1 REVISION 1

2 Abstract + Main Text Word count: 5790

3 Bobfinchite, Na[(UO₂)₈O₃(OH)₁₁]·10H₂O, a new Na-bearing

4 member of the schoepite family

- Travis A. Olds^{1*}, Jakub Plášil², Anthony R. Kampf³, Peter C. Burns^{4,5}, Joe 5 Marty⁶, John S. McCloy⁷ 6 7 8 ¹ Section of Minerals & Earth Sciences, Carnegie Museum of Natural History, 9 4400 Forbes Avenue, Pittsburgh, Pennsylvania 15213, USA ² Institute of Physics ASCR, v.v.i., Na Slovance 1999/2, 18221 Prague 8, 10 **Czech Republic** 11 ³ Mineral Sciences Department, Natural History Museum of Los Angeles 12 13 County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA ⁴ Department of Civil and Environmental Engineering and Earth Sciences, 14 15 University of Notre Dame, Notre Dame, IN 46556, USA ⁵ Department of Chemistry and Biochemistry, University of Notre Dame, 16 17 Notre Dame, IN 46556, USA ⁶5199 East Silver Oak Road, Salt Lake City, UT 84108, USA 18 ⁷ School of Mechanical and Materials Engineering, Washington State 19 20 University, Pullman, WA, 99163, USA 21 22 *E-mail: oldst@carnegiemnh.org 23 Abstract 24 The new mineral bobfinchite (IMA2020–082), 25 $Na[(UO_2)_8O_3(OH)_{11}]$ ·10H₂O, was found in the Burro mine, Slick Rock 26 district, San Miguel County, Colorado, USA, where it occurs as an oxidation 27 product of uraninite on asphaltite matrix in intimate association with gypsum, 28 natrozippeite, metaschoepite, and uranopilite. Bobfinchite crystals are 29 transparent to translucent, yellow, lozenge-shaped discs up to 0.3 mm wide. 30 Crystals are flattened on [100] and exhibit the forms $\{100\}, \{011\}, \{021\}, \{0-1\}, \{0$ 31 21}, and {0-11}. Bobfinchite has a pale-yellow streak and emits very dim
- 32 yellow fluorescence under 365 nm ultraviolet illumination. The crystals are
- 33 brittle with very good {100} cleavage and irregular, stepped fracture. The

34	Mohs hardness is ca . 2 based on scratch tests. The calculated density is 5.044
35	$g \cdot cm^{-3}$ based on the empirical formula and 5.036 $g \cdot cm^{-3}$ for the ideal formula.
36	Bobfinchite is optically biaxial (–), with $\alpha = 1.690(5)$, $\beta = 1.7205(5)$, and $\gamma =$
37	1.730(5) (white light). The measured 2V, estimated from the interference
38	figure, is $55(5)^{\circ}$ and the calculated value is 59.1° . Dispersion is moderate, $r >$
39	<i>v</i> ; orientation: $X = \mathbf{a}$, $Y = \mathbf{b}$, $Z = \mathbf{c}$; pleochroism: <i>X</i> nearly colourless, <i>Y</i> yellow,
40	<i>Z</i> yellow; $X < Y \approx Z$. Electron microprobe analysis provided the empirical
41	formula $(Na_{0.99}Pb_{0.02})[(UO_2)_{7.99}O_3(OH)_{11}] \cdot 10H_2O$. The five strongest X-ray
42	powder diffraction lines are $[d_{obs} Å(I)(hkl)]$: 7.34(100)(200), 3.59(50)(024),
43	3.23(60)(224), 3.18(36)(240) and 2.01(23)(624,551,208,640,346). Bobfinchite
44	is orthorhombic, <i>Pbcn</i> , <i>a</i> = 14.6249(9), <i>b</i> = 14.0389(10), <i>c</i> = 16.6923(10) Å, <i>V</i>
45	= 3427.2(4) Å ³ and Z = 4. The structure of bobfinchite ($R_1 = 0.0330$ for 3770 I
46	$> 4\sigma I$) is built from uranyl oxide-hydroxide sheets that adopt the fourmarierite
47	topology, with interlayer Na^+ and H_2O groups. Both the sheet and interlayer
48	topology mimic those observed in natural and synthetic Na-metaschoepites
49	studied previously, and as seen in other uranyl oxide hydrate minerals, charge
50	balance is achieved at specific sites in the sheet through the substitution O^{2-} \Leftrightarrow
51	(OH) ⁻ .
52	
53	Keywords: New mineral, metaschoepite, schoepite family, uranyl oxide
54	hydrate, X-ray crystallography, Raman spectroscopy

55

56 Introduction

57 Uranyl oxide hydrates (UOH) are frequently encountered alteration phases in58 uranium mines and the technogenic environments of the nuclear fuel cycle

59	(Finch and Ewing, 1992; Finch et al., 1992; Finch and Murakami, 1999; Plášil,
60	2014; Plášil, 2018b). UOH minerals crystallize in mines where uranyl-bearing
61	$(\mathrm{UO}_2)^{2^+}$ solutions created from uraninite (UO_{2^+x}) under oxidizing conditions
62	interact with the surrounding rocks and soils. In some instances, later
63	hydrolysis of uranyl minerals (e.g. natrozippeite) can lead to the formation of
64	UOH's like schoepite, metaschoepite, heisenbergite, and paulscherrerite
65	(Brugger et al., 2011). Likewise, UOH and schoepite-family related phases
66	have historically been heavily scrutinized materials in countless experiments
67	related to the engineered environments of the nuclear fuel cycle, where they
68	occur as prevalent products of hydrothermal reactions with used nuclear fuel
69	and other U-rich nuclear materials (Fallon et al., 2023; Giammar and Hering,
70	2004; Gorman-Lewis et al., 2008; Hanson et al., 2005; Riba et al., 2005). The
71	observations made from natural occurrences, laboratory, and field alteration
72	studies involving UOH and schoepite-family minerals reveal intricate
73	dependencies of their formation and stability on local conditions, and that
74	these phases are the dominant solubility-limiting phases produced during the
75	dissolution of uranium dioxide (Colmenero et al., 2019; Knope and
76	Soderholm, 2013; Zhang et al., 2022). The resulting chemical and structural
77	differences found in the U-O-H system leads to a diverse phase space that is
78	primarily time, temperature, hydration state, and radiation-field dependent
79	(Benjamin et al., 2022; Finch et al., 1998; Kirkegaard et al., 2019; Sowder et
80	al., 1999; Sunder et al., 1992; Taylor et al., 1991). We add to this complex and
81	important phase space with the description of bobfinchite, the first Na-bearing
82	member of the schoepite family.

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

83	Bobfinchite is named in honor of American mineralogist and global
84	nuclear security and nonproliferation analyst Robert James Finch (born 1958).
85	Dr. Finch received a Ph.D. in Earth and Planetary Sciences in 1994 from the
86	University of New Mexico for his work on the paragenesis and crystal
87	chemistry of uranyl oxide hydrates. Subsequent to post-doctoral research at
88	the University of Manitoba, in 1996 Bob joined Argonne National Laboratory
89	and performed a variety of research in applied mineralogy that focused on
90	corrosion of spent nuclear fuel under hypothetical repository conditions. He
91	has been involved in the structural description of many uranium minerals and
92	synthetic phases containing uranium, including rutherfordine, ianthinite,
93	billietite, wyartite, and dehydrated wyartite. Bob was the first to determine and
94	refine the structure of schoepite (Finch et al., 1996) and provided the first
95	refinement of the structure of metaschoepite from altered schoepite and the
96	powders produced by heating schoepite (Finch et al., 1998). He has published
97	many articles, conference proceedings, books, and book chapters focused on
98	uranium minerals and nuclear materials, including serving as co-editor and
99	contributor to Uranium: Mineralogy, Geochemistry and the Environment,
100	Reviews in Mineralogy vol. 38, published by the Mineralogical Society of
101	America.
102	The mineral and its name have been approved by the Commission on
103	New Minerals, Nomenclature and Classification of the International
104	Mineralogical Association (IMA2020-082). The holotype specimen deposited
105	in the collections of the Natural History Museum of Los Angeles County, 900
106	Exposition Boulevard, Los Angeles, CA 90007, USA, catalogue number
107	75146.

