; Wang et al., 2014; Bajgain et al., 2015), and therefore knowledge of the structural behavior of silicate melts and/or glasses under high pressure conditions is fundamental in understanding the nature and properties of silicate magmas in the Earth's interior. Since structural

48	still challenging, due to the technical difficulties, silicate glasses have been studied at high
49	pressures under room temperature condition as an analogue of silicate melts. Pressure-
50	induced structural changes of SiO ₂ glass have been the most studied as the simplest silicate
51	composition by using in situ high-pressure techniques (e.g., Sato and Funamori, 2008;
52	Benmore et al., 2010; Murakami and Bass, 2010; Prescher et al., 2017; Lee et al., 2019;
53	Petitgirard et al., 2019; Kono et al., 2020; Andrault et al., 2020, Kono et al., 2022), which
54	provide important knowledge on the behavior of Si-O structure under high pressure
55	conditions. In addition, MgSiO ₃ glass also has been studied by several researchers as a
56	representative composition of silicate magma in the Earth's interior (e.g., Lee et al., 2008;
57	Kono et al., 2018; Salmon et al., 2019; Ryu et al., 2022). However, structural behavior of
58	other silicate glasses with different compositions remains not well investigated at in situ
59	high-pressure conditions.

In this study, we investigate structure of MgSiO₃ and CaSiO₃ glasses at high pressure conditions up to 5.4 GPa by using in situ pair distribution function measurements, to understand the effect of different cations (Mg²⁺ and Ca²⁺) on the high-pressure structural behavior of silicate glasses. MgSiO₃ and CaSiO₃ glasses are the end-member pyroxene compositions, and therefore knowledge of the structural behavior of MgSiO₃ and CaSiO₃

65	glasses at high pressures would provide important clues to understand structure and
66	properties of silicate magmas in the Earth's upper mantle. At ambient pressure condition,
67	structures of MgSiO ₃ and CaSiO ₃ glasses have been studied by neutron diffraction (e.g.,
68	Cormier and Cuello, 2011), high energy X-ray diffraction (Kohara et al., 2011), Raman
69	spectroscopy (e.g., Kalampounias et al., 2009), and nuclear magnetic resonance (NMR)
70	spectroscopy (e.g., Kaseman et al., 2015) techniques. On the other hand, structural
71	investigations of these glasses at in situ high pressure conditions are still limited, although
72	there are several structural analyses for the high-pressure synthesized silicate glasses at
73	ambient pressure condition (Shimoda et al., 2005). Nevertheless, structure of MgSiO ₃ glass
74	at in situ high pressure conditions has been studied by some previous studies using neutron
75	diffraction (Salmon et al., 2019), X-ray diffraction (Kono et al., 2018; Ryu et al., 2022), and
76	X-ray Raman scattering (Lee et al., 2008) measurements. In contrast, structure of CaSiO ₃
77	glass has not been well studied at in situ high pressure conditions. To the best of our
78	knowledge, only Kubicki et al. (1992) and Salmon et al. (2019) investigated the structure of
79	CaSiO ₃ glass at in situ high pressure conditions. Kubicki et al. (1992) conducted in-situ
80	Raman spectroscopy and infrared absorption measurements on CaSiO ₃ glasses in DAC
81	(diamond anvil cell) at 11-35 GPa. Salmon et al. (2019) investigated the structure of

82	CaSiO ₃ and MgSiO ₃ glasses from ambient pressure to 17.5 GPa by using in-situ neutron
83	diffraction measurement and molecular dynamics (MD) simulation. Salmon et al. (2019)
84	showed that the M-O (M=Mg, Ca) coordination number of both CaSiO ₃ and MgSiO ₃
85	glasses increase at high pressures in a similar manner. The nearest neighbor Si-O and M-O
86	distances show slight increase with increasing pressure from ambient pressure to 17.5 GPa
87	(1.61 to 1.62Å for Si-O distance of $MgSiO_3$ glass; 1.62 to 1.63 Å for Si-O distance of
88	CaSiO ₃ glass; 1.99-2.02 Å for Mg-O distance in MgSiO ₃ glass; 2.32-2.35 Å for Ca-O
89	distance in CaSiO ₃ glass). Mg-O coordination number in MgSiO ₃ glass changes from 4.50
90	at ambient pressure to 6.20 at 17.5 GPa, and Ca-O coordination number in CaSiO ₃ glass
91	changes from 6.15 at ambient pressure to 7.41 at 17.5 GPa. These data indicate that the
92	nearest neighbor structures in MgSiO ₃ and CaSiO ₃ glasses change similarly with increasing
93	pressure. However, the study of Salmon et al. (2019) was limited only for the nearest
94	neighbor Si-O and M-O distances, due to weak scattering of Si and Ca in neutron
95	diffraction measurement, and the intermediate range structure such as Si-Si, Ca-Si and Ca-
96	Ca distances have not been investigated in Salmon et al. (2019).
97	In this study, we investigated structures of MgSiO3 and CaSiO3 glasses at high
98	pressures up to 5.4 GPa by using in-situ X-ray diffraction measurements to understand

99 effect of different cation (Mg and Ca) on the high-pressure structural behavior not only in
100 the nearest Si-O and M-O distances but also in the intermediate Si-Si, M-Si, and M-M
101 distances. We found different behavior in the intermediate range structures of MgSiO₃ and
102 CaSiO₃ glasses at high pressure conditions.

- 103
- 104

Experimental methods

105	$CaSiO_3$ and $MgSiO_3$ samples were prepared by mixing powders of SiO_2 , $CaCO_3$,
106	and/or MgO. Powders of these oxides and carbonates were dried at 110 °C for >24 hours
107	before weighing with an electric balance, and were mixed in an agate mortar with ethanol
108	for 1-2 hours. Glass samples were prepared by an aerodynamic levitation furnace with CO ₂
109	laser heating at ~1800-2100 °C at Geodynamics Research Center (GRC), Ehime University.
110	Chemical compositions of the synthesized glass samples were confirmed by using JEOL
111	JM-7000F field-emission scanning electron microscope (FE-SEM) with energy-dispersive
112	spectroscopy (EDS) at GRC (Table S1). Densities of the CaSiO ₃ (2.80±0.05 g/cm ³) and
113	MgSiO ₃ (2.68 \pm 0.06 g/cm ³) glasses were measured by Archimedes' method.

