K isotopic fractionation in K-feldspar: Effects of mineral chemistry

Shanke Liua*, Wenjun Li², Benxun Su³, Qiqi Pan², c, Meng Yuan², c, Patrick Asamoah Sakyid

a Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
b University of Chinese Academy of Sciences, Beijing 100049, China
c State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
d Department of Earth Science, College of Basic and Applied Sciences, University of Ghana, P.O. Box LG 58, Legon-Accra, Ghana

* Corresponding author, e-mail: liushanke@mail.iggcas.ac.cn.

ABSTRACT

Controlling factors of potassium (K) isotopic fractionation in K-feldspar remain poorly constrained. In this study, we analyzed the K isotopic compositions of eleven K-feldspar samples
from diverse lithological compositions. Degree of Al/Si order ranged from 0.22 to 0.94 (1.0 = completely ordered). Analyzed samples are mixtures of K-feldspar (>70 wt%) and coexisting albite. The relative contribution of K$_2$O from the K-feldspar phase of the sample was over 98%, indicating that the K isotopic composition (δ41K) derives mainly from K-feldspar and hence reflects its behavior. The δ41K values of these samples range from -0.710 to -0.075‰, which are slightly correlated with the degrees of Al/Si order. The correlations of δ41K with SiO$_2$ and Al$_2$O$_3$ contents and the corresponding Al/Si mole ratios reveal that Al and Si play a significant role in the K isotopic behavior of K-feldspar. The correlations of δ41K with SiO$_2$ and Al$_2$O$_3$ contents are attributed to the difference in K-O bond strengths. Compared to K-feldspar, the K content could be a better proxy for constraining the δ41K of plagioclase. Our results demonstrate that the δ41K of K-feldspar is dependent on its mineral chemistry and its K isotopic composition may be insensitive to other factors, such as the source heterogeneity. The inference is further confirmed by comparing the δ41K values in this study with published δ41K values of K-feldspar from different sources.

Key words: K isotopes; K-feldspar; Al/Si order; Bond length; Al/Si mole ratio.

INTRODUCTION

Potassium (K) is a highly incompatible lithophile element, and a highly soluble and biophile element that plays an important role in many biological processes (Hollabaugh, 2007; Stosch, 1998). Many analytical innovations have allowed K isotopic measurements (Hu et al., 2018; Li et al., 2016, 2022; Morgan et al., 2018; Wang and Jacobsen, 2016) which have enabled the evaluation of a variety of geochemical processes (Wang et al., 2020, 2021). Whereas available K
isotopic data have been mainly derived from whole rock analyses, it is imperative to emphasize that K-rich minerals within rocks control the overall K isotopic variations, a facet that has yet to receive adequate attention. Notably, studies of igneous rocks have indicated that the fractional crystallization of K-rich phases such as mica and K-feldspar holds the potential for playing a pivotal role in driving K isotopic variation (Ding et al., 2023; Su et al., 2023). The isotopic data sourced from these K-rich minerals have the capacity to enrich our comprehension of geological processes when merged with other geochemical and petrological tools. Moreover, K-feldspar, in which K is a major element, is a common mineral in the crust and plays an essential role in magma generation, crustal magma evolution, and subsequent alteration (Brown and Parsons, 1994; Černý, 1994; Vernon and Paterson, 2008; Yuan et al., 2019). By examining the isotopic signatures in K-feldspar, we may gain further insights into geological phenomena that otherwise remain concealed.

To date, a limited number of K-feldspar samples, mainly from pegmatites and other igneous rocks, have been studied globally, exhibiting a wide δ41K range from -1.19 to -0.08‰ (e.g., Chen et al., 2019; Hu et al., 2021; Huang et al., 2023; Kuhnel et al., 2021; Morgan et al., 2018; Xu et al., 2019). The previous studies were mainly aimed at: (i) developing a new methodology for high-precision K isotope measurement in K-bearing minerals and (ii) understanding K isotopic compositions of different mineral phases and their role during magmatic differentiation. Morgan et al. (2018) analyzed a broad set of samples, but they did not provide conclusive evidence for any particular mechanisms responsible for naturally-occurring K isotopic fractionation. They speculated that magma fractionation, along with diffusion, may explain the variability in the measured 41K/39K ratios. Very recent studies on potassium isotopes of K-rich minerals, such as
plagioclase, K-feldspar and mica, obtained from granitoids in cogenetic magmatic suites, show both large-scale intra-mineral and inter-mineral fractionations, which mainly depend on the K content and K-O bond length (Huang et al., 2023; Kuhnel et al., 2021). These studies highlighted application of K isotope geochemistry as a new tracer due to the existence of large K isotope fractionation during granitic magmatism.

K-feldspar is commonly divided into three principal varieties, namely microcline, orthoclase, and sanidine in the order of increasing crystallization temperature from ~200 to >1000 °C (Smith and Brown, 1988a; Brown and Parsons, 1989; Parsons, 2010). The division of K-feldspar is based on the state of order or disorder. The formation temperature and subsequent cooling history dictate the degree of Al/Si order among the four-membered rings of the TO4 tetrahedra of K-feldspar (Smith and Brown, 1988b). Generally, the degree of Al/Si order increases from sanidine and orthoclase to microcline, with decreasing crystallization temperature (Brown and Parsons, 1989; Parsons, 2010). Ordering during subsequent subsolidus processes is an important factor. Considering the fact that stable isotope fractionation in general is temperature-dependent and the equilibrium fractionation between two phases generally decreases with increasing temperature (Oneil, 1977, 1986; Schauble, 2004; Urey, 1947), it is reasonable to speculate that theoretically, K isotopes are likely to be highly fractionated among the feldspar varieties (Kuhnel et al., 2021; Li et al., 2019a, 2019b; Zeng et al., 2019). Therefore, the change in the degree of Al/Si order may directly correlate with the K isotopic fractionation in K-feldspar. Additionally, modifications in Na or Ca content could lead to variations in the K-O bond length within feldspar. Consequently, an increase in Na or Ca content is anticipated to be associated with elevated proportions of the heavier 41K isotope due to the shorter K-O bond length (Kuhnel et al. 2021; Li et al., 2019b, Zeng...
In this study, we attempt to understand the key factors in generating measured K isotopic variation in feldspars of different composition by investigating a suite of K-feldspar samples constituting mostly >80 wt% K-feldspar phase. These samples are characterized by variable degrees of Al/Si order and K/(K+Na+Ca) mole ratios. Our results indicate that K isotopic variation in these samples is dependent on the change of Al/Si mole ratio, which dictates the change of K-O bond length of feldspars.