108

109 Occurrence

110	Bobfinchite was found underground in the Burro mine, Slick Rock
111	district, San Miguel County, Colorado, USA (38°2'42"N 108°53'23"W). The
112	Burro mine is located on the southern edge of the Uravan Mineral Belt in
113	southwestern Colorado, where numerous uranium and vanadium mines occur
114	in bedded sandstone and roll-front deposits of the Salt Wash member of the
115	Jurassic Morrison Formation (Carter and Gualtieri, 1965; Shawe, 2011).
116	Uranium and vanadium ores deposited where U- and V-rich solutions
117	encountered regions of reducing solutions that had developed around
118	accumulations of carbonaceous plant material (asphaltite). Post-mining
119	oxidation and leaching of uranyl cations, $(UO_2)^{2+}$, from uraninite embedded in
120	the asphaltite led to the formation of bobfinchite.
121	The new mineral crystallized directly on asphaltite and is intimately
122	associated with other secondary uranyl minerals including natrozippeite,
123	metaschoepite, and uranopilite. Bobfinchite occurs very rarely in the Burro
124	mine, having so far been found in one relatively small pod of asphaltite,
125	measuring approximately 3 feet wide and 8-10 inches thick. Other minerals in
126	close association include abundant gypsum and sporadic tufts of an
127	unidentified and poorly-diffracting fibrous and hydrous mineral containing
128	major U, V, S, and O, with minor Al, P, and Mg. In the same aphaltite pod,
129	but not in close association with bobfinchite, we have identified crystals of
130	uroxite, metauroxite, sklodowskite, and an additional unidentified but poorly
131	crystallized hydrous mineral with a complex and variable composition
132	including U, C, V, S, P, and As.

5

133	Some paragenetic insights can be inferred despite the complex local
134	secondary mineralization. The largest and highest quality bobfinchite crystals
135	were found growing directly on asphaltite, and are commonly overgrown by
136	and intergrown with well-crystallized natrozippeite and uranopilite, suggesting
137	that bobfinchite may have been one of the first secondary minerals formed
138	there, or that it had co-precipitated with these minerals. Associated
139	metaschoepite is generally poorly formed, occurring as anhedral or bubbly
140	aggregates with abundant gypsum in intimate association.
141	
142	Physical and optical properties
143	Bobfinchite crystals are yellow lozenge-shaped discs occurring as
144	individuals, reaching up to 0.3 mm wide, and as yellow to golden-yellow
145	polycrystalline aggregates up to 0.5 mm wide (Fig. 1). Crystals are flattened
146	on [100] and exhibit the forms {100}, {011}, {021}, {0-21}, {0-11} (Fig. 2).
147	They are transparent to translucent with a vitreous luster, have a pale-yellow
148	streak and extremely dim yellow fluorescence was observed under 365 nm
149	ultraviolet illumination only. The crystals are brittle with very good $\{100\}$
150	cleavage and irregular, stepped fracture. The Mohs hardness is about 2 based
151	on scratch tests. The density could not be measured because it exceeds that of
152	available heavy liquids. The calculated density is 5.044 g \cdot cm ⁻³ based on the
153	empirical formula and 5.036 g·cm ⁻³ for the ideal formula. Bobfinchite is
154	slowly soluble in dilute HCl.
155	Optically, bobfinchite is biaxial (–), with $\alpha = 1.690(5)$, $\beta = 1.7205(5)$,
156	and $\gamma = 1.730(5)$ (measured in white light). The measured 2 <i>V</i> estimated from
157	the interference figure is $55(5)^{\circ}$ and the calculated value is 59.1° . Dispersion is
158	moderate, with $r > v$. The optical orientation is $X = \mathbf{a}$, $Y = \mathbf{b}$, $Z = \mathbf{c}$;

159 pleochroism: X nearly colourless, Y yellow, Z yellow; $X < Y \approx Z$. The

160 Gladstone-Dale compatibility (Mandarino, 2007), $1 - (K_p/K_c)$, is -0.017

- 161 (superior) for the empirical formula using k = 0.118.
- 162

163 Raman Spectroscopy

164 Raman spectroscopy was conducted using a Thermo Scientific

165 DXR2xi with excitation by a 785 nm laser and detection from $1800-50 \text{ cm}^{-1}$

166 (Fig. 3). The spectrum was taken using a laser output of 10 mW focused onto

167 the sample surface using a 50x objective. The laser was internally calibrated

168 prior to measurement via a software controlled (OMNICxi) procedure using

169 neon emission lines (wavelength calibration), polystyrene bands (laser

170 frequency calibration), and a standardized white light source (intensity

171 calibration).

172 We observed no bands related to v OH vibrations in the high

173 wavenumber region of the spectrum using the 785 nm laser; however, a broad

band related to the v_2 (δ) bending vibrations of H₂O groups is present at 1599

 175 cm^{-1} , enveloping a minor component at 1563 cm⁻¹ that may be attributed to

176 the same mode, or possibly to a combination band or δ -UOH bending mode.

177 In schoepite, the v_2 (δ) H₂O band occurs at 1621 cm⁻¹, and density functional

178 perturbation theory (DFPT) calculations of the vibrational properties of

179 schoepite by Colmenero et al. (2018) reveals the presence of two bands at

180 1624 cm⁻¹ and 1605 cm⁻¹. The series of broad bands between \sim 1400 cm⁻¹ and

181 1200 cm⁻¹ in the spectrum of bobfinchite probably occur due to δ -UOH

bending modes, with fitted centers at 1328 cm^{-1} , 1262 cm^{-1} , and 1204 cm^{-1} ;

183 however, no bands were identified in this region by DFPT calculations of

184 schoepite. Likewise, in the Raman spectrum of synthetic metaschoepite,

185 Kirkegaard et al. (2019) observe no bands above 869 cm^{-1} .

186 Slight nonlinearity of the uranyl bonds in bobfinchite has led to

- 187 activation of the $v_3 (UO_2)^{2+}$ antisymmetric stretching vibration, which occurs
- 188 as a very weak band at 967 cm⁻¹. The $v_1 (UO_2)^{2+}$ symmetric stretching
- 189 vibration is present as a strong and complex band; fitting reveals that it is
- 190 composed of at least seven components with centers at 894, 852, 839, 829,
- 191 822, 809, and 800 cm⁻¹. These bands likely include contributions from UOH
- 192 bending vibrations, and although most components in this region were
- 193 considered as symmetric uranyl stretching vibrations by Frost et al. (2007),
- 194 DFPT calculations by Colmenero et al. (2018) indicate the bands at 897, 886,

195 870, and 855 cm⁻¹ in schoepite correspond to an overlap of UOH bending

196 vibrations and H₂O librations. Bartlett and Cooney (1989) provide an

- 197 empirical relationship to derive the approximate U-O_{yl} bond lengths from the
- band positions assigned to the $(UO_2)^{2+}$ stretching vibrations, which gives 1.74

199 Å for v_3 , and for the components correlating with v_1 assignments by

200 Colmenero (2018): 1.76 Å (852 cm⁻¹), 1.77 Å (838 cm⁻¹), 1.78 Å (829 cm⁻¹),

201 1.79 Å (822 cm⁻¹), 1.80 Å (809 cm⁻¹), and 1.81 Å (800 cm⁻¹). These values are

202 in accordance with U–O_{yl} bond lengths refined from the X-ray data (1.76-1.79

Å) and correlate well with those determined by Weller et al. (2000) (1.74-1.82

- Å) and Klingensmith et al. (2007) (1.65-1.82 Å) for natural and synthetic Na-
- and Np-substituted metaschoepite.
- 206 A weak band at 745 cm⁻¹ is assigned as a libration mode of H_2O
- 207 groups. The large number of bands observed in the region from $590-300 \text{ cm}^{-1}$
- 208 are attributed to various v (U–O/OH) stretches of equatorial oxide and

This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America. The published version is subject to change. Cite as Authors (Yea · ···) Titlo Am

The published version is subject to change. Cite as Authors (rear) The American Mineralogist, in press.
DOI: https://doi.org/10.2138/am-2023-9031. http://www.minsocam.org/

209	hydroxide groups;	however, we	are only able to	provide	tentative assignments
-----	-------------------	-------------	------------------	---------	-----------------------

- 210 to specific modes based on those given for uranates by Dothée and Camelot
- 211 (1982) and Dothée et al. (1982). Bands at 581, 545, 528, 509, 485, 461, 449,
- 438, 413, and 397 cm⁻¹ are possibly related to v_3 (U₃O/U₃OH) elongation, U– 212
- 213 O_{ea} bridge bending, or H₂O libration modes. In the spectrum of schoepite,
- 214 Colmenero et al. (2018) assigned all bands between 557 cm⁻¹ and 489 cm⁻¹ as
- 215 H₂O libration modes; however, Kirkegaard et al. (2019) notes that because
- 216 Raman spectroscopy is insensitive to water, and by using the computationally-
- 217 predicted inelastic neutron scattering spectrum of synthetic metaschoepite,
- 218 these authors prefer assignments in this region as various in- and out-of-plane
- 219 stretching v U–O/OH_{eq} modes. The two weak bands at 342 cm⁻¹ and 311 cm⁻¹
- 220 in bobfinchite may be due either to $\gamma U_3O/U_3OH$ out-of-plane bending, v
- 221 $U_3(OH_3)$, or U_2O/OH bridge elongation. The band at 249 cm⁻¹ is assigned as
- the $v_2(\delta) (UO_2)^{2+}$ bending vibration and remaining bands below 200 cm⁻¹ arise 222
- 223 due to uranyl hydroxide bridge bending or phonon modes.
- 224