114 High-energy X-ray diffraction measurements of the CaSiO₃ and MgSiO₃ glasses at

115	ambient pressure were conducted at the BL04B2 beamline of the SPring-8. The dedicated
116	X-ray diffractometer with six points detectors (four cadmium telluride detectors and two
117	germanium detectors) at the BL04B2 beamline enables us to conduct accurate pair
118	distribution function (PDF) analysis with high-real space resolution (Ohara et al, 2020). We
119	used spherical glass samples of 1.8 mm diameter, which were placed in a vacuum chamber
120	under room temperature condition. High-energy X-ray diffraction measurements using
121	monochromatic X-ray of 61.4 keV were carried out by scanning the 2θ angle from 0.3 to 49
122	degrees, which covers the range of the momentum transfer Q up to 25.5 Å ⁻¹ . The obtained
123	X-ray diffraction data were analyzed by using standard analysis procedures of the BL04B2
124	beamline (Kohara et al., 2007).
125	High-pressure experiments for CaSiO3 and MgSiO3 glasses were carried out by using
126	a Paris-Edinburgh (PE) press with a standard PE cell assembly of the 16-BM-B beamline in
127	the Advanced Photon Source (APS) (Kono et al., 2014). Cup-shaped WC anvils with the
128	cup diameter of 12 mm and the bottom diameter of 3 mm were used. The cell assembly
129	mainly consists of BN capsule surrounded by inner MgO ring and outer boron-epoxy (BE)
130	gaskets with ZrO ₂ caps at the top and bottom the cell. Pressure was determined by X-ray
131	diffraction measurement of MgO ring with the equation of state of MgO (Kono et al., 2010)

132	for the CaSiO ₃ glass experiment, and of Au foil, which is inserted between the MgO ring
133	and BN capsule, using the equation of state of Tsuchiya (2003) for the MgSiO ₃ glass
134	experiment. Densities of CaSiO3 and MgSiO3 glasses at high pressure conditions are
135	calculated based on the densities of CaSiO ₃ (2.80 ± 0.05 g/cm ³) and MgSiO ₃ (2.68 ± 0.06
136	g/cm ³) glasses measured at ambient pressure by Archimedes' method and the pressure-
137	volume relation of CaSiO ₃ and MgSiO ₃ glasses reported in Salmon et al. (2019).
138	Pair distribution function measurement of CaSiO ₃ glass at high pressures was carried
139	out by a multi-angle energy dispersive X-ray diffraction technique combined with the PE
140	cell at the 16-BM-B beamline of the APS. A large Huber stage holding a germanium solid
141	state detector allows precise control of 2θ angles, and energy dispersive X-ray diffraction
142	measurements using fine collimation slits enables us to collect clean signals from glass
143	sample without background noise from the surrounding pressure medium materials (Kono
144	et al., 2014). We collected energy dispersive X-ray diffraction patterns at the 2θ angles of 3,
145	4, 5, 7, 9, 12, 16, 22, 28, and 35 degrees. The obtained energy dispersive X-ray diffraction
146	spectra were analyzed by using an analysis program developed by Changyong Park and
147	Rostislav Hrubiak at the 16-BM-B beamline (Kono et al., 2014). We obtained the $S(Q)$ of
148	CaSiO ₃ glass at the Q range up to 17.0 Å ⁻¹ under the pressure conditions from 0.8 GPa to

149 5.4 GPa at room temperature.

150	Pair distribution function measurement of MgSiO3 glass at high pressures was
151	conducted at the BL37XU beamline of the SPring-8. We used a monochromatic X-ray of
152	37.4 keV. The X-ray was focused from 1.0 to 0.2 mm in horizontal with 0.7-m-long
153	horizontal-deflection mirrors so as to increase an available flux. The structure of MgSiO ₃
154	glass was measured up to 5.2 GPa in the PE cell by high-energy X-ray diffraction
155	measurement using a cadmium telluride point detector (Amptek X-123) with a double slit
156	collimation setup in front of the detector. The double slit collimation setup yields
157	collimation length of <1.8 mm at the sample position at 2 θ angles higher than ~9°, to avoid
158	background noises. Size of incident slit and two collimation slits were adjusted with
159	varying 2θ angle to maximize intensity of signal by increasing collimation length within the
160	diameter of MgSiO ₃ glass sample. High-energy X-ray diffraction measurements for
161	MgSiO ₃ glass at high pressures were carried out by scanning the 2θ angle from 1 to 60
162	degrees. Analysis was conducted by using the method developed at the BL04B2 beamline
163	of the SPring-8 (Ohara et al., 2020). We obtained the $S(Q)$ of MgSiO ₃ glass at the Q range
164	up to 15.0 $Å^{-1}$ under the pressure conditions from 1.0 GPa to 5.2 GPa at room temperature.
165	It is important to note that both experiments at BL37XU beamline at SPring-8

166	(MgSiO ₃ glass experiment) and at 16-BM-B beamline at APS (CaSiO ₃ glass experiment)
167	used collimation slit setup in front of the detector. The collimation slit setup enables us to
168	collect the XRD signal only from the sample at the 2 θ angle higher than ~9° for the
169	MgSiO ₃ glass experiment and at the 2 θ angle higher than ~3° for the CaSiO ₃ glass
170	experiment. Since the collimation slit setup eliminates back-ground noises not only from
171	the high-pressure cell assemblies but also from different beamline component, we can
172	obtain comparable data.
173	The pair distribution function $g(r)$ was obtained by Fourier transmission of the Faber-
174	Ziman total structure factor $S(Q)$ (Faber and Ziman, 1965). The Lorch function was applied
175	to remove the truncation effect on the final pair distribution function determination (Lorch,
176	1969). The positions of the peaks of the $g(r)$ showing discernible separation were
177	determined by using simple Gaussian peak fitting. On the other hand, Si-Si, Mg-Si, and
178	Mg-Mg peaks in MgSiO ₃ glass, and Ca-O and O-O peaks in CaSiO ₃ glass overlap each
179	other. For the overlapping peaks, we used a multi-peak fitting method described in de
180	Grouchy et al. (2017). In the de Grouchy et al.'s method, the $g(r)$ is the sum of all the
181	individual ion-ion interactions within the sample, where each ion-ion contribution is
182	represented by a Gaussian peak, $g(r)_{ind}$. The $g(r)$ is fit using the following equations:

$$g(r) = \sum g(r)_{ind} = \frac{1}{n_0 S} \sum_{i} \frac{x_i A_i}{\sigma_{i\sqrt{2\pi}}} \exp\left(\frac{-(r-d_i)^2}{2\sigma_i^2}\right), \quad (1)$$

183

where

$$A_{i} = \frac{CN_{i}}{\int \frac{4\pi r^{2}}{\sigma_{i}\sqrt{2\pi}}exp - \left(\frac{(r-d_{i})^{2}}{2\sigma_{i}^{2}}\right)dr},\qquad(2)$$

184 where CN_i is coordination number for individual ion-ion contributions, n_0 is number 185 density, x_i is concentration of the species, and d_i is interatomic distance. σ_i is calculated 186 from $k\sqrt{d_i}$, which defines width and height of the individual Gaussian peak. k is an 187 adjustable parameter (Hosemann and Bagchi, 1962), with values ranging from 0.06 to 0.15 188 depending on the ion-ion contribution.