SAMPLE DESCRIPTIONS

Eleven samples, six microcline, four orthoclase, and one sanidine, were collected from seven districts in China. These samples were studied as raw materials for artificial K-fertilizers or soil conditioners (Hellmann et al., 2021; Zhai et al., 2021), and their degrees of Al/Si order have already been determined (Liu and Zhai, 2021). All samples were mined within the past ten years, and their salient features are described below.

The six microcline-containing samples were collected from four different locations. Microcline in these samples is light pink in color and appears mostly as euhedral-subhedral crystals with grain size in the range of 1~20 mm. Sample SX-1 was separated from a granite porphyry (1786 Ma; Cui et al., 2010) in the Xiong’er Volcanic Province of the Xiong’ershan region, Henan Province. The granite porphyry mainly contains microcline (~40% in volume), quartz (~20%), plagioclase (~20%), and muscovite (5%). Samples LS-1 and LS-2 are from granitic pegmatite veins in Lingshou County, Hebei Province. The granitic pegmatite body is light pink with massive structure and has a mineral assemblage of microcline (80%) and others (20%), including quartz and small amounts of limonite and vermiculite. The microcline phenocrysts show
lattice twinning texture. Sample WLST-1 is from a quartz porphyry in the Weilasituo area of the southern Great Xing’an range (131 Ma; Zhang et al., 2019). The quartz porphyry is gray-white and has characteristics of cryptocrystalline matrix and a massive structure; amazonitization is well developed and microcline constitutes ~65% in volume, along with ~30% quartz and ~5% muscovite. Samples TYG-3 and TYG-4 were collected from Late Permian granites (253 Ma; Guo, 2019) in Chifeng city, Inner Mongolia. The granites are grayish-white or light pale-red in color with medium to fine-grained texture and massive structure. The mineral compositions are microcline (~50%), plagioclase (~28%), quartz (~20%), and biotite (~2%).

Samples CSY-1, CSY-2 and CSY-3 were collected from a syenite porphyry (148 Ma; Wu et al., 2017) in Chifeng city, Inner Mongolia. The syenite porphyry is grayish-white or light pale-red. It contains orthoclase (~70%) with grain size of 2-15 mm, plagioclase (~10%) with grain size of 3-10 mm, and quartz (~20%) with grain size of 1-4 mm. Sample CHG-12 was collected from a granite porphyry (252 Ma; Meng et al., 2013) in Chifeng city, Inner Mongolia. The granite porphyry is light pale-red, and its phenocrysts are mainly composed of plagioclase, orthoclase, and quartz.

The sanidine sample FHS-1 was collected from an ultra-hypabyssal granite porphyry (27.6 Ma; Wu et al., 2007), located 50 km west of the Fenghuo Mountain in Qinghai Province. The granite porphyry is fresh and grayish, and is mainly composed of sanidine (20%), with the remaining 80% composed of quartz and pyroxene. The sanidine phenocrysts, typically measuring 0.5–2 mm in size, display a zoning pattern, characterized by well-defined core regions and discernible boundaries, along with Carlsbad twins.

ANALYTICAL METHODS
The samples were crushed and then hand-picked under an optical microscope. Subsequently, each sample was dry-ground with a mortar and pestle, and further removal of extraneous phases was done with heavy liquid separations. K-feldspar can be efficiently separated by blending liquids with specific gravity values customized for it and utilizing centrifugal separation. After the treatment with heavy liquids, grains were sieved and those < 74 μm were used for analysis.

X-ray powder diffraction

X-ray powder diffraction (XRPD) was applied to calculate the degree of Al occupancy in K-feldspar. The XRPD patterns of the bulk samples were collected using a PANalytical X’Pert Pro diffractometer with CuKα radiation at 40 kV and 40 mA, a 0.0167° step size over a 2θ range of 10-90° at the Institute of Geology and Geophysics, Chinese Academy of Sciences (IGGCAS). The XRPD data were fitted and refined by the Rietveld method using the computer program package GSAS (Larson and Von Dreele, 2004) and its graphical interface EXPGUI (Toby, 2001). The instrumental parameter file was obtained from the XRPD pattern of LaB₆ standard (SRM 660b, National Institute of Standards and Technology, USA). The starting atomic coordinates, cell parameters, equivalent isotropic displacement parameters, and space groups of sanidine, orthoclase, microcline, albite, quartz, and kaolinite were based on structural data from Gering (1985), Colville and Ribbe (1968), Dal Negro et al. (1978), Wenk and Kroll (1984), d'Amour et al. (1979), and Bish (1993), respectively. Because of the preferred orientation of feldspar powder, the spherical harmonics function and March-Dollase function were used for K-feldspar and albite, respectively. Considering the resolution of the XRPD data and the quantities of atom parameters included in the Rietveld model, only cell parameters of all phases were optimized to avoid a pseudo convergence. The degree of Al/Si order \((Z)\) of K-feldspar phase can be obtained from the...
parameters of K-feldspar unit cell, and the detailed method has been described by Liu and Zhai (2021).

Determination of chemical composition

To determine the chemical compositions of the eleven bulk samples, a mixture of individual powder samples (0.5 g) and Li$_2$B$_4$O$_7$ + LiBO$_2$ (5 g) was heated and fused into a glass disc. The composition of the bulk sample was then analyzed by X-ray fluorescence spectroscopy (XRF) using a Shimadzu XRF 1500 sequential spectrometer (Shimadzu Corporation, Japan) at the IGGCAS. GSR-1, GSR-2, and GSR-3 were used to monitor the preparation process and instrument status, and the analytical precision of the sum of chemical compositions was controlled to within ±1%.

The analyzed samples were found to be mixtures mainly composed of K-feldspar and albite phases, despite the steps taken in mineral separation. To supplement the bulk sample analyses, individual grains were analyzed using a JEOL JXA8100 electron microprobe at the IGGCAS. Samples were analyzed using a voltage of 15 kV, a beam current of 20 nA, a spot size of 1 μm, and a 10–30 s peak counting time. The natural minerals and synthetic oxides used for calibration are as follows: diopside (Ca, Si, and Mg), albite (Na and Al), rutile (Ti), bustamite (Mn), K-feldspar (K), Fe$_2$O$_3$ (Fe), chromite (Cr), and NiO (Ni). A program based on the ZAF procedure was used for data correction. The estimated analytical precision of major oxide measurements is ±2%.