225 **Chemical composition**

226 Chemical analyses (N = 5) were performed on a JEOL JXA-8230 electron 227 microprobe using Probe for EPMA software (Table 1). The analytical 228 conditions used were 10 kV accelerating voltage, 5 nA beam current and a 229 beam diameter of 10 µm. Raw X-ray intensities were corrected for matrix 230 effects with a $\phi \rho(z)$ algorithm (Pouchou and Pichoir, 1985). Bobfinchite 231 contains major U and Na with trace Pb; wavelength dispersive scans for N 232 indicate that no NH₄ is present. No other elements besides O were present 233 above detection limits. A time-dependent intensity correction was applied to

Na, and because insufficient material was available for a direct determination

- of H₂O it has been calculated based upon the structure with O = 40 apfu. The
- empirical formula calculated on the basis of O = 40 apfu is
- 237 $Na_{0.99}Pb_{0.02}U_{7.99}O_{40}H_{31}$. Written structurally, the empirical formula
- corresponds to $(Na_{0.99}, Pb_{0.02})$ [(UO₂)_{7.99}O₃(OH)₁₁]·10H₂O. The ideal formula
- 239 is Na[(UO₂)₈O₃(OH)₁₁]·10H₂O, which requires Na₂O 1.19, UO₃ 88.06, H₂O
- 240 10.75, total 100 wt%.
- 241

242 **Powder X-ray diffraction**

243 X-ray powder diffraction data were obtained using a Rigaku R-Axis 244 Rapid II curved imaging plate microdiffractometer with monochromatized 245 MoK α radiation. A Gandolfi-like motion on the φ and ω axes was used to 246 randomize diffraction from the sample. Observed *d*-values and intensities 247 were derived by profile fitting using JADE 2010 software (Materials Data, 248 Inc.). Data (in Å for Mo $K\alpha$) are given in Table S1. Unit-cell parameters 249 refined from the powder data using JADE 2010 with whole pattern fitting in 250 space group *Pbcn* are: a = 14.699(3) Å, b = 14.086(2) Å, c = 16.736(3) Å, V =251 3465.2(11) Å³.

252

253 Single-crystal X-ray diffraction

254 An optically clean disc-shaped crystal measuring $30 \ge 20 \ge 10 \ \mu m$ was 255 chosen for the single-crystal X-ray diffraction experiment. Data were collected 256 at room temperature using monochromatized Mo*K* α X-rays from a microfocus 257 source and a Photon II CPAD detector mounted to a Bruker D8 Venture three-258 circle diffractometer. The Apex II software package was used for processing 259 collected diffraction data, including indexing, integration, scaling and

260 corrections for background, polarization and Lorentz effects. A multi-scan

261 semi-empirical absorption correction was made using SADABS (Krause et al.,

262 2015) and an initial model in the space group *Pbcn* was found by the intrinsic-

- 263 phasing method using SHELXT (Sheldrick, 2015b). The initial model
- 264 included nearly all atom positions except several O atoms of disordered H₂O
- 265 groups and the Na2A/Na2B sites. SHELXL-2016 (Sheldrick, 2015a) was used
- 266 for the refinement of the structure. All atoms except for the Na sites were
- 267 refined with anisotropic displacement parameters and several H atoms of
- 268 hydroxyl groups were located. The H atoms were refined with soft restraints

269 on the O–H distance and the U_{iso} of each atom was set to 1.4 times that of the

- 270 donor O atom. The initial refinements contained relatively strong electron
- density residuals surrounding U and O atoms (~4-5 e^{-1} Å³) which may have
- 272 originated from the relatively high mosaicity of the tested crystal (0.33°). A
- culling of weak reflections <0.7 Å significantly reduced the residual ripple
- density surrounding most atoms (to ~3.5 e⁻/Å³) and improved R_1 and wR
- 275 values by $\sim 1\%$ and $\sim 3\%$, respectively. Additional data collection and
- 276 refinement details are given in Table 3, atom coordinates, equivalent isotropic
- 277 displacement parameters, and anisotropic displacement parameters are given

in Table S1, selected bond distances are listed in Table 4, and a bond valence

- analysis is provided in Table 5.
- 280

281 Features of the Crystal Structure

The structure of bobfinchite contains four unique U sites that each adopt [7]-fold pentagonal bipyramidal coordination (Fig. 4), where the apices of each polyhedron are formed by uranyl oxygen atoms (O_{vl}) multiply bonded

- to the U cation, constituting the approximately linear uranyl cation $(UO_2)^{2+}$
- 286 (Burns et al., 1997). Each uranyl cation is coordinated five-fold equatorially
- 287 by O or OH forming pentagonal-bipyramidal polyhedra with linkages that
- 288 mimic the fourmarierite anion sheet topology (Burns, 2005; Li and Burns,
- 289 2000; Lussier et al., 2016). The uranyl-oxide-hydroxide sheets in schoepite,
- 290 metaschoepite, leesite, and kroupaite also adopt the fourmarierite anion
- 291 topology, which contains edge-sharing pentagons and triangles as its building
- blocks. The center of each pentagon is populated by a U atom and the
- triangles, arranged in alternating bow-tie pairs, are vacant.
- 294

295 Interlayer arrangement

296	The interlayer is populated with Na^+ cations and several H_2O groups.
297	Disordered pairs of Na ⁺ (Na1a, Na1b) cations coordinate with O_{yl} atoms of the
298	sheets. Coordination about the two independent Na^+ sites takes an irregular
299	shape as [7]-fold (Na1A) or [8]-fold (Na1B) polyhedra, where each Na^+ binds
300	to 4 O_{yl} atoms and three O of H_2O groups. Site-scattering refinement reveals
301	that both Na positions are only partially occupied: Na1A 0.45(6), and Na1B
302	0.31(4) with $2 \times$ multiplicity, for a combined occupancy of 1.07 Na <i>afpu</i> – in
303	close agreement with the average empirical chemistry of 0.99 Na apfu.
304	Eight O sites are present in the interlayer corresponding to H_2O molecules that
305	were identified on the basis of incident bond valence sums. Atoms Ow1,
306	Ow3A, Ow3B, and Ow4 form bonds with both Na1A and Na1B cations, with
307	occupancy considerations. Atoms Ow3A and Ow3B are partially occupied at
308	50%. Atoms Ow2, Ow5, Ow6A, and Ow6B do not form bonds to any cations,

309 but accept or donate hydrogen bonds amongst themselves, the other H₂O

- 310 groups, O_{vl} atoms, and OH groups.
- 311

312 Structural Description of the Sheets

- 313 Minerals of the schoepite family contain variably charged sheets, each
- having a unique distribution of oxide and hydroxide bridges that satisfy the
- bonding requirements of the interlayer (Burns, 2005; Lussier et al., 2016;
- 316 Miller et al., 1996; Plášil, 2018b). We were able to localize H atoms of 4 OH
- 317 groups except for atom OH12. Bond-valence calculations indicate the OH10,
- 318 OH12, OH13, OH14, and OH15 sites are fully occupied by OH, whereas atom
- 319 Oll adopts partial O/OH character and is primarily responsible for balancing
- 320 sheet charge (Table 5). Ideally, the O11 site contains a 1:1 ratio of OH and
- O^{2-} , for a total of 11 OH⁻ groups per formula unit. Therefore, based on the
- 322 calculated bond-valence sums and site scattering refinement, the structural
- formula of bobfinchite is $Na_{1.07}[(UO_2)_8O_3(OH)_{11}]$ ·10.04H₂O.
- 324

325 Relation to synthetic phases

- 326 Bobfinchite belongs to the schoepite family of minerals, whose structures
- 327 contain identical sheet topologies based on the fourmarierite anion topology.
- 328 Minerals with structural units built from the fourmarierite anion topology have
- 329 adaptable sheet charge and distinct distributions of O^{2-} and OH^{-} dictated by the
- interlayer content and cation type (Fig. 5). The crystallographic parameters of
- 331 schoepite family minerals are compared in Table 6. The structure of
- bobfinchite is most closely related to that of metaschoepite, and though it
- 333 shares many similarities with those of leesite (Olds et al., 2018) and kroupaite

334 (Plášil et al., 2020), these structures crystallize with *Pbca* symmetry, have

- unique hydroxyl group arrangements and more negatively charged sheets that
- accommodate higher interlayer Me^+/Me^{2+} content.
- 337 From a specimen labelled "Paraschoepite schoep type material,
- 338 Katanga, Congo," Klingensmith et al. (2007) investigated a crystal of Na-
- bearing metaschoepite that provided a structural formula somewhat close to
- 340 bobfinchite, Na_{0.48}U₈O_{37.91}. The distribution of hydroxyl groups and
- arrangement of interlayer Na and H₂O groups in this phase is essentially
- 342 identical to that of bobfinchite (Fig. 6). Furthermore, the other synthetic Na-
- and ppm-level Np-doped samples prepared by these authors contain closely
- overlapping U:Na stoichiometry, and an identical arrangement of hydroxyl

345 groups and interlayer Na and H_2O groups to that found in bobfinchite.