- 189
- 190

Results

191 Structure of MgSiO₃ and CaSiO₃ glasses at ambient pressure

Figures 1a and 1b show the S(Q) and g(r) of MgSiO₃ glass at ambient pressure, respectively. The g(r) of MgSiO₃ glass shows peaks at $r_1=1.621\pm0.002$ Å, $r_2=2.030\pm0.004$ Å, $r_3=2.618\pm0.009$ Å, and $r_4=3.179\pm0.006$ Å. A first-principles molecular dynamics simulation of MgSiO₃ glass reports bond distances of Si-O=1.63 Å, Mg-O=1.98 Å, O-

197 indicating that the r₁, r₂, and r₃ peaks obtained in this study correspond to Si-O, Mg-O, and

- O-O distances, respectively. The r₄ peak is considered as overlapping of Si-Si, Mg-Si, and
 Mg-Mg distances.
- 200 The S(Q) and g(r) of CaSiO₃ glass at ambient pressure are shown in Figs. 1c and 1d, 201 respectively. The g(r) of CaSiO₃ glass shows the peak positions at $r_1=1.622\pm0.001$ Å, 202 $r_2=2.335\pm0.008$ Å, $r_3=2.623\pm0.012$ Å, $r_4=3.017\pm0.008$ Å, and $r_5=3.573\pm0.014$ Å, which are 203 considered as Si-O, Ca-O, O-O, Si-Si/Ca-Si, and Ca-Si/Ca-Ca distances, respectively 204 (Cormier and Cuello, 2013; Mead and Mountjoy, 2006ab). According to a molecular 205 dynamics simulation study (Mead and Mountjoy, 2006ab), Si-Si and Ca-Si distances 206 overlap at the same distance at around 3.1 Å, and Ca-Si and Ca-Ca distances also overlap at 207 around 3.6 Å.
- 208

209 Structures of MgSiO₃ and CaSiO₃ glasses at high pressures

Figures 2a and 2b show the S(Q) and g(r) of MgSiO₃ glass from 1.0 to 5.2 GPa. With increasing pressure, intensity of the first sharp diffraction peak (FSDP) of MgSiO₃ glass decreases, and the FSDP position shifts toward high Q (Figs. 2a and 3). The highpressure behaviour of the FSDP is consistent with those reported in previous MgSiO₃ glass study (e.g., Ryu et al., 2022). On the other hand, the S(Q) of MgSiO₃ glass shows negligible

215	change at $Q>3$ Å ⁻¹ at high pressure conditions up to 5.2 GPa. The $g(r)$ of MgSiO ₃ glass
216	shows clear r_1 (Si-O) and r_4 (Si-Si/Mg-Si/Mg-Mg) peaks (Fig. 2b). On the other hand, the r_2
217	(Mg-O) peak is identified as a shoulder peak on the high r side of the r_1 (Si-O) peak, and
218	the r_3 (O-O) peak is not visible. This is due to broadening of the peak width of $g(r)$ by
219	narrower range of Q (15 Å ⁻¹) in the $S(Q)$ data obtained in the high pressure experiments.
220	Fig. S1 shows the effect of the maximum $Q(Q_{\text{max}})$ range on the $g(r)$ simulated by using the
221	ambient pressure data. The resolution of the $g(r)$ is defined as $2\pi/Q_{max}$ (e.g., Lorch, 1969),
222	and the peak width of $g(r)$ becomes broader by reducing the Q_{max} . In Fig. S1a, the $g(r)$
223	result simulated with the $Q_{\text{max}}=15$ Å ⁻¹ shows the r ₂ peak as the shoulder peak of the r ₁ peak,
224	similarly to the high-pressure experimental result, and it is difficult to identify the r ₃ peak.
225	On the other hand, the peak positions of $g(r)$ determined from the result of $Q_{\text{max}}=15$ Å ⁻¹
226	$(r_1=1.619\pm0.003$ Å; $r_2=2.029\pm0.010$ Å; $r_4=3.183\pm0.003$ Å; r_3 is fixed at 2.618 Å) are
227	comparable to those obtained from the data of $Q_{\text{max}}=25$ Å ⁻¹ (r ₁ =1.621±0.002 Å;
228	$r_2=2.030\pm0.004$ Å; $r_3=2.618\pm0.003$ Å; $r_4=3.179\pm0.003$ Å). Therefore, the peak positions of
229	the $g(r)$ of MgSiO ₃ glass at high pressures determined from the $S(Q)$ of $Q_{max}=15$ Å ⁻¹ are
230	considered to be comparable to those determined at ambient pressure. The $g(r)$ of MgSiO ₃
231	glass at high pressures shows almost no change in the r_1 and r_2 peaks up to 5.2 GPa, while

the position of the r_4 peak decreases with increasing pressure (Fig. 2b).

233	Figures 2c and 2d show the $S(Q)$ and $g(r)$ of CaSiO ₃ glass from 0.8 to 5.4 GPa. In
234	contrast to the marked change in the FSDP of MgSiO ₃ glass at high pressures, the $S(Q)$ of
235	CaSiO ₃ glass shows only small change in the intensity and position of the FSDP at high
236	pressures (Figs. 2c and 3). On the other hand, the second and third peak features in the $S(Q)$
237	at around 4-6 Å ⁻¹ shift toward high Q with increasing pressure (Fig. 2c). The $g(r)$ of CaSiO ₃
238	glass obtained at high pressures show clear r_1 (Si-O), r_2 (Ca-O), r_4 (Si-Si/Ca-Si), and r_5 (Ca-
239	Si/Ca-Ca) peaks (Fig. 2d). The Ca-O peak of the $g(r)$ in CaSiO ₃ glass can be well identified
240	even at the narrower range of Q_{max} (17 Å ⁻¹) in the $S(Q)$ of the high-pressure experiments
241	(Fig. S1a), because of longer distance of Ca-O peak in CaSiO ₃ glass compared to Mg-O
242	peak in MgSiO ₃ glass. In addition, comparison of the peak positions of CaSiO ₃ glass at
243	ambient pressure determined by the Q range of 17 Å ⁻¹ (r_1 =1.614±0.003 Å; r_2 =2.358±0.008
244	Å; r_4 =3.077±0.165 Å; r_5 =3.560±0.021 Å) and 25 Å ⁻¹ (r_1 =1.622±0.001 Å; r_2 =2.335±0.008
245	Å; r_4 =3.017±0.008 Å; r_5 =3.573±0.014 Å) show similar values. The r_1 and r_2 peaks of the
246	g(r) of CaSiO ₃ glass stay almost same up to 5.4 GPa, while there are marked changes in the
247	intensity of the r_4 and r_5 peaks with increasing pressure (Fig. 2d). The intensity of the r_4
248	peak markedly increases with increasing pressure, accompanied with the decrease of the

intensity of the r_5 peak. The position of the r_4 peak stays almost same up to 5.4 GPa, while

250 the position of the r_5 peak slightly decreases with increasing pressure.