Determination of K isotopes

Potassium isotope analyses were conducted at the Metallogenic Elements and Isotopes Lab at the IGGCAS, following the protocol described in Li et al. (2022). Approximately 1 mg of the
powdered bulk sample was weighed and digested using a mixture of concentrated HNO₃ and HF. The digested solutions were evaporated to dryness and then treated sequentially with aqua regia and 6 mol L⁻¹ HNO₃. After evaporating the solutions, the final residues were fully dissolved twice in 0.5 mol L⁻¹ HNO₃ prior to column separation. The sample solution was loaded onto a pre-conditioned 2 mL Bio-Rad AG50W-X8 (200-400 mesh) resin and then rinsed with 15 mL of 0.5 mol L⁻¹ HNO₃ to remove the matrix elements. The K fraction containing ~ 100% of total K was collected with 20 mL 0.5 mol L⁻¹ HNO₃ and subsequently dried. The same purification process was repeated two to four times to ensure complete matrix removal. The final K solution was redissolved in 2% HNO₃ ready for measurement. The total procedural blank for the K isotope analyses was < 30 ng K, which was negligible compared with the concentration of K in the chemically purified solution. Potassium isotopic measurements were performed on the Nu Sapphire CC-MC-ICP-MS (Nu Instruments, Wrexham, UK) using the collision cell (low-energy) path. The hexapole collision cell utilizes He and H₂ gas to almost completely remove various Ar-based polyatomic species, so the K isotopic ratios can be measured in the low-resolution mode. An auto-sampler SC-2DX (Elemental Scientific, U.S.A.) was connected to an Apex Omega desolvating nebulizer system (Elemental Scientific, U.S.A.) for sample introduction. One Faraday cup was connected to a pre-amplifier fitted with a 10¹⁰ Ω resistor for collection of ³⁹K⁺ ion beam, while the other two Faraday cups using 10¹¹ Ω resistors, collected ⁴¹K⁺ and mass 40 beams, respectively. Potassium isotopic data are reported in δ notation relative to SRM 3141a, using the sample-standard bracketing technique for instrumental mass fractionation correction (Hu et al., 2018):
The K concentration difference between each sample and the standard was controlled to a level below 5%. Each analysis consisted of 1 block of 50 cycles with 4 s integrations. Seven repeated analyses were conducted on each sample solution. Geostandards BCR-2 (δ^{41}K = -0.455 ± 0.037‰) and GSR-1 (δ^{41}K = -0.473 ± 0.032‰) that were analyzed during the course of this analysis are consistent with literature values (Chen et al., 2021; Li et al., 2020, 2022; Moynier et al., 2021; Xu et al., 2019). The long-term precision, based on multiple measurements of BCR-2 geostandard, was 0.040‰ (2SD) (Li et al., 2022).

RESULTS

Mineral phase and chemical composition

The XRPD analyses show that, apart from the major K-feldspar phase, most samples occurring as mineral separates still contain some impurities such as albite, quartz, and kaolinite (Table S1 and Figs S1-S11). Some K-feldspars have appreciable Na$_2$O, including the single phase sanidine FHS-1. To avoid confusion, we use the term ‘K-feldspar’ for bulk K-feldspar samples, and ‘K-feldspar phase’ and ‘albite phase’ for the K- and Na-end member components, respectively. The amount of albite phase is in the range of 3.5 - 27.3 wt%, indicating that a routine sample preparation method may have difficulties in separating K-feldspar from albite. The degree of Al/Si order in the studied K-feldspar covers a wide range from 0.22 to 0.94 (1.0 = completely ordered, see details in Table S1).

The eleven bulk samples display rather similar chemical compositions (Table 1), and have K$_2$O contents of 10.3 - 14.2% and Na$_2$O of 1.00 - 3.85%. They show 2.5% and 1.4% variation for
SiO$_2$ and Al$_2$O$_3$, respectively, corresponding to a change of Al/Si mole ratio from 0.325 to 0.354.

All samples, except FHS-1, have >0.90 mole fraction of K in the K-feldspar phase and >0.90 mole fraction of Na in the albite phase, respectively (Table 2). Therefore, the weights of K$_2$O in the sample (K_A) were mainly derived from the K-feldspar phase (Table 2). To calculate the chemical compositions of the bulk samples, we combined the electron microprobe analysis (EMPA) data (Table 2) with the phase abundance obtained from XRPD (Table S1) and applied theoretical formulas for quartz (SiO$_2$) and kaolinite (Al$_4$[Si$_4$O$_{10}$](OH)$_8$) (The calculated results were supplied in Table S2). We found a strong correlation between the calculated values and the determined ones by XRF for K$_2$O, Na$_2$O, SiO$_2$, Al$_2$O$_3$, and Al/Si mole ratio (Figs. 1, 2). However, a deviation from the 1:1 diagonal was observed for Al$_2$O$_3$, indicating a lower content was possibly estimated from the EMPA method, resulting in a lower Al/Si mole ratio for the EMPA analysis relative to XRF (Fig. 2c). Overall, the good consistency between the calculated values and the chemical compositions determined by XRF indicates a relatively high accuracy of both the quantitative phase analysis by the Rietveld method and the method of EMPA.

K isotopic composition

The eleven bulk samples have δ^{41}K values ranging from -0.710 to -0.075‰ (Table 1). The Δ^{41}K values (the difference between the heaviest and lightest K isotopic composition) for bulk samples from the same lithology and locality are: 0.189‰ for samples TYG-3 and TYG-4 (granite, Chifeng city, Inner Mongolia), 0.296‰ for samples CSY-1, CSY-2, and CSY-3 (syenite porphyry, Chifeng city, Inner Mongolia), and 0.252‰ for samples LS-1 and LS-2 (granitic pegmatite, Lingshou County, Hebei Province). All the porphyry samples have relatively light K isotopes in K-feldspar (δ^{41}K = -0.710 to -0.220‰), whereas the two pegmatite K-feldspar samples
have relatively heavier compositions (δ^{41}K = -0.327‰ and -0.075‰).