- 346 Sejkora et al. (2013) encountered "Na-metaschoepite" as pale
- 347 yellowish orange powder and fine crystalline aggregates up to 3 mm in
- 348 association with compreignacite, fourmarierite and gypsum in samples from
- 349 the Jan Evangelista vein, Svornost mine, Jáchymov ore district, Czech
- 350 Republic. The mineral is orthorhombic, space group *Pbcn*, and the unit-cell
- 351 parameters refined from X-ray powder diffraction data are: a = 14.025(2), b =
- 352 16.469(3), c = 14.623(2) Å, and V = 3378(2) Å³; its chemical analyses
- 353 correspond to the empirical formula

354 $Na_{0.3}Cu_{0.13}Al_{0.13}K_{0.08}Pb_{0.07}Ca_{0.06}Mg_{0.06}Mn_{0.02}Zn_{0.02}Fe_{0.02}Ni_{0.01}Co_{0.01})_{\Sigma 0.91}[(UO_2 + 1)^{-1}]_{\Sigma 0.91}$

- $_{4O_2(SiO_4)_{0.26}(SO_4)_{0.02}(OH)_{4.46}] \cdot 5H_2O$ on the basis of 4 U *apfu*. In Figure 7, we
- 356 compare chemical data for this phase and related schoepite family minerals.
- 357

358 Relation to synthetic phases

359 Based on our observations of the minerals leesite,

360 $K(H_2O)_2[(UO_2)_4O_2(OH)_5] \cdot 3H_2O$, and kroupaite,

361 KPb_{0.5}[(UO₂)₈O₄(OH)₁₀] \cdot 10H₂O, it is possible that a unique Na-rich phase

362 may exist with the ideal composition $Na[(UO_2)_4O_2(OH)_5] \cdot 5H_2O$. Though

363 mostly speculative at this time, we wish to provide some guidance on how that

364 phase may be distinguished from bobfinchite, if encountered. As in leesite and

kroupaite, this hypothetical phase may adopt *Pbca* symmetry and its interlayer

366 would contain an additional Na site that will coordinate to nearby uranyl O

367 atoms. One can envision the hypothetical location of this additional site and its

368 effect on the topology of the bobfinchite interlayer. There, two of the positions

369 we find most suitable for substitution involve hydrogen bonds formed between

370 O_{yl} atoms O2 and O5 with Ow2 and Ow5. Either H₂O group could feasibly

accommodate an additional Na site and their replacement would satisfy local

bond-valence requirements of the sheet. Voronoi-Dirichlet polyhedra (VDP)

373 calculations (Blatov, 2004) for leesite and kroupaite reveal that, as expected,

their interlayer K and Pb cations fill sites that are best suited to their

375 polyhedral volume (Plášil, 2018b; Plášil et al., 2020; Schindler and

Hawthorne, 2004). The large Pb^{2+} cations in kroupaite act as strong Lewis

377 acids and provide significant bond valence to the sheet, offsetting the lower

378 Me:H₂O content with respect to leesite (Schindler and Hawthorne, 2004). As it

is relatively small (~10 Å³) and forms bonds of similar strength to a hydrogen

bond (~ 0.2 vu), an additional Na⁺ cation could feasibly substitute at several

381 different sites in the bobfinchite interlayer without creating significant

382 disruption in the hydrogen bonding network. In order to maintain charge

383 balance it is likely that the bridging oxygen atom O11, or a nearby hydroxyl

384	group posit	ioned near	the new	Na site	will exhibit	distinct	oxide charac	cter.
201	Stomp pool	ionea near		1 100 0100		ansemet	onnae enara	

with bond valence sums possibly exceeding ~1.8 v.u. Klingensmith et al.

386 (2007) recognized that a linear relationship exists between the bond-valence

- 387 sum incident on O11 and the *b* cell parameter for synthetic and natural Na-
- 388 substituted metaschoepite. The authors suggest that higher OH⁻ content at O11
- 389 induces stronger hydrogen bonds, leading to distortion of the UOH sheets and
- 390 contraction of the *b* dimension to satisfy bonding requirements with the
- 391 interlayer. The calculated bond-valence sum for the O11 site in bobfinchite

392 fits their observed trend well, with variable O and OH content accounting for

393 the incorporation of Na (Fig. 8). Thus, introduction of an additional Na site

into the hypothetical Na-rich phase will result in an overall larger $O^{2-}(OH)^{-1}$

395 content, a reduction in hydrogen-bonding interactions with the sheets,

396 manifesting as an expanded *b* cell dimension with respect to bobfinchite

397 (>14.05 Å). Such is apparently the case for the Na-bearing metaschoepite

398 phase with complex chemical makeup investigated by Sejkora et al. (2013);

399 however, as the material tested was a finely crystalline powder, more detailed

400 crystallographic studies are needed to understand its structural relationship to401 bobfinchite.

402

403 Environmental Implications

404 Most groundwaters, and of course, seawater and brines, contain high 405 concentrations of Na⁺ that may lead to the formation of bobfinchite when 406 contacting U-bearing materials undergoing oxic corrosion. Since \sim 2014, we 407 have identified and described more than 20 sodium-bearing uranium minerals, 408 mostly sulfates, that have resulted from the solubilization of U from asphaltic

409 materials. These are very important naturalistic observations, as some have 410 proposed to use asphalt and bitumen as a containment barrier and solid waste 411 form for long-term storage of nuclear waste due to their plasticity and ability 412 to bind actinides (Fitzgerald et al., 1970; Schlepp et al., 2001). 413 Surprisingly, we have found no mention of the formation of Na-rich 414 metaschoepite in the publicly available used nuclear fuel alteration literature; 415 though, Na-rich compreignacite and natroboltwoodite are noted alteration 416 products (Finch et al., 1999; Li and Burns, 2001; Wronkiewicz et al., 1992; 417 Wronkiewicz et al., 1996), and given similar PXRD fingerprint and chemistry 418 between compreignacite and bobfinchite, it could have been overlooked or 419 misidentified. As noted by Finch et al. (1997), despite their simple 420 composition, making accurate identification of UOH phases can be 421 exceptionally difficult; the minerals commonly occur as inseparable mixtures 422 and as "massive" polycrystalline aggregates. Most phases in the schoepite 423 family bear strong similarities with one another in unit-cell dimensions and 424 PXRD patterns. In many instances throughout the nuclear waste alteration 425 literature, identifications are designated simply as "schoepite-like, or 426 "clarkeite-like" solids. For example, lysimeter alteration studies made on synthesized metaschoepite in the presence of Na⁺ caused complete 427 428 transformation of the material into a hydrated "clarkeite-like" sodium uranyl 429 oxide with a distinctly different PXRD and Raman spectrum than 430 metaschoepite (Giammar and Hering, 2004). Additionally, synthetic 431 bobfinchite is a likely minor byproduct present in sodium diuranate (SDU) 432 yellow cake obtained during precipitation with sodium hydroxide, or during 433 processing of other uranium oxides (Gayer and Leider, 1955; Schwerdt et al.,

434 2019). While many competing mechanisms work to control the migration,

- 435 precipitation, and speciation of UOH minerals formed in natural and
- 436 technogenic U-rich systems, the description of bobfinchite provides an
- 437 essential foundation for defining crucial crystal-chemical and structure-
- 438 property relationships in the schoepite family.
- 439

440 Acknowledgements

- 441 We thank Drs. Christopher Cahill and Nicolas Meisser for their
- 442 valuable comments that improved the quality and accuracy of this manuscript.
- 443 Support for this work was provided by the Chemical Sciences, Geosciences
- 444 and Biosciences Division, Office of Basic Energy Sciences, Office of Science,
- 445 U.S. Department of Energy, Grant No. DE-FG02-07ER15880. We thank the
- 446 WSU NSC User Facility for use of the D8 Venture single-crystal X-ray
- 447 diffractometer. A portion of this study was funded by the John Jago Trelawney
- 448 Endowment to the Mineral Sciences Department of the Natural History
- 449 Museum of Los Angeles County.