251	Table 1 summarizes the positions of the FSDP of $S(Q)$, the $g(r)$ peak positions, Si-O-
252	Si angle of MgSiO ₃ glass, and Si-O-Si/Ca-O-Si angles of CaSiO ₃ glass from ambient to
253	high pressures. Since the r ₃ and r ₄ peaks of MgSiO ₃ glass are overlapped by O-O, Si-Si,
254	Mg-Si, and Mg-Mg distances, we carried out multi-peak fitting procedure with the method
255	of de Grouchy et al. (2017). We firstly fitted O-O, Si-Si, Mg-Si, and Mg-Mg peaks into the
256	r_3 and r_4 peaks at ambient pressure (using the $Q_{max}=15$ Å ⁻¹ data) by referring the bond
257	distances and the coordination numbers reported in Ghosh et al. (2014). The $g(r)$ at ambient
258	pressure is well reproduced by the parameters of Ghosh et al. (2014) with minor adjustment
259	for O-O and Si-Si distances (Fig. S2a). Then, the Si-Si and Mg-Si peak positions at high
260	pressures were determined by fixing widths and heights of all peaks, and peak positions of
261	O-O and Mg-Mg (2.65 and 3.42 Å, respectively) (Fig. S2). It has been reported in SiO_2
262	glass that O-O distance does not change at least up to 6.0 GPa, because of almost no change
263	of Si-O tetrahedron structure (Kono et al., 2022). Since our observed Si-O distances of
264	MgSiO ₃ and CaSiO ₃ glasses also do not change with varying pressure (cf. Fig. 4), we
265	assumed no change in O-O peak distance in MgSiO ₃ glass at the pressure range of this

266	study up to 5.4 GPa. For Mg-Mg distance of MgSiO ₃ glass, MD simulations of Salmon et
267	al. (2019) show that Mg-O bond distance and Mg-O-Mg angle do not change below 6 GPa,
268	which indicates no change in Mg-Mg distance. We therefore assumed that the Mg-Mg
269	distance have no pressure dependence at the pressure range of this study (\leq 5.2 GPa).
270	In addition, the Ca-O distances of CaSiO ₃ glass at high pressure conditions are
271	determined also by the peak-fitting method of de Grouchy et al. (2017), because the r_3 (O-
272	O) peak of the $g(r)$ of CaSiO ₃ glass is hidden around the right side shoulder of the r ₂ (Ca-O)
273	peak in the high-pressure data. Firstly, we fitted r_2 (Ca-O) and r_3 (O-O) peak positions at
274	ambient pressure (using the Q_{max} =25 Å ⁻¹ data) by fixing the coordination numbers reported
275	in Mead and Mountjoy (2006b) and Bajgain et al. (2015). Our obtained Ca-O
276	[2.302(±0.001) Å] and O-O [2.611(±0.007) Å] distances at ambient pressure condition are
277	consistent with those reported in Mead and Mountjoy (2006b) and Bajgain et al. (2015).
278	Then, we fitted r ₂ (Ca-O) peak positions of CaSiO ₃ glass at high pressures by fixing
279	coordination number and O-O peak position obtained at ambient pressure (Figure S3).
280	

281

Discussion

Figure 4 shows the nearest-neighbor Si-O and M-O (M=Mg, Ca) distances (Fig.4a)

17

283	and the intermediate range Si-Si and M-Si distances (Fig. 4b) of MgSiO ₃ and CaSiO ₃
284	glasses at high pressures. The Si-O peak positions of MgSiO ₃ and CaSiO ₃ glasses are same,
285	while the positions of the M-O peaks are markedly different between MgSiO ₃ and CaSiO ₃
286	glasses (Fig. 4a). The difference between Mg-O and Ca-O distances in MgSiO ₃ and CaSiO ₃
287	glasses have also been observed in previous ambient pressure study, and is considered to be
288	due to the different ionic radius of M cation (e.g., Cormier and Cuello, 2013). Our results
289	show that the M-O peak positions of MgSiO ₃ and CaSiO ₃ glasses show almost no change
290	with varying pressure. Similarly to our results, the experimental results of Salmon et al.
291	(2019) also show almost no change in the M-O distances and coordination numbers at the
292	pressure conditions below ~5 GPa, although Salmon et al. (2019) shows increase of M-O
293	coordination number in MgSiO ₃ and CaSiO ₃ glasses at higher pressures than 6 GPa. These
294	data indicate that nearest neighbor Si-O and M-O distances do not change at the pressure
295	conditions of this study up to 5.4 GPa.
296	The intermediate range Si-Si distance of MgSiO3 glass markedly decreases with
297	increasing pressure (Fig. 4b), and it causes shrinking of Si-O-Si angle ($\theta = 2$
298	$\arcsin[(Si - Si /2)/ Si - 0])$ at high pressures (Fig. 5). It has been known that high-

299 pressure structural change of SiO₂ glass occurs mainly by decreasing Si-O-Si angle at high

300	pressures (e.g., Sonneville et al., 2013). Similarly to SiO ₂ glass, Ryu et al. (2022) has also
301	reported decrease of Si-O-Si angle in MgSiO ₃ glass with increasing pressure. We therefore
302	consider that the pressure-induced structural change in MgSiO ₃ glass up to 5.2 GPa is
303	attributed to the decrease of Si-O-Si angle, as same as well-known compression behavior in
304	SiO ₂ glass (e.g., Sonneville et al., 2013). On the other hand, CaSiO ₃ glass shows almost no
305	change in the r ₄ peak position with varying pressure (Fig. 4), which indicate both Si-Si and
306	Ca-Si distances at ~3.0 Å do not change at high pressures. The calculated Si-O-Si and Ca-
307	O-Si angles of the CaSiO ₃ glass show almost no change with increasing pressure (Fig. 5),
308	which is different from the marked decrease of the Si-O-Si angle in MgSiO ₃ glass at high
309	pressures. In exchange for the almost no change in Si-O-Si and Ca-Si-O angles, the $g(r)$ of
310	CaSiO ₃ glass at high pressures show marked increase of the r ₄ peak intensity accompanied
311	with the decrease of the r5 peak intensity (Fig. 2d). Although the r5 (Ca-Si/Ca-Ca) peak
312	position of CaSiO ₃ glass slightly shortens with increasing pressure (0.8 % between ambient
313	and 5.4 GPa) (Fig. 4b), it is not as large as the shortening of the Si-Si peak position in
314	MgSiO ₃ glass at high pressures (1.8 % between ambient and 5.2 GPa).
315	These data indicate marked difference in the high-pressure behavior of
316	intermediate range structures of MgSiO3 and CaSiO3 glasses. There are two important

317	structural parameters to discuss intermediate range structure in silicate glasses. One is Q ⁿ
318	species, which represents the number of bridging oxygens (n) connected with a tetrahedral
319	cation (e.g., Mysen, 1990; Stebbins et al., 1992). Salmon et al. (2019) has shown pressure
320	dependence of Q^n species in MgSiO ₃ and CaSiO ₃ glasses calculated by MD simulations.
321	The MD simulations of Salmon et al. (2019) show that both MgSiO ₃ and CaSiO ₃ glasses
322	consist of ~50% of Q^2 species with ~25% of Q^1 and Q^3 species, which are consistent with
323	those reported by ²⁹ Si NMR measurements at ambient pressure for MgSiO ₃ (Sen et al.
324	2009; Davis et al., 2011) and CaSiO ₃ (Zhang et al., 1997; Kaseman et al., 2015) glasses.
325	The fractions of the Q ⁿ species in both MgSiO ₃ and CaSiO ₃ glasses show only little change
326	with varying pressure at least below 10 GPa (Salmon et al., 2019). The data indicate that Q ⁿ
327	species do not change in both MgSiO3 and CaSiO3 glasses at least in the pressure
328	conditions of this study up to 5.4 GPa. We therefore consider that Q^n species are not
329	structural origin of our obtained different high-pressure behavior in the intermediate range
330	structures of MgSiO ₃ and CaSiO ₃ glasses (Figs. 4 and 5).
331	Another important structural parameter to discuss pressure-induced structural change
332	in silicate glasses is polyhedron connectivity (e.g., Lan et al., 2017; Hasmy et al. 2021). It