DISCUSSION

Relationship among mineral phase, degree of Al/Si order, and K isotopic composition

The consistency of the degrees of Al/Si order determined from both XRPD (Z in Table S1) and Fourier transform infrared spectra (Liu and Zhai, 2021) indicates that the impurities in the mineral separates have negligible impact on determining unit cell parameters of the major K-feldspar phase. The overall degrees of Al/Si order of these studied samples increase in the order of sanidine < orthoclase < microcline (Table S1). The low degree of Al/Si order in sanidine, a high-temperature alkali feldspar, is reflected by its instability in rocks on the surface or shallow levels below the Earth’s surface, as well as its transition to orthoclase phase over time (Haldar and Tišljar, 2014). Studies have shown that alkali feldspars with the highest degree of disorder begin to crystallize at about ~1000 °C (Brown and Parsons, 1989; Laves, 1952; Parsons, 2010; Schairer, 1950), whereas the feldspars with high degree of order commonly reach equilibration at temperatures of around 400 °C, which is the inversion temperature of orthoclase into microcline (Brown and Parsons, 1989; Glazner and Johnson, 2013; Kovács Kis et al., 2004; Parsons, 2010; Parsons and Lee, 2009). However, the K-Na exchange reaction can continue at temperatures of <200 °C (Brown and Parsons, 1989; Laves, 1952; Parsons, 2010; Smith and MacKenzie, 1958). A maximum fractionation factor between albite and K-feldspar (microcline) was calculated to be about 0.895 ‰ based on the calculation of Li et al., assuming ~200 °C as the lowest temperature of K isotopic fractionation (Li et al., 2019b). Additionally, Zeng et al. (2019) obtained a larger K isotopic fractionation factor at room temperature. However, taking into account the relative weight of K$_2$O in the studied samples (K_A in Table 2) and employing the isotopic mixing model (Gray,
the K-feldspar phase of all samples significantly contributes over 98% to the δ^{41}K value, emphasizing the dominant role of K isotopic behavior within the K-feldspar phase, consistent with its function as the primary K host in these bulk samples.

The low correlation coefficient ($R^2 = 0.01$) between δ^{41}K and the degree of Al/Si order suggests that the degree of Al/Si order does not significantly affect the K isotopic composition (Fig. 3). Although the K isotopic variation introduced by source heterogeneity (in this context, referring to changes in lithological subtypes or sample localities) cannot be completely ruled out here, the trivial effect of the degree of Al/Si order on the variation of K isotopic composition indicates that crystallization temperature may not be a major factor in controlling K isotopic fractionation in natural K-feldspars.

Preferred orientation, which makes it difficult to obtain high-quality XRPD data for calculating accurate bond length, is significant during sample preparation (Liu et al., 2017; Liu, 2015), and therefore the unit cell parameters of the K-feldspar phase were only calculated by applying the Rietveld method (Table S1). A detailed list of the unit cell parameters is available in Liu and Zhai (2021). The significant linear correlation between the K-O bond length and the unit cell volume of K-feldspar (Fig. 4a) allowed us to calculate the K-O bond length of the K-feldspar phase, using equation 1:

$$d_{K-O} = 0.00308 \times V + 0.7967 \text{Å}$$

(1)

Where $d_{K,O}$ denotes K-O bond length, and V is unit cell volume of K-feldspar phase. The calculated K-O bond lengths were plotted against the corresponding degrees of Al/Si order for the K-feldspar phases (Fig. 4b). The result shows that the correlation between the K-O bond length and the degree of order is negligible, consistent with previously published data (See references in
Table S3).

Relationship between chemical composition and K isotopic fractionation

Since the δ⁴¹K values were obtained from a whole bulk sample rather than a single K-feldspar phase, we first investigated the relationship between the δ⁴¹K values and chemical compositions of K-feldspar bulk samples. The δ⁴¹K values and chemical compositions (e.g., K₂O, Na₂O, and CaO) are negligibly correlated, indicating that the contents of K, Na, and Ca in these samples have little effect on the K isotopic composition (Fig. 5). However, the strong correlations between δ⁴¹K and the contents of Si and Al in the bulk samples are indicated by the high R^2 values of 0.79, 0.78, and 0.73 for δ⁴¹K vs. SiO₂, Al₂O₃, and Al/Si mole ratio, respectively (Fig. 6). The strong correlation of the δ⁴¹K data of the eleven bulk samples in this study vs. the Al/Si ratio, together with eight sets of K-feldspars from China, Norway, and France (Chen et al., 2019; Huang et al., 2023; Kuhnel et al., 2021), indicates a potential dependence of K-feldspar δ⁴¹K on the Al and Si contents. This correlation holds even when accounting for differences in lithology and sample locations. The correlation becomes less pronounced when the δ⁴¹K data are plotted against the Al/Si mole ratio in the K-feldspar phases rather than the bulk samples (Fig. 7); however, the trend still exists (refer to the subsequent discussion).

During the mineral separation process, we found it challenging to completely separate K-feldspar from albite, as previously mentioned. Therefore, it may be a common phenomenon that nominal K-feldspar samples contain some component of an albite phase, as shown in Table S1. The bulk samples in this study have K contents similar to those from the literature (Fig. 7). As a result, it is plausible that the nominal K-feldspar samples from other studies are similarly mixtures of K-feldspar and albite, both of which belong to alkali feldspar. Therefore, the Al/Si-dependent K
The isotopic composition of K-feldspar may be applicable to nominal K-feldspar, i.e., all unaltered, K-dominant alkali feldspar regardless of minor albite inclusions. The diminished correlation using in situ (EPMA) versus bulk (XRF) data shown in Fig. 7 arises from potential errors in the Al/Si ratio of K-feldspar from previously published data. Specifically, this discrepancy may stem from the use of nominal K-feldspar samples for Al/Si ratio, rather than data derived directly from the K-feldspar phase itself. While the K isotopic composition of our studied samples is dominantly influenced by the K-feldspar phase, it is important to acknowledge that the presence of an albite component within the studied sample cannot be entirely ruled out. Furthermore, the observed weaker correlation between $\delta^{41}K$ and Al/Si within the K-feldspar phases, as opposed to the bulk samples, can be partly attributed to the lower precision associated with the determination of Al and Si contents using in situ EMPA in K-feldspar phases, compared to bulk XRF data. This discrepancy arises due to the larger volume of powder used for bulk XRF analysis. Consequently, the enhanced linear correlation observed in the bulk samples, suggests a direct influence of albite on this relationship.