450	References
451	Bartlett, J.R., and Cooney, R.P. (1989) On the determination of uranium-
452	oxygen bond lengths in dioxouranium(VI) compounds by Raman
453	spectroscopy. Journal of Molecular Structure, 193, 295-300.
454	Benjamin, S.E., LaVerne, J.A., Sigmon, G.E., and Burns, P.C. (2022)
455	Ozone-Facilitated Formation of Uranyl Peroxide in Humid
456	Conditions. Inorganic Chemistry, 61, 20977-20985.
457	Blatov, V.A. (2004) Voronoi–dirichlet polyhedra in crystal chemistry: theory
458	and applications. Crystallography Reviews, 10, 249-318.
459	Brown, I.D. (2006) The Chemical Bond in Inorganic Chemistry: The Bond
460	Valence Model, Oxford University Press, Oxford,
461	Brugger, J., Meisser, N., Etschmann, B., Ansermet, S., and Pring, A. (2011)
462	Paulscherrerite from the Number 2 Workings, Mount Painter Inlier
463	Northern Flinders Ranges South Australia: "Debydrated schoepite"
464	is a mineral after all American Mineralogist 96 229-240
465	Burns P C (2005) U^{6+} minerals and inorganic compounds: Insights into an
466	expanded structural hierarchy of crystal structures. The Canadian
467	Mineralogist 43 1839-1894
468	Burns PC Ewing RC and Hawthorne FC (1997) The crystal chemistry
469	of hexavalent uranium: nolyhedron geometries hond-valence
470	narameters, and polymerization of polyhedra. The Canadian
471	Mineralogist 35 1551-1570
472	Carter WD and Gualtieri II (1965) Geology and uranium-vanadium
472	denosits of the La Sal guadrangle San Juan County Utah and
474	Montrose County, Colorado, Professional Paper
475	Colmenero F. Cobos I. and Timón V. (2018) Periodic Density Functional
476	Theory Study of the Structure Raman Spectrum and Mechanical
470	Properties of Schoepite Mineral Inorganic Chemistry 57 4470-
478	4481
479	Colmenero F. Fernández A.M. Cobos I. and Timón V. (2019) Periodic
480	DFT Study of the Thermodynamic Properties and Stability of
481	Schoenite and Metaschoenite Mineral Phases ACS Farth and Snace
482	Chemistry 3 17-28
483	Dothée D.G. and Camelot M.M. (1982) Vibrational Spectroscopy of
484	notassium hexauranate hydrate I Frequencies assignable to oxygen-
485	atoms motions - hypothesis on the structure of the anionic layer
486	Bulletin de la Société chimique de France 97-102
487	Dothée D.G. Fahys B.R. and Camelot M.M. (1982) Vibrational
488	spectroscopy of potassium hexauranate hydrate II Motions of
489	hydrogen atoms - hydrothesis on the water-structure in the uranate
490	Bulletin de la Société chimique de France 103-108
491	Fallon C M Bower W R Powell B A Livens F R Lvon I C McNulty
402	A F Peruski K Mosselmans IFW Kanlan DI Gralimund D
492 103	Warnicke D. Ferraira Sanchez D. Kaunni M.S. Vettese G.F.
493	Shaw S. Morris K. and Law G.T.W. (2023) Vadose zone
494	sliaw, S., Monnes, K., and Law, G.T.W. (2023) Values-2010
495 106	field lysimeters. Science of The Total Environment . 862, 160862
107	Finch R I Buck E C Finn P A and Bates IK (1000) Ovidetive
лэт /09	Corrosion of Spent IIO, Fuel in Vanor and Drinning Groundwater at
400	00°C MRS Online Proceedings Library (ODL) 556 421
マクフ	70 C. WINS Online I forecullings Library (OFL), 530, 431.

500	Finch, R.J., Cooper, M.A., Hawthorne, F.C., and Ewing, R.C. (1996) The
501	crystal structure of schoepite, $[(UO_2)_8O_2(OH)_{12}](H_2O)_{12}$. The
502	Canadian Mineralogist, 34, 10/1-1088.
503	Finch, R.J., and Ewing, R.C. (1992) The corrosion of uraninite under
504	oxidizing conditions. Journal of Nuclear Materials, 190, 133-156.
505	Finch, R.J., Hawthorne, F.C., and Ewing, R.C. (1998) Structural relations
506	among schoepite, metaschoepite and "dehydrated schoepite". The
507	Canadian Mineralogist, 36, 831-845.
508	Finch, R.J., Hawthorne, F.C., Miller, M.L., and Ewing, R.C. (1997)
509	Distinguishing among schoepite, $[(UO_2)_8O_2(OH)_{12}](H_2O)_{12}$, and
510	related minerals by X-ray powder diffraction. Powder Diffraction, 12,
511	230-238.
512	Finch, R.J., Miller, M.L., and Ewing, R.C. (1992) Weathering of natural
513	uranyl oxide hydrates - schoepite polytypes and dehydration effects.
514	Radiochimica Acta, 58-9, 433-443.
515	Finch, R.J., and Murakami, T. (1999) Systematics and paragenesis of
516	uranium minerals. In P.C. Burns, and R.J. Finch, Eds. Uranium:
517	Mineralogy, Geochemistry and the Environment, 38, p. 91-179.
518	Mineralogical Society of America.
519	Fitzgerald, C.L., Godbee, H.W., Blanco, R.E., and Davis, W. (1970) The
520	Feasibility of Incorporating Radioactive Wastes in Asphalt or
521	Polyethylene. Nuclear Applications and Technology, 9, 821-829.
522	Frost, R.L., Čejka, J., and Weier, M.L. (2007) Raman spectroscopic study of
523	the uranyl oxyhydroxide hydrates: becquerelite, billietite, curite,
524	schoepite and vandendriesscheite. Journal of Raman Spectroscopy,
525	38, 460-466.
526	Gayer, K.H., and Leider, H. (1955) The Solubility of Uranium Trioxide,
527	UO ₃ ·H ₂ O, in Solutions of Sodium Hydroxide and Perchloric Acid at
528	25°1. Journal of the American Chemical Society, 77, 1448-1450.
529	Giammar, D.E., and Hering, J.G. (2004) Influence of Dissolved Sodium and
530	Cesium on Uranyl Oxide Hydrate Solubility. Environmental Science
531	& Technology, 38, 171-179.
532	Gorman-Lewis, D., Burns, P.C., and Fein, J.B. (2008) Review of uranyl
533	mineral solubility measurements. Journal of Chemical
534	Thermodynamics, 40, 335-352.
535	Hanson, B., McNamara, B., Buck, E., Friese, J., Jenson, E., Krupka, K., and
536	Arey, B. (2005) Corrosion of commercial spent nuclear fuel. 1.
537	Formation of studtite and metastudtite. Radiochimica Acta, 93, 159-
538	168.
539	Kirkegaard, M.C., Niedziela, J.L., Miskowiec, A., Shields, A.E., and
540	Anderson, B.B. (2019) Elucidation of the Structure and Vibrational
541	Spectroscopy of Synthetic Metaschoepite and Its Dehydration
542	Product. Inorganic Chemistry, 58, 7310-7323.
543	Klingensmith, A.L., Deely, K.M., Kinman, W.S., Kelly, V., and Burns, P.C.
544	(2007) Neptunium incorporation in sodium-substituted
545	metaschoepite. American Mineralogist. 92, 662-669
546	Knope, K.E., and Soderholm, L. (2013) Solution and Solid-State Structural
547	Chemistry of Actinide Hydrates and Their Hydrolysis and
548	Condensation Products. Chemical Reviews. 113, 944-994.
549	Krause, L., Herbst-Irmer, R., Sheldrick, G.M., and Stalke, D. (2015)
550	Comparison of silver and molybdenum microfocus X-ray sources for