333 has been reported in theoretical studies that SiO_x polyhedrons of silicate glasses connect by

334	corner-shared, edge-shared, and/or face-shared configurations, and the polyhedron
335	connectivity may change with varying pressure (e.g., Lan et al., 2017; Hasmy et al. 2021).
336	A molecular dynamics simulation study showed that CaSiO ₃ glass has similar polyhedron
337	connectivity structure to wollastonite (Mead and Mountjoy, 2006b). We therefore consider
338	polyhedron connectivity in CaSiO ₃ glass based on the wollastonite structure as a structural
339	motif. In wollastonite, SiO_4 tetrahedra and CaO_6 octahedra forms corner-shared SiO_4 -SiO ₄
340	and edge-shared CaO ₆ -CaO ₆ structures. These configurations yield the average Si-Si
341	distance of 3.14±0.04 Å and the average Ca-Ca distance of 3.58±0.11 Å, respectively
342	(Ohashi, 1984). On the other hand, there are two Ca-Si distances in wollastonite crystal
343	structure formed by the corner-shared (3.65 \pm 0.16 Å) and edge-shared (3.10 \pm 0.03 Å)
344	configurations of SiO ₄ tetrahedron and CaO ₆ octahedron (Ohashi, 1984). The two Ca-Si
345	distances of the corner-shared and edge-shared CaO ₆ -SiO ₄ configurations in the CaSiO ₃
346	structural motif correspond to the r_5 and r_4 peak positions, respectively, in CaSiO ₃ glass in
347	this study. Then, our data imply that the change of the peak intensity between the r_4 and r_5
348	peaks obtained in the $g(r)$ of CaSiO ₃ glass at high pressures (Fig. 2d) can be due to the
349	structural change in the CaO_6 -SiO ₄ configuration. At low pressures up to 0.8 GPa, low r_4
350	peak intensity implies that the r_4 peak is mainly composed of the SiO ₄ -SiO ₄ structure and

351	that the fraction of the edge-shared CaO ₆ -SiO ₄ structure is low. The low contribution of the
352	edge-shared CaO_6 -SiO ₄ structure on the r_4 peak is consistent with previous molecular
353	dynamics simulation study of CaSiO ₃ glass at ambient pressure (Mead and Mountjoy,
354	2006b). On the other hand, at high pressures, the intensity of the r_4 peak markedly increases
355	accompanied with decreasing intensity of the r_5 peak (Fig. 2d). From the previous
356	simulation study of SiO ₂ glass (Hasmy et al., 2021), Si-Si coordination number does not
357	change at the pressure conditions below 5.4 GPa. Furthermore, the Raman spectroscopy
358	observations of CaSiO ₃ glass below 5 GPa (Kubicki et al., 1992; Wolf and McMillan, 1995)
359	show no change in the vibrational spectra related to SiO ₄ polyhedral units with increasing
360	pressure at least below 5 GPa, although it starts to change above 10 GPa. Therefore, we
361	interpret the r ₄ peak intensity change as the increase of the fraction of the edge-shared
362	CaO ₆ -SiO ₄ structure accompanied with decrease of the fraction of the corner-shared CaO ₆ -
363	SiO_4 structure (the decrease of the intensity of the r_5 peak) at high pressures. The
364	interpretation of the high-pressure structural behavior of CaSiO ₃ glass at the pressure
365	conditions less than 5.4 GPa is consistent with previous molecular dynamics simulations
366	(e.g., Mead and Mountjoy, 2006a; Shimoda and Okuno, 2006). Mead and Mountjoy
367	(2006a) investigated pressure-induced structural change in CaSiO ₃ glasses at 0, 5, and 10

368	GPa, and showed that the intensity of the Ca-Si peak at ~ 3.1 Å increases with increasing
369	pressure. In addition, Shimoda and Okuno (2006) also showed increase of the Ca-Si peak at
370	\sim 3.1 Å accompanied with decrease of the Ca-Si peak \sim 3.6 Å between 0 and 7.5 GPa. Thus,
371	our data suggest that compression of CaSiO ₃ glass at high pressures up to 5.4 GPa occurs
372	through the modification of the CaO ₆ -SiO ₄ structure from the corner-shared configuration
373	to the edge-shared configuration without changing the SiO ₄ -SiO ₄ structure.

374

375

Implications

376 In this study, we observed different structural behavior in CaSiO₃ and MgSiO₃ glasses 377 at high pressures. The different high-pressure structural behavior is also likely present in 378 CaSiO₃ and MgSiO₃ melts, as Funamori et al. (2004) reported different behavior in the 379 FSDP position at high pressures as same as our observations (Fig. 3). MgSiO₃ glass shows 380 marked shift of the position of the FSDP with increasing pressure, while CaSiO₃ glass 381 shows only small change in the FSDP position at high pressures (Fig. 3). The different 382 behavior of the FSDP position in MgSiO₃ and CaSiO₃ glasses obtained in this study are 383 similar to those in MgSiO₃ and CaSiO₃ melts reported in Funamori et al. (2004) (Fig. 3). These data imply possible presence of intrinsic high-pressure structural difference due to 384

385	different cation of Mg and Ca in both silicate glass and melt, and its importance in
386	understanding nature and properties of silicate magmas in the Earth's upper mantle. For
387	example, it has been known that viscosity of supercooled liquid MgSiO ₃ -CaSiO ₃
388	compositions show deep minima in the viscosity-composition relationship (Neuville and
389	Richet, 1991), which is difficult to be interpreted by common viscosity-NBO/T (non-
390	bridging oxygen (NBO) per tetrahedrally coordinated cation (T)) model (e.g., Bottinga and
391	Weil, 1972; Shaw, 1972; Giordano and Dingwell, 2003). In addition, Cochain et al. (2017)
392	reported different high-pressure behavior in the viscosity of MgSiO ₃ and CaSiO ₃ melts.
393	CaSiO ₃ melt (103.6 mPa s at 6.4 GPa and 2128 K) has markedly higher viscosity than
394	MgSiO ₃ melt (53.5 mPa s at 6.3 GPa and 2148 K) at high pressures. Furthermore,
395	molecular dynamics simulations by Zhang et al. (2010) showed that the difference in
396	viscosity between CaSiO ₃ and MgSiO ₃ melts becomes larger at 20 GPa. Our observed
397	different high-pressure structural behavior between CaSiO3 and MgSiO3 glasses may be
398	structural origin of the marked difference in the viscosity of CaSiO ₃ and MgSiO ₃ melts at
399	high pressures.