Moreover, the trend of Al/Si-dependent $\delta^{41}K$ appears insignificant when the application is extended to plagioclase due to a significant widening of Al/Si mole ratio range (0.185 - 0.466) (Fig. 8a). In contrast to K-feldspar, K content could be a better proxy for constraining the K isotopic composition of plagioclase because its $\delta^{41}K$ value significantly increases with the decreasing K content (Fig. 8b). Considering that the radius of K (1.52 Å) is larger than those of Na (1.16 Å) and Ca (1.14 Å), if they are all coordinated by six O atoms (Shannon, 1976), plagioclase with lower K contents theoretically tend to have shorter K-O bonds, leading to an enrichment of heavy K isotopes (Huang et al., 2023; Kuhnel et al., 2021; Li et al., 2019b; Zeng et al., 2019).
However, the effects of Na or Ca on K isotopic compositions may be relatively small for both K-feldspar and plagioclase, as suggested by the scattered plot of δ^{41}K vs. Ca/(Ca+Na) (Fig. 8c).

Mechanism of Al/Si dependence on K isotopic fractionation

It is important to better understand the relationship between δ^{41}K and the Al and Si contents of K-feldspar samples. The theoretical expectation of heavy K isotopic enrichment with shorter K-O bond length (Fig. 9a) reasonably agrees with the shortened K-O bond length with increasing Al/Si ratio (Fig. 9b). Even when these three samples (red stars in Fig. 9b) were included, a consistent negative relationship between the Al/Si mole ratio and K-O bond length remained evident, although a more linear regression was obtained when they were excluded. The significant K isotopic variation among these bulk samples suggests K isotopic fractionation is controlled principally by changes in the K-O bond length, which in turn is dictated by contents of Al and Si.

The studied samples from the seven districts of China cover a range in granitic bulk composition, which may have introduced an initial K isotope heterogeneity. The δ^{41}K values of the two K-feldspar separates from the granite in this study are -0.525‰ and -0.336‰, respectively. These values are heavier relative to the -0.66 to -0.53‰ for the four K-feldspar separates from the Dabie granitoids (Huang et al., 2023), and they also overlap with the -0.79 to -0.47‰ for the seven mineral separates from the Himalayan leucogranites (Huang et al., 2023).

Furthermore, the δ^{41}K values of -0.525‰ and -0.336‰ are close to the K isotopic compositions of two mineral separates from granite sample (-0.46‰ and -0.26‰) (Kuhnel et al., 2021; Xu et al., 2019). The variation in δ^{41}K values may essentially stem from the K isotopic heterogeneity of magma sources because of the small inherent variations in the crust. Nonetheless, the essential source heterogeneity has not affected the positive correlation between δ^{41}K and Al/Si ratio.
observed for the samples with similar chemical compositions in this study and in the literature. Therefore, the trend may be common for K-feldspar. The chemical composition, such as an increasing Al/Si ratio (Fig. 6c) and a decreasing K content (Fig. 8b) determines the K-O bonding environment, which subsequently dictates K isotopic fractionation (Fig. 9b). For instance, the chemical composition of $\text{Ca}_0.96875\text{K}_0.03215\text{Al}_{1.96875}\text{Si}_{2.03215}\text{O}_8$ closely resembles that of the plagioclase endmember $\text{CaAl}_2\text{Si}_2\text{O}_8$, which possesses a theoretical K-O bond length of 2.68 Å ($\text{Ku}h\text{n}l\text{e}l$ et al., 2021), contrasting significantly with the theoretical K-O bond length of 2.88 Å in microcline (Fig. 10). A large inter-mineral isotopic fractionation of up to 0.863‰ between plagioclase and K-feldspar was observed by $\text{Ku}h\text{n}l\text{e}l$ et al. (2021). The large inter-mineral fractionation of isotopes should be closely related to the 0.2 Å K-O difference (Huang et al. 2023; $\text{Ku}h\text{n}l\text{e}l$ et al., 2021). Additionally, the negative correlation observed between K-O bond length and Al/Si mole ratio, as depicted in Fig. 10, aligns with the observed trend in K-feldspar (Fig. 9b).

Previous studies have demonstrated significant K isotopic fractionation during magmatic differentiation, primarily associated with the fractionation of K-rich minerals (Ding et al., 2023; Huang et al., 2023; Su et al., 2023; Wang et al., 2022). The potential impact of inter-mineral K isotopic fractionation on shaping K isotopic behavior is noteworthy. However, it is important to acknowledge that our study lacks $\delta^{41}\text{K}$ data from other minerals present in the examined rocks, limiting our ability to directly address questions of inter-mineral fractionation. Despite previous studies demonstrating or theorizing variations in K isotopes among different feldspars (Huang et al., 2023; $\text{Ku}h\text{n}l\text{e}l$ et al., 2021; Li et al., 2019b; Zeng et al., 2019), the available data from our study reveal only a marginal correlation between $\delta^{41}\text{K}$ values and K_2O, Na_2O, and CaO (Fig. 5), implying that the variation in K isotopes caused by K isotopic fractionation between albite and K-
feldspar might not be of significant consequence.

IMPLICATIONS

The K isotopic composition of feldspar is influenced by several factors, such as temperature, the K isotopic composition of the magma in equilibrium, and possible interaction with late-stage fluids or potential effects of surficial/low temperature alteration (Wang et al., 2020, 2021). To assess potential effects of surficial/low temperature alteration, e.g., the extent of chemical weathering, on K isotopic fractionation in the studied bulk samples, we calculated the chemical index of weathering (CIA) values for the studied samples, which range from 50% to 53% (Table 1). These values closely resemble those of unaltered granitic rocks (approximately 50%) reported by Ohta and Arai (2007) and Perri (2020). This suggests that the studied bulk samples are very fresh, and the observed variability in K isotopic composition is unlikely to be attributed to weathering processes. Although we cannot control the effects of the source magma, the Al/Si ratio of K-feldspars from different lithologies and locations can be used to constrain the K isotopic composition very well. Recently, studies of Huang et al. (2023) and Wang et al. (2022) revealed large K isotopic fractionation during granitic magmatism. Granitoids with high Si and K have relatively variable Al content (Liu et al., 2010, 2014; Wu et al., 2015). Therefore, to some extent, the variation of Al/Si ratio and K₂O content in feldspar can be attributed to the various geological settings or different stages of magma evolution (Huang et al., 2023). Our study demonstrates that the Al/Si mole ratio can be used as a proxy to constrain the K isotopic composition in K-feldspar in granitic rocks.