551	single-crystal structure determination. Journal of Applied
552	Crystallography, 48, 3-10.
553	Li, Y., and Burns, P.C. (2000) Investigations of crystal-chemical variability
554	in lead uranyl oxide hydrates. II. Fourmarierite. The Canadian
555	Mineralogist, 38, 737-749.
556	(2001) The structures of two sodium uranyl compounds relevant to nuclear
557	waste disposal. Journal of Nuclear Materials, 299, 219-226.
558	Lussier, A.J., Burns, P.C., and King-Lopez, R. (2016) A revised and
559	expanded structure hierarchy of natural and synthetic hexavalent
560	uranium compounds. The Canadian Mineralogist, 54, 177-283.
561	Mandarino, J.A. (2007) The Gladstone-Dale compatibility of minerals and
562	its use in selecting mineral species for further study. The Canadian
563	Mineralogist, 45, 1307-1324.
564	Miller, M.L., Finch, R.J., Burns, P.C., and Ewing, R.C. (1996) Description
565	and classification of uranium oxide hydrate sheet anion topologies.
566	Journal of Materials Research, 11, 3048-3056.
567	Olds, T.A., Plášil, L. Kampf, A.R., Spano, T., Havnes, P., Carlson, S.M.
568	Burns, P.C., Simonetti, A., and Mills, O.P. (2018) Leesite.
569	$K(H_2O)_2[(UO_2)_4O_2(OH)_5]: 3H_2O_a new K-bearing schoenite-family$
570	mineral from the Jomac mine. San Juan County, Utah, U.S.A.
571	American Mineralogist, 103, 143-150.
572	Plášil, J. (2014) Oxidation-hydration weathering of uraninite: the current
573	state-of-knowledge. Journal of Geosciences, 59, 99-114.
574	Plášil, J. (2018a) The crystal structure of uranyl-oxide mineral schoepite.
575	$[(UO_2)_4O(OH)_6](H_2O)_6$, revisited. Journal of Geosciences, 63, 65-73.
576	(2018b) Uranyl-oxide hydroxy-hydrate minerals: their structural
577	complexity and evolution trends. European Journal of Mineralogy.
578	30, 237-251.
579	Plášil, J., Kampf, A.R., Olds, T.A., Sejkora, J., Škoda, R., Burns, P.C., and
580	Čejka, J. (2020) The new K, Pb-bearing uranyl-oxide mineral
581	kroupaite: Crystal-chemical implications for the structures of uranyl-
582	oxide hydroxy-hydrates. American Mineralogist, 105, 561-568.
583	Pouchou, J.L., and Pichoir, F. (1985) "PAP" ($\varphi \rho Z$) procedure for improved
584	quantitative microanalysis. In J.T. Armstrong, Ed. Microbeam
585	Analysis, p. 104-106. San Francisco Press, California.
586	Riba, O., Walker, C., and Ragnarsdottir, K.V. (2005) Kinetic Studies of
587	Synthetic Metaschoepite under Acidic Conditions in Batch and Flow
588	Experiments. Environmental Science & Technology, 39, 7915-7920.
589	Schindler, M., and Hawthorne, F.C. (2004) A bond-valence approach to the
590	uranyl-oxide hydroxy-hydrate minerals: Chemical composition and
591	occurrence. The Canadian Mineralogist, 42, 1601-1627.
592	Schlepp, L., Elie, M., Landais, P., and Romero, M.A. (2001) Pyrolysis of
593	asphalt in the presence and absence of water. Fuel Processing
594	Technology, 74, 107-123.
595	Schoep, A., and Stradiot, S. (1947) Paraschoepite and epiianthinite, two new
596	uranium minerals from Shinkolobwe (Belgian Congo). American
597	Mineralogist, 32, 344-350.
598	Schwerdt, I.J., Hawkins, C.G., Taylor, B., Brenkmann, A., Martinson, S.,
599	and McDonald Iv, L.W. (2019) Uranium oxide synthetic pathway
600	discernment through thermal decomposition and morphological
601	analysis. 107, 193-205.

602 603 604 605	Sejkora, J., Plášil, J., and Bureš, B. (2013) Unusual assocation of supergene uranium minerals from the Jan Evangelista vein, Jáchymov (Czech Republic). Bulletin mineralogicko-petrologického oddělení Národního Muzea (Praha), 21, 143-156.
606 607	Shawe, D.R. (2011) Uranium-Vanadium Deposits of the Slick Rock District, Colorado, 80 p. Reston, Virginia.
608 609	Sheldrick, G.M. (2015a) Crystal structure refinement with SHELXL. Acta Crystallographica Section C-Crystal Structure Communications, 71.
610	3-8.
611	Sheldrick, G.M. (2015b) SHELXT - Integrated space-group and crystal-
612	structure determination. Acta Crystallographica Section A, 71, 3-8.
613	Sowder, A.G., Clark, S.B., and Field, R.A. (1999) The transformation of
614	uranyl oxide hydrates: The effect of dehydration on synthetic
615	metaschoepite and its alteration to becquerelite. Environmental
616	Science & Technology, 33, 3552-3557.
617	Sunder, S., Shoesmith, D.W., Christensen, H., and Miller, N.H. (1992)
618	Oxidation of UO_2 fuel by the products of gamma radiolysis of water.
619	Journal of Nuclear Materials, 190, 78-86.
620	Taylor, J.C., and Hurst, H.J. (1971) The hydrogen-atom locations in the
621	[alpha] and [beta] forms of uranyl hydroxide. Acta Crystallographica
622	Section B, 27, 2018-2022.
623	Taylor, P., Wood, D.D., Owen, D.G., and Park, GI. (1991) Crystallization
624	of U_3O_8 and hydrated UO_3 on UO_2 fuel in aerated water near 200°C.
625	Journal of Nuclear Materials, 183, 105-114.
626	Walenta, K., and Theye, T. (2012) Heisenbergite, a new uranium mineral
627	from the uranium deposit of Menzenschwand in the Southern Black
628	Forest, Germany. Neues Jahrbuch für Mineralogie, 189, 117-123.
629	Weller, M.T., Light, M.E., and Gelbrich, T. (2000) Structure of uranium(VI)
630	oxide dihydrate, $UO_3 \cdot 2H_2O$; synthetic meta-schoepite
631	$(UO_2)_4O(OH)_6$ ·5H ₂ O. Acta Crystallographica Section B-Structural
632	Science, 56 , $577-583$.
633	Wronkiewicz, D.J., Bates, J.K., Gerding, I.J., Veleckis, E., and Iani, B.S.
634	(1992) Uranium release and secondary phase formation during
035	unsaturated testing of UU_2 at 90°C. Journal of Nuclear Materials,
030 627	190, 107-127. Wronkiewiez D. L. Potec, I.K. Welf S. F. and Puels F.C. (1006) Ten year
638	results from unsaturated drin tests with LIO, at 90°C implications for
630	the corrosion of spent nuclear fuel Journal of Nuclear Materials 238
640	78-95
641	Zhang V Lu K T and Zheng R (2022) Synthetic uranium oxide hydrate
642	materials: Current advances and future perspectives. Dalton
643	Transactions 51, 2158-2169
644	
645	
646	
647	
648	
649	
650	
651	
652	

653											
654	FIGURE CAPTIONS										
655											
656	Figure 1. Lo	Figure 1. Lozenge-shaped crystals of bobfinchite on black asphaltite with									
657	bladed natro	bladed natrozippeite and gypsum. Horizontal field of view is 0.5 mm.									
658											
659	Figure 2. Cr	Figure 2. Crystal drawing of bobfinchite, clinographic projection in non-									
660	standard orig	standard orientation.									
661											
662	Figure 3. Th	Figure 3. The fitted baseline-corrected Raman spectrum of bobfinchite taken									
663	with a 785 n	with a 785 nm laser from $1800-50 \text{ cm}^{-1}$.									
664											
665	Figure 4. Th	e crystal s	tructure of bobfi	nchite viewed do	wn c. The unit ce	ell is					
666	indicated by	dashed bl	ue lines. Na ator	ns are presented	as magenta spher	es,					
667	while O and	H atoms of	of H ₂ O groups ar	e indicated by re	d and white sphere	res,					
668	respectively			-	_						
669											
670	Figure 5. A	compariso	n of anion sheet	topologies of ana	alogous schoepite	;					
671	family mine	rals, inclu	ding OH ⁻ and int	erlayer cation dis	stributions. Black						
672	circles highl	ight vertic	es containing OI	F and bare vertic	ces represent O^{2-} .	The					
673	mixed O/OH	I atom O1	1 is represented	by a two-toned b	lack and gray sph	lere					
674	in the sheets	of bobfin	chite and its relat	ted synthetic ana	logues from						
675	Klingensmit	h et al. (20	007). Potassium ((blue), lead (oran	ige), sodium (yell	ow).					
676											
677	Figure 6. A	side-by-si	de comparison of	f the interlayer at	omic arrangemen	it in					
678	bobfinchite	and the Na	a-bearing analog	ues studied by K	lingensmith et al.						
679	(2007).										
680											
681	Figure 7. Te	rnary plot	of compositiona	l data for bobfine	chite and related						
682	phases.										
683											
684	Figure 8. Th	e linear re	lationship betwe	en incident bond	-valence sum at ()11					
685	and the <i>b</i> un	it cell dim	ension. Refer to	Table 6 for samp	ole labels listed by	/					
686	Klingensmit	h et al. (20	007).								
687											
688											
689											
690											
691											
692	Table 1. Chemical composition of bobfinchite.										
	Constituent Mean Range Stand. Dev. Standard										
	Na ₂ O	1.15	1.01-1.27	0.09	albite						
	PbO	0.20	0.14-0.26	0.05	PbS						
	UO ₃	85.59	83.81-86.60	1.12	syn. UO ₂						
	H_2O^*	10.46	-	-	-						
	Total	97.40									