400

24

401	Author Contributions		
402	N.M.K and Y.K. devised the project, and wrote the manuscript. N.M.K. carried out		
403	the experiments with support from Y.K., I.O. and R.H. for the experiment at the beamline		
404	16-BM-B in APS, and Y.K., K.O., K.N., and O.S. for the experiment at the beamline		
405	BL04B2 and BL37XU in SPring-8. All authors discussed the results on the manuscript.		
406			
407	Acknowledgments		
408	This research is supported by JSPS KAKENHI (Grant Numbers: 19KK0093, 20H00201,		
409	and 20K22369), JSPS Bilateral Program (Grant Number: JPJSBP120209926), and the		
410	SACLA/SPring-8 Basic Development Program. The experiments were conducted at the		
411	beamline BL04B2 and BL37XU in SPring-8 (JASRI Proposal No.: 2019B1495,		
412	2021A1087 and 2021A1096 for BL04B2 beamline, 2019B1111, 2020A0600, and		
413	2021A1068 for BL37XU beamline) and at the beamline 16-BM-B in APS. Portions of this		
414	work were performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne		
415	National Laboratory. HPCAT operations are supported by DOE-NNSA's Office of		
416	Experimental Sciences. The Advanced Photon Source is a U.S. Department of Energy		
417	(DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne 25		

418	National Laboratory und	er Contract No	DE-AC02-06CH11357.
-----	-------------------------	----------------	--------------------

419

420	References
421	Andrault, D., Morard, G., Garbarino, G., Mezouar, M., Bouhifd, M. A., and Kawamoto, T.
422	(2020). Melting behavior of SiO2 up to 120 GPa. Physics and Chemistry of
423	Minerals, 47(2), 1-9.
424	Bajgain, S., Ghosh, D.B., and Karki, B.B. (2015). Structure and density of basaltic melts;
425	at mantle conditions from first-principles simulations. Nature
426	communications, 6(1), 8578.
427	Benmore, C.J., Soignard, E., Amin, S.A., Guthrie, M., Shastri, S.D., Lee, P.L., and Yarger,
428	J.L. (2010). Structural and topological changes in silica glass at
429	pressure. Physical Review B, 81(5), 054105.
430	Bottinga, Y., and Weill, D.F. (1972). The viscosity of magmatic silicate liquids; a model
431	calculation. American journal of science, 272(5), 438-475.
432	Cochain, B., Sanloup, C., Leroy, C., and Kono, Y. (2017). Viscosity of mafic magmas at
433	high pressures. Geophysical Research Letters, 44(2), 818-826.

26

434	Cormier, L., and Cuello, G.J. (2011). Mg coordination in a MgSiO ₃ glass using neutron
435	diffraction coupled with isotopic substitution. Physical Review B, 83(22),
436	224204.
437	Cormier, L., and Cuello, G.J. (2013). Structural investigation of glasses along the
438	MgSiO ₃ –CaSiO ₃ join: Diffraction studies. Geochimica et Cosmochimica
439	Acta, 122, 498-510.
440	Davis, M.C., Sanders, K.J., Grandinetti, P.J., Gaudio, S.J., and Sen, S. (2011). Structural
441	Investigations of magnesium silicate glasses by 29Si 2D magic-angle flipping
442	NMR. Journal of Non Crystalline Solids, 357(15), 2787-2795.
443	De Grouchy, C.J., Sanloup, C., Cochain, B., Drewitt, J.W., Kono, Y., & Crépisson, C.
444	(2017). Lutetium incorporation in magmas at depth: Changes in melt local
445	environment and the influence on partitioning behaviour. Earth and Planetary
446	Science Letters, 464, 155-165.
447	Faber, T.E., and Ziman, J.M. (1965). A theory of the electrical properties of liquid metals:
448	III. The resistivity of binary alloys. Philosophical Magazine, 11(109), 153-
449	173.
450	Funamori, N., Yamamoto, S., Yagi, T., and Kikegawa, T. (2004). Exploratory studies of

451	silicate melt structure at high pressures and temperatures by in situ X-ray
452	diffraction. Journal of Geophysical Research: Solid Earth, 109(B3).
453	Giordano, D., and Dingwell, D.B. (2003). Non-Arrhenian multicomponent melt viscosity:
454	a model. Earth and Planetary Science Letters, 208(3-4), 337-349.
455	Ghosh, D.B., Karki, B.B., and Stixrude, L. (2014). First-principles molecular dynamics
456	simulations of MgSiO ₃ glass: Structure, density, and elasticity at high
457	pressure. American Mineralogist, 99(7), 1304-1314.
458	Hasmy, A., Ispas, S., and Hehlen, B. (2021). Percolation transitions in compressed SiO2
459	glasses. Nature, 599(7883), 62-66.
460	Hosemann, R., and Bagchi, S.N. (1962). Direct analysis of diffraction by matter. North-
461	Holland Publishing Company.
462	Kalampounias, A.G., Nasikas, N.K., and Papatheodorou, G.N. (2009). Glass formation
463	and structure in the MgSiO ₃ -Mg ₂ SiO ₄ pseudobinary system: From degraded
464	networks to ioniclike glasses. The Journal of chemical physics, 131(11), 114513.
465	Kaseman, D.C., Retsinas, A., Kalampounias, A.G., Papatheodorou, G. N., and Sen, S.
466	(2015). Q-speciation and network structure evolution in invert calcium silicate
467	glasses. The Journal of Physical Chemistry B, 119(26), 8440-8445.

468	Kohara, S., Itou, M., Suzuya, K., Inamura, Y., Sakurai, Y., Ohishi, Y., & Takata, M. (2007).
469	Structural studies of disordered materials using high-energy x-ray diffraction from
470	ambient to extreme conditions. Journal of Physics: Condensed Matter, 19(50),
471	506101.
472	Kohara, S., Akola, J., Morita, H., Suzuya, K., Weber, J.K.R., Wilding, M.C., and Benmore,
473	C.J. (2011). Relationship between topological order and glass forming ability in
474	densely packed enstatite and forsterite composition glasses. Proceedings of the
475	National Academy of Sciences, 108(36), 14780-14785.
476	Kono, Y., Irifune, T., Higo, Y., Inoue, T., and Barnhoorn, A. (2010). P–V–T relation of
477	MgO derived by simultaneous elastic wave velocity and in situ X-ray
478	measurements: A new pressure scale for the mantle transition region. Physics of
479	the Earth and Planetary Interiors, 183(1-2), 196-211.
480	Kono, Y., Park, C., Kenney-Benson, C., Shen, G., and Wang, Y. (2014). Toward
481	comprehensive studies of liquids at high pressures and high temperatures:
482	Combined structure, elastic wave velocity, and viscosity measurements in the
483	Paris–Edinburgh cell. Physics of the Earth and Planetary Interiors, 228, 269-
484	280.