DECLARATION OF COMPETING INTEREST

The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

ACKNOWLEDGMENTS We would like to thank Dr. Youlian Li for assistance in chemical purification and Dr. Lingli Zhou for critical comments and grammatical correction in improving the quality of this manuscript. Insightful comments from AM Editor Paul Tomascak, Dr. Shi-Chun Huang, and two anonymous reviewers are gratefully acknowledged. This study was financially supported by Second Tibetan Plateau Scientific Expedition and Research Program (STEP) (2019QZKK0802), the Beijing Natural Science Foundation (8202048), and the Experimental Technology Innovation Fund of the Institute of Geology and Geophysics, Chinese Academy of Sciences (Grant No. TEC 202103).

APPENDIX A. SUPPLEMENTARY MATERIAL

Supplementary data accompanying this article include: Table S1 Parameters obtained from X-ray powder diffraction using the Rietveld method; Table S2 Chemical compositions (wt%) of the bulk samples calculated by combining EMPA and XRPD data; Table S3 Compiled crystal structure data of K-feldspars in Fig. 4. Figures S1-S11 Rietveld fit patterns of all samples.

REFERENCES

measurements by collision cell equipped MC-ICPMS. Chemical Geology, 578, 120281.

Meng, S., Yan, C., Lai, Y., Shu, Q. H. and Sun, Y. (2013) Study on the mineralization chronology and

Figure captions:

Fig. 1. Plots of K$_2$O (wt%), Na$_2$O (wt%), and CaO (wt%) obtained from XRF vs. those calculated by combining EMPA and XRPD data (see details in the main text, and EMPA represents the calculated values in the abscissa). Dashed line is 1:1 relationship, solid line is linear regression of data with 95% confidence interval in grey shaded region. Same system is used in remaining figures.

Fig. 2. Plots of SiO$_2$ (wt%), Al$_2$O$_3$ (wt%), and Al/Si mole ratio obtained from XRF vs. those calculated by combining EMPA and XRPD data (see details in the main text, and EMPA represents the calculated values in the abscissa).

Fig. 3. δ^{41}K vs. degree of Al/Si order of the studied eleven K-feldspar bulk samples (refer to the text for how Al/Si order is quantified).

Fig. 4. K-O bond length vs. (a) unit cell volume and (b) Al/Si order degree, showing linear fit for K-feldspars. The K-O bond lengths were calculated from equation 1 in the text. Data compiled from the literature and this study. See Supplementary Table S3 for details of literature data.

Fig. 5. Plots of δ^{41}K vs. (a) K$_2$O, (b) Na$_2$O, and (c) CaO for the K-feldspar bulk samples.

Fig. 6. Plots of δ^{41}K vs. (a) SiO$_2$, (b) Al$_2$O$_3$, and (c) Al/Si mole ratio for the K-feldspar bulk samples in this study and from the literature.

Fig. 7. Plots of δ^{41}K vs. Al/Si mole ratio. The data for the studied samples includes solid circles (bulk samples) and open circles (individual K-feldspar phases). The Al/Si mole ratios of bulk samples (solid circles) can be found in Table 1, while the individual Al/Si ratios for K-feldspar phases (open circles) are listed in Table 2.

Fig. 8. Plots of δ^{41}K vs. (a) Al/Si mole ratio, (b) K content and (c) Ca/(Ca+Na) mole ratio for K-feldspars analyzed in this study and the literature (filled symbol denotes K-feldspar, and hollow one denotes plagioclase). K content was calculated based on the total moles (up to 1) of Na, K, and Ca in feldspar. The literature data include five sets of feldspar standards and thirty-five sets of feldspar samples. Sources of K isotopic compositions of the feldspar standards are: FK-N (K-feldspar) and NIST SRM 99a (soda feldspar) (Chen et al., 2019), syenites SY-1 and SY-2 (plagioclase) (Xu et al., 2019), and NIST SRM 70b (potassium feldspar) (Morgan et al., 2018). Their major element compositions are from: FK-N (Govindaraju, 1984), NIST SRM 99a (Reed, 1990), SY-1 (Webber G., 1961), SY-2 (Faye and Sutarno, 1976), and NIST SRM 70b (Gonzalez, 2013). K isotopic compositions and major element data of feldspar samples from Kuhnel et al.
(2021) and Huang et al. (2023).

Fig. 9. Correlation diagrams of (a) δ⁴¹⁴K vs. K-O bond length and (b) Al/Si mole ratio vs. K-O bond length of K-feldspar phases. To highlight a more pronounced trend observed among the samples, three samples (red stars) were deliberately excluded from the linear regression.

Fig. 10. Plot of theoretical K-O bond length vs. Al/Si mole ratio from published feldspar data.
Table 1. Elemental (wt%) and K isotopic (‰) compositions of K-feldspar samples