- 693 * based on the structure
- 694

$I_{\rm obs}$	$d_{ m obs}$	$d_{ m calc}$	I_{calc}	hkl	$I_{\rm obs}$	$d_{\rm obs}$	$d_{ m calc}$	I_{calc}	hkl	$I_{\rm obs}$	$d_{\rm obs}$	$d_{ m calc}$	I_{calc}	hkl
		8.6587	1	111			2.4163	1	306	4	1 7(51	1.7691	1	820
		8.3462	1	002			2.3771	1	611	4	1./031	1.7549	2	080
100	7.3366	7.3125	100	200	2	2 2 1 2 0	2.3172	1	061			1.7480	1	546
		7.2488	1	102	3	2.3138	2.3026	1	620	12	1.745	1.7419	5	248
		6.4706	2	021		2 2 4	2.2654	1	533			1.7329	1	181
		6.0452	1	211	2	2.264	2.2579	1	027		1 7117	1.7190	1	537
		5.5001	1	202			2.2293	1	353	6	1./115	1.7064	3	280
3	5.0595	5.0426	2	122	4	2.2215	2.2267	1	162			1.6745	1	804
		4.8766	1	113		_	2.2089	1	261	_		1.6736	1	083
4	4.8636	4.8458	1	221			2.1802	1	046	7	1.6726	1.6706	1	706
6	4.4323	4.4394	4	311	5	2.1596	2.1564	3	146			1.6593	1	167
		4.3294	1	222	-		2.1338	1	163			1.6431	1	381
		4.1786	1	123			2.1176	1	317			1.6314	1	283
		4 0129	1	104			2 1019	1	354	11	1.635	1 6288	4	824
21	3 6582	3 6562	18	400			2.1013	1	246			1.6200	2	840
	5.0502	5.0502	10	100	9	2.0945	2.0075	-	210			1.0211		12
		3 6101	1	322			2 0865	4	008			1 6140	2	10
50	3.5901	3 5871	36	022			2.0000	1	108	11	1 6147	1 6102	4	448
00	010201	3 5477	3	313			2.0000	2	711		1.0117	1 6067	1	911
22	3 5164	3.5097	16	040	17	2.0447	2.0409	8	064			1.6049	1	753
	0.0101	3 4838	1	124			2.0161	9	624			1 5851	2	608
		3 4613	1	411			2.0101	1	551	7	1 5863	1 5821	2	480
		3 3759	1	330	23	2.0134	2.0100	5	208	,	1.0000	1 5800	1	367
		3 3437	2	141		2.0101	2.0000	4	640			1.5648	3	664
		3 3089	1	331			1 9902	2	346	7	1 5626	1.5617	1	717
63	3.2288	3.2205	50	224			1.9816	1	128	,	1.0020	1.5554	2	922
	012200	3,1702	1	304			1.9724	1	363			1.5503	1	913
		0.1702	-	00.	20	1.9726	11972	-	000	_		1.0000	-	32
36	3.1756	3.1641	24	240			1.9658	11	264	5	1.5392	1.5407	2	10
		2.9685	1	043			1.9572	1	461			1.5286	1	931
		2.8862	1	333	5	1.9485	1.9472	2	722			1.5218	1	483
		2.8223	2	511			1.9372	2	713			1.5191	1	467
		2.8077	1	341			1.9078	1	730	4	1.5144	1.5113	1	844
		2.7821	1	006			1.9034	1	553			1.5085	1	746
4	2.7642	2.7505	2	243	5	1.9055	1.8998	1	165			1.4897	1	737
		2.7330	1	106			1.8954	1	731			1.4798	1	933
		2.6418	1	144			1.8519	1	714			1.4767	1	186
		2.5863	1	026	4	1.846	1.8324	1	517			1.4446	2	648
				0 - 0			1.002	-	011	5	1.4488	111110	_	10.2
		2.5689	1	522			1.8281	2	800			1.4317	1	0
20	2.5684	2.5605	15	424	8	1.8191	1.8222	1	554			1.4242	1	680
							_			4	1.4214			52
10	2.5403	2.5461	2	513			1.8122	3	408			1.4198	2	10
1.0		2.5320	7	440			1.8046	1	733		1			<u> </u>
-		2.4707	1	153			1.7935	3	048					
		2.4534	1	531	17	1.791	1.7821	6	464					
4	2.4445	2.4375	3	600			1.7802	1	148					
						1								

<u>695Table 2. Powder X-ray data (*d* in Å) for bobfinchite. Only $I \ge 2$ calculated lines are listed.</u>

696	Table 3. Data collection and stru	icture refinement details for bobfinchite.
697	Diffractometer	Bruker D8 Venture & PHOTON II detector
698	X-ray radiation/power	MoK α ($\lambda = 0.71073$ Å)/50 kV, 30 mA
699	Temperature	298(2) K
700	Structural Formula	$H_8Na_{1.07}O_{40.04}U_8$
701	Space group	Pbcn
702	Unit cell dimensions	a = 14.6249(9) Å
703		b = 14.0389(10) A
704	V.	c = 16.6923(10)A
705 706	V Z	3427.2(4) A
700	Z Density (for above formula)	4 4095 g cm^{-3}
707	Absorption coefficient	4.995 g cm^{-1}
700	E(000)	4204
709	F(000)	4304
/10		$30 \times 20 \times 10 \mu\text{m}$
/11	0 range	$2.35 \text{ to } 30.51^\circ$
712	Index ranges	$-20 \le h \le 20, -20 \le k \le 29, -23 \le l \le 23$
713	Reflections collected/unique	$75656/5228; R_{int} = 0.10$
714	Reflections with $I > 4\sigma I$	3770
715	Completeness to $\theta = 30.51^{\circ}$	100%
716	Refinement method	Full-matrix least-squares on F^2
717	Parameter/restraints	256/4
718	GoF	1.077
719	Final <i>R</i> indices $[I > 4\sigma I]$	$R_1 = 0.0330, wR_2 = 0.0660$
720	R indices (all data)	$R_1 = 0.0606, wR_2 = 0.0792$
721	Largest diff. peak/hole	$+3.46/-2.19 e^{-3}$
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742	Largest diff. peak/hole $ \frac{1}{R_{int} = \Sigma F_o^2 - F_o^2(mean) / \Sigma [F_o^2]. O}{\Sigma F_o - F_c / \Sigma F_o . wR_2} = \{\Sigma [w(F_o 1 / [\sigma^2(F_o^2) + (aP)^2 + bP]] \text{ where } a \text{ is } [2F_c^2 + Max(F_o^2, 0)] / 3. $	$\frac{+3.46/-2.19 \text{ e}^{-} \text{A}^{-5}}{\text{GoF} = S = \{\Sigma[w(F_0^2 - F_c^2)^2]/(n-p)\}^{1/2}. R_1 = \frac{2}{2} - F_c^2)^2]/\Sigma[w(F_0^2)^2]\}^{1/2}; w = \frac{2}{3} 0.022, b \text{ is } 47.97 \text{ and } P \text{ is}}$