485	Kono, Y., Shibazaki, Y., Kenney-Benson, C., Wang, Y., and Shen, G. (2018). Pressure-
486	induced structural change in MgSiO3 glass at pressures near the Earth's core-
487	mantle boundary. Proceedings of the National Academy of Sciences, 115(8),
488	1742-1747.
489	Kono, Y., Shu, Y., Kenney-Benson, C., Wang, Y., and Shen, G. (2020). Structural evolution
490	of SiO ₂ glass with Si coordination number greater than 6. Physical Review
491	Letters, 125(20), 205701.
492	Kono, Y., Ohara, K., Kondo, N.M., Yamada, H., Hiroi, S., Noritake, F., & Yabashi, M.
493	(2022). Experimental evidence of tetrahedral symmetry breaking in SiO2 glass
494	under pressure. Nature communications, 13(1), 1-8.
495	Kubicki, J.D., Hemley, R.J., and Hofmeister, A.M. (1992). Raman and infrared study of
496	pressure-induced structural changes in MgSiO3, CaMgSi2O6, and CaSiO3
497	glasses. American Mineralogist, 77(3-4), 258-269.
498	Lan, M.T., Duong, T.T., Iitaka, T., and Van Hong, N. (2017). Computer simulation of
499	CaSiO3 glass under compression: Correlation between Si-Si pair radial distribution
500	function and intermediate range order structure. Materials Research Express, 4(6),
501	065201.

502	Lee, S.K., Lin, J.F., Cai, Y.Q., Hiraoka, N., Eng, P.J., Okuchi, T., and Yoo, C.S. (2008).
503	X-ray Raman scattering study of MgSiO3 glass at high pressure: Implication for
504	triclustered MgSiO ₃ melt in Earth's mantle. Proceedings of the National
505	Academy of Sciences, 105(23), 7925-7929.
506	Lee, S.K., Kim, Y.H., Yi, Y.S., Chow, P., Xiao, Y., Ji, C., and Shen, G. (2019). Oxygen
507	quadelusters in SiO_2 glass above megabar pressures up to 160 GPa revealed by
508	X-ray Raman scattering. Physical Review Letters, 123(23), 235701.
509	Lorch, E. (1969). Neutron diffraction by germania, silica and radiation-damaged silica
510	glasses. Journal of Physics C: Solid State Physics, 2(2), 229.
511	Mead, R.N., and Mountjoy, G. (2006a). A molecular dynamics study of densification
512	mechanisms in calcium silicate glasses Ca Si 2 O 5 and Ca Si O 3 at pressures of 5
513	and 10 GPa. The Journal of chemical physics, 125(15), 154501.
514	Mead, R.N., and Mountjoy, G. (2006b). A molecular dynamics study of the atomic
515	structure of (CaO) x (SiO2) 1-x glasses. The Journal of Physical Chemistry
516	B, 110(29), 14273-14278.
517	Murakami, M., and Bass, J.D. (2010). Spectroscopic evidence for ultrahigh-pressure
518	polymorphism in SiO ₂ glass. Physical Review Letters, 104(2), 025504.

31

519	Mysen, B.O. (1990). Effect of pressure, temperature, and bulk composition on the structure
520	and species distribution in depolymerized alkali aluminosilicate melts and quenched
521	melts. Journal of Geophysical Research: Solid Earth, 95(B10), 15733-15744.
522	Neuville, D. R., and Richet, P. (1991). Viscosity and mixing in molten (Ca, Mg) pyroxenes
523	and garnets. Geochimica et Cosmochimica Acta, 55(4), 1011-1019.
524	Ohara, K., Onodera, Y., Kohara, S., Koyama, C., Masuno, A., Mizuno, A., and Sakata,
525	O. (2020). Accurate synchrotron hard X-ray diffraction measurements on high-
526	temperature liquid oxides. International Journal of Microgravity Science and
527	Application, 37(2), 370202.
528	Ohashi, Y. (1984). Polysynthetically-twinned structures of enstatite and
529	wollastonite. Physics and Chemistry of Minerals, 10(5), 217-229.
530	Petitgirard, S., Sahle, C.J., Weis, C., Gilmore, K., Spiekermann, G., Tse, J.S., and
531	Sternemann, C. (2019). Magma properties at deep Earth's conditions from
532	electronic structure of silica. Geochemcal Perspective Letters, 9, 32-37.
533	Prescher, C., Prakapenka, V.B., Stefanski, J., Jahn, S., Skinner, L.B., and Wang, Y. (2017).
534	Beyond sixfold coordinated Si in SiO ₂ glass at ultrahigh pressures. Proceedings
535	of the National Academy of Sciences, 114(38), 10041-10046.

32

536	Ryu, Y.J., Wang, Y., Yu, T., Bonnet, F., Greenberg, E., Prescher, C., and Rivers, M.L.
537	(2022). A multi-faceted experimental study on the dynamic behavior of $MgSiO_3$
538	glass in the Earth's deep interior. American Mineralogist, 107(7), 1313-1324.
539	Sakamaki, T., Suzuki, A., Ohtani, E., Terasaki, H., Urakawa, S., Katayama, Y., and
540	Ballmer, M.D. (2013). Ponded melt at the boundary between the lithosphere and
541	asthenosphere. Nature Geoscience, 6(12), 1041-1044.
542	Salmon, P.S., Moody, G.S., Ishii, Y., Pizzey, K.J., Polidori, A., Salanne, M., and
543	MacLeod, S.G. (2019). Pressure induced structural transformations in amorphous
544	MgSiO ₃ and CaSiO ₃ . Journal of Non-Crystalline Solids: X, 3, 100024
545	Sanloup, C., Drewitt, J.W., Konôpková, Z., Dalladay-Simpson, P., Morton, D.M., Rai,
546	N., and Morgenroth, W. (2013). Structural change in molten basalt at deep
547	mantle conditions. Nature, 503(7474), 104-107.
548	Sato, T., and Funamori, N. (2008). Sixfold-coordinated amorphous polymorph of SiO_2
549	under high pressure. Physical review letters, 101(25), 255502.
550	Sen, S., Maekawa, H., and Papatheodorou, G.N. (2009). Short-range structure of invert
551	glasses along the pseudo-binary join MgSiO3- Mg2SiO4: Results from 29Si and
552	25Mg MAS NMR spectroscopy. The Journal of Physical Chemistry B, 113(46),
	33

553 15243-15248.

554	Shaw, H.R. (1972). Viscosities of magmatic silicate liquids; an empirical method of
555	prediction. American Journal of Science, 272(9), 870-893.
556	Shimoda, K., Miyamoto, H., Kikuchi, M., Kusaba, K., and Okuno, M. (2005). Structural
557	evolutions of CaSiO3 and CaMgSi2O6 metasilicate glasses by static
558	compression. Chemical Geology, 222(1-2), 83-93.
559	Shimoda, K., and Okuno, M. (2006). Molecular dynamics study of CaSiO3–MgSiO3
560	glasses under high pressure. Journal of Physics: Condensed Matter, 18(28), 6531.
561	Sonneville, C., Deschamps, T., Martinet, C., de Ligny, D., Mermet, A., and Champagnon,
562	B. (2013). Polyamorphic transitions in silica glass. Journal of non-crystalline
563	solids, 382, 133-136.
564	Stebbins, J.F., Farnan, I., and Xue, X. (1992). The structure and dynamics of alkali silicate
565	liquids: A view from NMR spectroscopy. Chemical Geology, 96(3-4), 371-385.
566	Tsuchiya, T. (2003). First-principles prediction of the P-V-T equation of state of gold and
567	the 660-km discontinuity in Earth's mantle. Journal of Geophysical Research:
568	Solid Earth, 108(B10).
569	Wang, Y., Sakamaki, T., Skinner, L.B., Jing, Z., Yu, T., Kono, Y., and Sutton, S. R.