<table>
<thead>
<tr>
<th>Sample</th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>Al₂O₃</th>
<th>TFe₂O₃²</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>P₂O₅</th>
<th>LOI³</th>
<th>Al/Si⁴</th>
<th>CIA (%)⁵</th>
<th>δ⁴¹K</th>
<th>2SD</th>
<th>95%c.i. (%)</th>
<th>N⁶</th>
</tr>
</thead>
<tbody>
<tr>
<td>FHS-1</td>
<td>64.8</td>
<td>0.16</td>
<td>19.5</td>
<td>0.23</td>
<td>0.00</td>
<td>0.04</td>
<td>0.18</td>
<td>3.85</td>
<td>10.3</td>
<td>0.01</td>
<td>0.24</td>
<td>0.300</td>
<td>52</td>
<td>-0.222</td>
<td>0.062</td>
<td>0.029</td>
<td>7</td>
</tr>
<tr>
<td>CSY-1</td>
<td>66.0</td>
<td>0.02</td>
<td>18.4</td>
<td>0.22</td>
<td>0.01</td>
<td>0.03</td>
<td>0.22</td>
<td>2.96</td>
<td>11.5</td>
<td>0.01</td>
<td>0.52</td>
<td>0.279</td>
<td>51</td>
<td>-0.414</td>
<td>0.057</td>
<td>0.026</td>
<td>7</td>
</tr>
<tr>
<td>CSY-2</td>
<td>66.0</td>
<td>0.03</td>
<td>18.3</td>
<td>0.21</td>
<td>0.00</td>
<td>0.08</td>
<td>0.14</td>
<td>1.00</td>
<td>13.3</td>
<td>0.02</td>
<td>0.82</td>
<td>0.277</td>
<td>53</td>
<td>-0.520</td>
<td>0.035</td>
<td>0.016</td>
<td>7</td>
</tr>
<tr>
<td>CSY-3</td>
<td>65.6</td>
<td>0.01</td>
<td>18.1</td>
<td>0.42</td>
<td>0.01</td>
<td>0.04</td>
<td>0.13</td>
<td>1.73</td>
<td>13.5</td>
<td>0.01</td>
<td>0.54</td>
<td>0.276</td>
<td>51</td>
<td>-0.710</td>
<td>0.089</td>
<td>0.041</td>
<td>7</td>
</tr>
<tr>
<td>CHG-12</td>
<td>66.2</td>
<td>0.03</td>
<td>18.4</td>
<td>0.22</td>
<td>0.00</td>
<td>0.13</td>
<td>0.23</td>
<td>2.50</td>
<td>11.4</td>
<td>0.01</td>
<td>0.79</td>
<td>0.277</td>
<td>52</td>
<td>-0.604</td>
<td>0.041</td>
<td>0.019</td>
<td>7</td>
</tr>
<tr>
<td>SX-1</td>
<td>64.9</td>
<td>0.10</td>
<td>18.3</td>
<td>0.78</td>
<td>0.00</td>
<td>0.07</td>
<td>0.05</td>
<td>1.37</td>
<td>14.2</td>
<td>0.01</td>
<td>0.36</td>
<td>0.282</td>
<td>51</td>
<td>-0.452</td>
<td>0.062</td>
<td>0.029</td>
<td>7</td>
</tr>
<tr>
<td>LS-1</td>
<td>65.0</td>
<td>0.06</td>
<td>19.0</td>
<td>0.05</td>
<td>0.00</td>
<td>0.02</td>
<td>0.07</td>
<td>2.45</td>
<td>12.8</td>
<td>0.01</td>
<td>0.20</td>
<td>0.291</td>
<td>51</td>
<td>-0.327</td>
<td>0.047</td>
<td>0.022</td>
<td>7</td>
</tr>
<tr>
<td>LS-2</td>
<td>63.9</td>
<td>0.09</td>
<td>19.2</td>
<td>0.05</td>
<td>0.00</td>
<td>0.06</td>
<td>0.13</td>
<td>2.02</td>
<td>13.1</td>
<td>0.01</td>
<td>0.46</td>
<td>0.300</td>
<td>52</td>
<td>-0.075</td>
<td>0.043</td>
<td>0.020</td>
<td>7</td>
</tr>
<tr>
<td>WLST-1</td>
<td>66.0</td>
<td>0.01</td>
<td>18.3</td>
<td>0.04</td>
<td>0.00</td>
<td>0.02</td>
<td>0.01</td>
<td>2.22</td>
<td>13.1</td>
<td>0.01</td>
<td>0.08</td>
<td>0.277</td>
<td>51</td>
<td>-0.666</td>
<td>0.052</td>
<td>0.024</td>
<td>7</td>
</tr>
<tr>
<td>TYG-3</td>
<td>66.4</td>
<td>0.01</td>
<td>18.6</td>
<td>0.12</td>
<td>0.00</td>
<td>0.04</td>
<td>0.19</td>
<td>3.59</td>
<td>11.2</td>
<td>0.01</td>
<td>0.22</td>
<td>0.280</td>
<td>50</td>
<td>-0.525</td>
<td>0.061</td>
<td>0.028</td>
<td>7</td>
</tr>
<tr>
<td>Duplicate⁷</td>
<td></td>
<td>-0.534</td>
<td>0.051</td>
<td>0.023</td>
<td>7</td>
</tr>
<tr>
<td>TYG-4</td>
<td>65.4</td>
<td>0.02</td>
<td>18.7</td>
<td>0.14</td>
<td>0.00</td>
<td>0.05</td>
<td>0.12</td>
<td>2.13</td>
<td>13.3</td>
<td>0.02</td>
<td>0.22</td>
<td>0.286</td>
<td>51</td>
<td>-0.336</td>
<td>0.063</td>
<td>0.029</td>
<td>7</td>
</tr>
</tbody>
</table>

Note: 1. All K isotopic compositions were determined in this study, and elemental compositions analyzed using X-ray fluorescence spectrum are from literature: chemical compositions of samples FSH-1, SX-1, LS-1, LS-2, TYG-3, and TYG-4 are from Zhai et al. (2021), and samples CSY-1, CSY-2, CSY-3, CHG-12, and WLST-1 are from Hellmann et al. (2021). 2. total iron oxide. 3. LOI: loss on ignition. 4. The Al/Si mole ratio was obtained by calculating the ratio of the moles of aluminum to silicon. 5. CIA=\{x(Al₂O₃)/[x(Al₂O₃)+x(CaO*)+x(Na₂O)+x(K₂O)]\}×100, in which CaO* denotes CaO proportion derived from silicate minerals. 6. number of repeated K isotope analyses. 7. Duplicate: during the process of K isotope analysis, repeat analyses were conducted on the same purified sample solution during different analytical sessions.
Table 2. Measured chemical compositions of K-feldspar and albite phases by EMPA