743	Table 4. Se	lected bond	l distances	(Å) for bo	bfinchite.					
	U1			U2		U3				
	-O4	1.779(7)	-03		2.248(7)	-01	1.787(7)			
	-05	1.770(8)	-06		1.789(7)	-O2	1.756(7)			
	-OH10	2.429(7)	-09		1.780(7)	-03	2.228(7)			
	-011	2.278(7)	-011	l ⁱⁱ	2.291(7)	-O11 ^{vii}	2.339(7)			
	-OH12	2.317(7)	-OH	13 ^{viii}	2.560(6)	-OH10 ^{viii}	2.454(6)			
	-OH14	2.422(6)	-OH	14 ^{vii}	2.396(6)	-OH13	2.435(6)			
	-OH15 ^{viii}	2 528(6)	_OH	15 ^{vii}	2.690(3)	–OH14 ^{vii}	2 605(6)			
	<u-0></u-0>	1 775	<u-(< td=""><td>)></td><td>1 785</td><td><u-0></u-0></td><td>1 772</td></u-(<>)>	1 785	<u-0></u-0>	1 772			
		177 9(3)	/0.1-	U-O-1	1783(4)		1764(3)			
	$< U - \Omega >$	2 3 9 7	∠Oyi- <∐–(O > O	2 393	$\langle U - O \rangle$	2 412			
	C Ceq	2.571		Ceq	2.375	C Ceq	2.112			
	I I4	L		Na1A		Na1B				
	-03	2215(7)	-05 ^v	i (al 1)	2 839(11)		2 98(3) ⁱⁱⁱ			
	-07	1.213(7) 1.783(7)	-05 ^v	/iii	2.039(11) 2.839(11)	-Ow5	2.96(3) 2.66(2) ^{viii}			
	-08	1.703(7) 1.784(7)	-08		2.037(11) 2.426(15)	-Ow5	2.00(2) 2.99(2) ^{vi}			
	-OH10 ^{viii}	2.613(7)	-08 ⁱ	ii	2.420(15)	-Ow8	2.99(2) 2.55(2) ⁱⁱⁱ			
	-OH10 -OH12	2.013(7)	-08 -0w	1	2.420(13)	-0w8	2.33(2)			
	-0112	2.322(7) 2.452(6)	-0w	1	2.30(3)	-0w8	2.60(2)			
	-0115	2.452(0) 2.416(7)	-0w	3A	2.43(3)	-Ow1	2.13(5) 2.64(5) ⁱⁱⁱ			
		2.410(7)	-Ow		2.43(3)	$-0w_{3}D$	2.04(3)			
	$<0-0_{yl}>$	1.704 1777(2)	~Inal	IA-02	2.35	-OwsA	5.14(4)			
	$2O_{yl}-U-O_{yl}$	1/1.1(3)				<naib-0></naib-0>	2.74			
	$< 0 - 0_{eq} >$	2.404								
	II I									
	Hydrogen B	sonds	DЦ	TT A						
	01110 1110	0 ()	D-H	H-A	D-A	ZDHA				
	OH10-H10-	··Ow6A	0.96(3)	1.90(5)	2.832(8)	163(10)				
	OH10–H10⊷	··Ow6B	0.96(3)	1.98(5)	2.904(16)	160(10)				
	OH13–H13-	··Ow5	0.95(3)	1.84(3)	2.784(12)	176(10)				
	OH14–H14-	Ow4 [™]	0.97(3)	1.87(4)	2.836(13)	172(10)				
	OH15–H15-	··Ow2	0.96(3) 1.83(3)		2.785(12)	174(11)				
744	Symmetry of	codes: (ii) -	x+1/2, -y+	1/2, z+1/2	; (iii) -x, y, -z	+1/2;				
745	(vi) x-1/2, y	/-1/2, -z-1/2	2; (vii) <i>x</i> , -	y, z-1/2; (v	x-1/2, y-1/2,	1/2, z.				
746					,					
747										
748										
749										
750										
751										
752										
753										
754										
755										
756										
757										
758										
759										
760										
761										

102	<u>, vu</u>	U1	U2	U3	U4	Na1A*	Na1B**	H10	H13	H14	H15	Σ_{anion}	O type
	01			1.73								1.73	yl
	O2			1.85			0.05					1.89	yl
	O3		0.65	0.68	0.70							2.03	ò
	O4	1.76										1.76	yl
	05	1.80				$0.07^{\times 2\downarrow ightarrow}$	0.10/0.05					1.90	yl
	06		1.72									1.72	yl
	07				1.74							1.74	yl
	08				1.74	$0.18^{\times 2\downarrow \rightarrow}$	0.18/0.07					1.96	yl
	09		1.75									1.75	yl
	OH10	0.44		0.44	0.30			0.80				1.99	OH
	011	0.61	0.60	0.54								1.75	O/OH
	OH12	0.56	0.04	0.44	0.56				0.04			1.12	OH
	OH13	0.45	0.34	0.44	0.42				0.84	0.01		2.04	OH
	OHI4	0.45	0.48	0.31	0.45					0.81	0.00	2.05	OH
	OHI5	0.36	0.41		0.45	0.24	0.24				0.83	2.05	OH
	Owl					0.24	0.34				0.04	0.58	H_2O
	Ow2					$0.1 c^{\times 2 \downarrow \rightarrow}$	0.10				0.04	0.40	H_2O
	Ow3A Ow2D [†]					0.16	0.10					0.42	H_2O
	Ow3B ⁺						0.03			0.02		0.03	
	Ow4								0.04	0.05		0.03	H_O
	$Ow64^{\ddagger}$							0.03	0.04			0.04	
	Ow6B [§]							0.02				0.02	H ₂ O
	Σ	5 99	5 95	5 98	5 92	1.05	0.87	0.85	0.88	0.84	0.87	0.02	1120
764	$-\frac{1}{8}$	ond v	alenc	e nara	meter	s for U a	nd Na are	fron	1 Ga	oné a	nd H	lawthc	rne
765	(20)	15)	and H	$^{+}-0^{2-}$	<1.05	Å from	Brown (?	006)	Δni	on si	ime f	for Na	$1 \Delta / R_{-}$
766 766	$\sim (20)$	and]	Ma1A		<1.05 8 are 6	caled to 1	$N_{2} occup$	anev	Ref	ined			$n_{\rm eV} =$
760	, 03 , *0,	45(6)	**0 3	3D-00	$\dagger 05$	$\ddagger 0.60(5)$	§ 0 25(5)	ancy	. Kui	meu	SILC	occupa	incy –
701	0.4	+3(0)	, 0.2	,1(4),	0.5,	0.09(3),	0.55(5)).					
/08)												
/65)												
770)												
771													
772	2												
773	5												
 774	L												
775													
112 776) :												
//0) -												
777													
778	8												
779)												
780)												
781													
787)												
701 701	- 1												
/03 70/)												
/84	ŀ												
785)												
786)												
787	7												
788	8												

762 Table 5. Bond valence analysis for bobfinchite. Values are expressed in
763 valence units (v.u.).*

789	Table 6. A com	parison of the crystallographic	parameters	of schoep	oite-family	minerals and	analogous pł	<u>na</u> ses.
	Dhasa	Occurrence	a [Å]	L [Å]	لألم	1 17 1 1 3 1	50	

Phase	Occurrence	<i>a</i> [A]	<i>b</i> [A]	<i>c</i> [A]	$V[\mathbf{A}^3]$	S.G.
Neutral sheets						
schoepite ^a	Shaba, DRC	14.337(3)	16.813(5)	14.731	3426	$P2_1ca$
schoepite ^b	Shinkolobwe, DRC	16.7810(5)	14.7044(4)	14.2985(5)	3528	Pbca
metaschoepite ^c	synthetic	14.6861(4)	13.9799(3)	16.7063(5)	3439	Pbcn
paraschoepite ^d	Shinkolobwe, DRC	14.12	16.83	15.22	3617	Pbca
heisenbergite ^e	Menzenschwand, DE	13.10(1)	13.76(1)	14.50(1)	2614	$P2_12_12_1; Pna2_1$
paulscherrerite ^f	Radium Ridge, AU	4.288(2)	10.270(6)	6.885(5)	303	<i>P2;P2₁;P2</i> ₁ /m
α -UO ₂ (OH) ₂ ^g	synthetic	4.242(1)	10.302(1)	6.868(1)	300	Cmca or C2cb
Charged sheets						
bobfinchite	Colorado, USA	14.625	14.039	16.692	3427	Pbcn
Na-rich metaschoepite ^h	Katanga, Congo	14.6801(16)	14.0287(15)	16.7196(17)	3443	Pbcn
Na-rich metaschoepite ^{ih}	synthetic-CRY	14.7050(6)	14.0565(5)	16.7051(6)	3453	Pbcn
Na-rich metaschoepite ^h	synthetic-CRY-Np	14.6401(15)	14.0417(14)	16.7044(17)	3434	Pbcn
Na-rich metaschoepite ^h	synthetic-AB1	14.6317(27)	14.0417(25)	16.6977(30)	3424	Pbcn
Na-rich metaschoepite ^h	synthetic-AB2	14.6592(9)	14.0358(8)	16.7148(10)	3439	Pbcn
Na-rich metaschoepite ⁱ	Jáchymov, CZ	14.64(2)	14.03(1)	16.69(2)	3426	Pbcn
K-rich fourmarierite ⁱ	Jáchymov, CZ	14.025(2)	16.469(4)	14.623(2)	3378	$Bb2_1m$
K-rich fourmarierite ⁱ	Jáchymov, CZ	13.442(5)	16.611(6)	14.447(2)	3226	$Bb2_1m$
fourmarierite ^j	Shinkolobwe, DRC	14.010(1)	16.401(1)	14.317(1)	3290	$Bb2_1m$
fourmarierite ^j	synthetic	13.938(2)	16.638(3)	14.672(2)	3402	$Bb2_1m$
kroupaite ^k	Jáchymov, CZ	14.8201(8)	14.0958(8)	16.765(1)	3502	Pbca
leesite ¹	Utah, USA	14.866(7)	14.126(7)	16.772(8)	3522	Pbca

^a Finch et al. (1996),^b Plášil (2018a),^c Weller et al. (2000),^d Schoep and Stradiot (1947),^e Walenta and Theye (2012),^f Brugger et al. (2011),^g Taylor and Hurst (1971),^h Klingensmith et al. (2007),ⁱ Sejkora et al. (2013),^j Li and Burns (2000),^k Plášil et al. (2020),^l Olds et al. (2018).

bobfinchite

synthetic analog of bobfinchite

schoepite & metaschoepite

kroupaite

leesite

fourmarierite

Na-rich metaschoepite and synthetic analog

Figure 8