570	(2014). Atomistic insight into viscosity and density of silicate melts under							
571	pressure. Nature communications, 5(1), 3241.							
572	Wolf, G.H., and McMillan, P.F. (1995). Pressure effects on silicate melt structure and							
573	properties. Reviews in Mineralogy and Geochemistry, 32(1), 505-561.							
574	Zhang, P., Grandinetti, P.J., and Stebbins, J.F. (1997). Anionic species determination in							
575	CaSiO3 glass using two-dimensional 29Si NMR. The Journal of Physical							
576	Chemistry B, 101(20), 4004-4008.							
577	Zhang, L., Van Orman, J.A., and Lacks, D.J. (2010). Molecular dynamics investigation of							
578	MgO-CaO-SiO ₂ liquids: Influence of pressure and composition on density and							
579	transport properties. Chemical Geology, 275(1-2), 50-57.							
580								
581								
582	List of figure captions							
583	Figure 1. Structure factor, $S(Q)$, and pair distribution function, $g(r)$, of MgSiO ₃ glass (a , b)							
584	and of $CaSiO_3$ glass (c , d) at ambient pressure. (b) r_1 , r_2 , r_3 , and r_4 are Si-O, Mg-O, O-O,							
585	and Si-Si/Mg-Si/Mg-Mg distances, respectively. (d) r ₁ , r ₂ , r ₃ , r ₄ and r ₅ are Si-O, Ca-O, O-O,							
586	Si-Si, and Ca-Si/Ca-Ca distances, respectively.							

587

588	Figure 2. Structure factor, $S(Q)$, and pair distribution function, $g(r)$, of MgSiO ₃ glass (a , b)
589	and CaSiO ₃ glass (c , d) at high pressures. (b) r_1 , r_2 , and r_4 are Si-O, Mg-O, and Si-Si/Mg-
590	Si/Mg-Mg distances, respectively. (d) r_1 , r_2 , r_4 and r_5 are Si-O, Ca-O, Si-Si, and Ca-Si/Ca-
591	Ca distances, respectively.
592	
593	Figure 3. Position of the first sharp diffraction peak (FSDP) in $S(Q)$ of CaSiO ₃ and MgSiO ₃
594	glasses at high pressures, compared with those of CaSiO ₃ and MgSiO ₃ melts reported in
595	Funamori et al. (2004). Solid red squares and solid black triangles represent the FSDP
596	positions of CaSiO ₃ and MgSiO ₃ glasses, respectively, obtained in this study. Sizes of the
597	errors in CaSiO ₃ glass results are smaller than the size of the symbol. Open red squares and
598	open black triangles represent the FSDP positions of CaSiO3 and MgSiO3 melts,
599	respectively, reported in Funamori et al. (2004). Vertical bars on the symbols represent the
600	size of the error. Several data have the error bar smaller than the symbol size.
601	
602	

Figure 4. Peak positions in g(r) of CaSiO₃ and MgSiO₃ glasses form ambient to around 5

36

604 GPa. Red solid squares and black solid triangles represent peak positions of CaSiO₃ and 605 MgSiO₃ glasses, respectively. Vertical bars on the symbols represent the size of the error. 606 Several data have the error bar smaller than the symbol size. 607 608 Figure 5. Si-O-Si angle of MgSiO₃ glasses and Si-O-Si/Ca-O-Si angles of CaSiO₃ glass as a function of pressure. The Si-O-Si angle (θ) was calculated by using simple sine relation 609 $(\theta = 2 \cdot \arcsin[(|Si - Si|/2)/|Si - 0|])$. Vertical bars on the symbols represent the size of 610 the error. Several data have the error bar smaller than the symbol size. 611 612

Table 1. Positions of the first sharp diffraction peak (FSDP) of S(Q), peak positions in

- 614 g(r), Si-O-Si angle of MgSiO₃, and Si-O-Si and Ca-O-Si angles of CaSiO₃ glasses at
- 615 ambient and high pressure conditions.

MgSiO3 glass	Ambient	1.0 GPa	1.9 GPa	3.0 GPa	4.3 GPa	5.2 GPa
FSDP (Å ⁻¹)	1.88(±0.01)	1.93(±0.01)	1.94(±0.01)	1.96(±0.01)	2.01(±0.05)	2.03(±0.06)
Si-O (Å)	1.621(±0.002)	1.613(±0.002)	1.618(±0.002)	1.616(±0.002)	1.605(±0.003)	1.614(±0.009)
Mg-O (Å)	2.030(±0.004)	2.026(±0.006)	2.004(±0.005)	2.050(±0.004)	2.027(±0.007)	2.055(±0.004)
O-O (Å)	2.65(fixed)	2.65(fixed)	2.65(fixed)	2.65(fixed)	2.65(fixed)	2.65(fixed)
Si-Si (Å)	3.179(±0.006)	3.171(±0.002)	3.168(±0.002)	3.134(±0.013)	3.113(±0.003)	3.122(±0.011)
Mg-Si (Å)	3.220(±0.006)	3.226(±0.006)	3.234(±0.008)	3.210(±0.006)	3.206(±0.007)	3.209(±0.004)
Mg-Mg	3.42(fixed)	3.42(fixed)	3.42(fixed)	3.42(fixed)	3.42(fixed)	3.42(fixed)
Si-O-Si angle (°)	137.3(±0.8)	135.8(±0.5)	133.9(±0.6)	133.8(±0.6)	133.7(±0.9)	130.9(±1.4)

CaSiO ₃ glass	Ambient	0.8 GPa	2.3 GPa	3.3 GPa	4.6 GPa	5.4 GPa
FSDP (Å ⁻¹)	2.137(±0.005)	2.154(±0.003)	2.168(±0.001)	2.177(±0.002)	2.189(±0.003)	2.200(±0.002)
Si-O (Å)	1.622(±0.001)	1.618(±0.003)	1.616(±0.003)	1.621(±0.003)	1.611(±0.003)	1.614(±0.003)
Ca-O (Å)	2.302(±0.001)	2.315(±0.004)	2.306(±0.004)	2.305(±0.004)	2.298(±0.004)	2.297(±0.004)
O-O (Å)	2.611(±0.007)	2.611(fixed)	2.611(fixed)	2.611(fixed)	2.611(fixed)	2.611(fixed)
Si-Si, Ca-Si (Å)	3.017(±0.008)	2.997(±0.026)	2.998(±0.032)	2.998(±0.014)	2.998(±0.018)	2.996(±0.001)
Ca-Si, Ca-Ca (Å)	3.573(±0.014)	3.569(±0.015)	3.550(±0.021)	3.557(±0.026)	3.554(±0.013)	3.554(±0.015)
Si-O-Si and Ca-O-Si angles (°)	136.8(±0.8)	135.6(±2.5)	136.2(±3.0)	135.4(±1.4)	137.0(±1.8)	136.3(±1.2)

616

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5