Sample	wt%	mole	K_2O	Cr_2O_3	NiO	SiO_2	TiO_2	Al_2O_3	FeO	MnO	MgO	CaO	Na_2O	Total	K_α^2			
	SiO_2	TiO_2	Al_2O_3	FeO	MnO	MgO	CaO	Na_2O	K_2O	Cr_2O_3	NiO							
FHS-1	64.47	0.04	18.70	0.18	0.00	0.01	0.08	3.80	11.10	0.01	0.02	98.42	0.66	0.34	0.00	0.342	1.00	
CSY-1	64.34	0.04	17.85	0.12	0.01	0.01	0.06	0.88	16.23	0.00	0.01	99.56	0.92	0.08	0.00	0.327	0.98	
CSY-2	64.13	0.03	18.03	0.07	0.01	0.01	0.03	1.00	15.97	0.00	0.02	99.32	0.91	0.09	0.00	0.331	1.00	
CSY-3	64.53	0.01	18.06	0.09	0.00	0.01	0.04	1.01	16.17	0.01	0.01	99.94	0.91	0.09	0.00	0.330	1.00	
CHG-12	64.42	0.03	18.02	0.09	0.01	0.01	0.03	1.21	15.65	0.01	0.00	99.46	0.89	0.11	0.00	0.330	0.99	
SX-1	64.66	0.02	17.48	0.61	0.01	0.01	0.01	0.70	16.44	0.00	0.01	100.00	0.94	0.07	0.00	0.319	1.00	
LS-1	64.46	0.02	18.43	0.02	0.01	0.01	0.01	0.92	16.10	0.01	0.00	100.02	0.92	0.08	0.00	0.337	1.00	
LS-2	63.94	0.02	18.02	0.05	0.01	0.02	0.03	0.85	16.16	0.01	0.01	99.11	0.93	0.07	0.00	0.332	1.00	
WLST-1	65.00	0.02	17.67	0.04	0.02	0.00	0.01	0.43	17.19	0.00	0.00	100.37	0.96	0.04	0.00	0.320	1.00	
TYG-3	64.84	0.01	17.44	0.07	0.01	0.02	0.03	0.77	16.64	0.01	0.00	99.85	0.93	0.07	0.00	0.317	1.00	
TYG-4	64.47	0.03	17.93	0.04	0.01	0.00	0.03	0.90	16.57	0.01	0.01	99.98	0.92	0.08	0.00	0.328	0.99	

K-feldspar phase

Sample	wt%	mole	K_2O	Cr_2O_3	NiO	SiO_2	TiO_2	Al_2O_3	FeO	MnO	MgO	CaO	Na_2O	Total	K_α^2	
CSY-1	67.78	0.02	20.03	0.11	0.01	0.01	0.57	9.87	1.14	0.00	0.02	99.56	0.90	0.07	0.03	0.348
CSY-3	68.22	0.01	19.23	0.06	0.00	0.01	0.28	10.72	0.33	0.01	0.00	98.87	0.97	0.02	0.01	0.332
CHG-12	66.98	0.02	19.88	0.11	0.02	0.04	0.74	9.96	0.74	0.00	0.01	98.49	0.92	0.04	0.04	0.350
SX-1	67.95	0.01	19.04	0.52	0.02	0.01	0.02	10.87	0.31	0.00	0.01	98.76	0.98	0.02	0.00	0.330
LS-1	68.38	0.01	20.04	0.03	0.01	0.01	0.44	10.15	0.22	0.00	0.00	99.30	0.96	0.01	0.02	0.345
LS-2	68.02	0.02	19.72	0.04	0.02	0.00	0.43	10.93	0.29	0.01	0.00	99.48	0.96	0.02	0.02	0.342
WLST-1	69.27	0.02	19.17	0.02	0.01	0.00	0.25	10.82	0.25	0.01	0.00	99.57	0.98	0.02	0.00	0.326
TYG-3	67.91	0.01	19.65	0.06	0.01	0.05	0.94	10.62	0.21	0.01	0.00	99.47	0.94	0.01	0.05	0.341
TYG-4	66.88	0.01	20.20	0.18	0.00	0.06	0.89	10.35	0.63	0.01	0.01	99.22	0.92	0.04	0.04	0.356

Albite phase
Note: 1. The method used to calculate the Al/Si mole ratio is the same as the one presented in Table 1. However, it is important to note that in Table 2, the Al/Si ratio represents values for the K-feldspar phase and the albite phase, whereas in Table 1, it corresponds to the bulk samples. 2. K_A is the relative contribution of the K$_2$O content of K-feldspar phase to the sample based on the equation presented by Kuhnel et al. (2021), i.e.,

$$K_A = \frac{K_2O^1 \times w_{K-feldspar}}{K_2O^1 \times w_{K-feldspar} + K_2O^2 \times w_{albite}},$$

in which K_2O^1 denotes the K$_2$O (wt%) content in the K-feldspar phase, and K_2O^2 denotes the K$_2$O (wt%) content in the albite phase.
Fig. 1

(a) Graph showing the relationship between EMPA and XRF for K$_2$O with $R^2 = 0.85$.

(b) Graph showing the relationship between EMPA and XRF for Na$_2$O with $R^2 = 0.93$.

(c) Graph showing the relationship between EMPA and XRF for CaO with $R^2 = 0.40$.

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld
Fig. 5

(a)

![Graph showing $\delta^{14}K$ vs. K_2O (wt%) with $R^2 = 0.00$.]

(b)

![Graph showing $\delta^{14}K$ vs. Na_2O (wt%) with $R^2 = 0.03$.]

(c)

![Graph showing $\delta^{14}K$ vs. CaO (wt%) with $R^2 = 0.00$.]
Fig. 6

(a)

$$\delta^{11}K (\text{‰})$$ vs. SiO_2 (wt%) with $R^2 = 0.79$

(b)

$$\delta^{41}K (\text{‰})$$ vs. Al_2O_3 (wt%) with $R^2 = 0.78$

(c)

$$\delta^{11}K (\text{‰})$$ vs. Al/Si mole ratio with $R^2 = 0.73$

Legend:
- **This study**
- **Chen et al., 2019**
- **Kuhnle et al., 2021**
- **Huang et al., 2023**
Fig. 7

$R^2 = 0.22$

$R^2 = 0.73$

- Al/Si mole ratio in eleven samples, this study
- Chen et al., 2019
- Kuhnel et al., 2021
- Huang et al., 2023
- Al/Si mole ratio in K-feldspar phases, this study
Fig. 9

(a) $\delta^{18}K$ (%) vs. K-O bond length (Å) with $R^2 = 0.13$.

(b) A/Si mole ratio vs. K-O bond length (Å) with $R^2 = 0.94$.

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld
Fig. 10

K-O bond length (Å)

Na increase

Ca and Al/Si increase

K$_{0.128}$Na$_{0.875}$Al$_3$Si$_3$O$_8$

K$_{0.0625}$Na$_{0.9375}$Al$_3$Si$_3$O$_8$

Ca$_{0.9375}$K$_{0.0625}$Al$_{1.9375}$Si$_{2.0625}$O$_8$

Ca$_{0.96875}$K$_{0.03125}$Al$_{1.96875}$Si$_{2.03125}$O$_8$

Al/Si mole ratio

Kuhnel et al., 2021

Li et al., 2019b