1	XX 7 1	C	2040
1	word	Count:	2849

2	Revision 2
3	High-Pressure Phase Transition of Fe-bearing
4	Orthopyroxene Revealed by Raman Spectroscopy
5	LUO LI ¹ , XINYUE ZHANG ¹ , YINGXIN YU ¹ , ZHU MAO ^{1,2,3*}
6	¹ Deep Space Exploration Laboratory / School of Earth and Space Sciences, University of
7	Science and Technology of China, Hefei 230026, China
8	² CAS Center for Excellence in Comparative Planetology, University of Science and Technology
9	of China, Hefei, Anhui 230026, China
10	³ Frontiers Science Center for Planetary Exploration and Emerging Technologies, University of
11	Science and Technology of China, Hefei, Anhui, 230026, China
12	*Corresponding authors: Zhu Mao (zhumao@ustc.edu.cn)
13	
14	
15	

16

ABSTRACT

17	Orthopyroxene is one of the dominant minerals in the Earth's upper mantle. In this study, we
18	used Raman spectroscopy to investigate the lattice vibration and phase transition of
19	orthopyroxene with four different compositions using diamond anvil cells up to 34 GPa at 300 K.
20	Our orthopyroxene samples contain 0 (En ₁₀₀), 9% (En ₉₁ Fs ₉), 11% (En ₈₆ Fs ₁₁) and 21% (En ₇₄ Fs ₂₁)
21	Fe respectively. At ambient conditions, we observed that the Raman modes exhibited a negative
22	dependence on the Fe content, with the exception of the modes at \sim 850 and 930 cm ⁻¹ . In contrast,
23	the two Raman modes increase with increasing the Fe content. The phase transition from
24	metastable α - to β -phase was observed at 12.9-15 GPa for our orthopyroxene samples with less
25	than 21 mol.% Fe, and varying Fe content has a minor effect on the phase transition pressure.
26	Besides of Fe, additional 2-24 mol.% Al can cause phase transition pressure increase from 10-13
27	GPa to 14-16 GPa. At 29-30.1 GPa, we observed the second apparent change in the Raman
28	spectra for all of our investigated samples. For Fe-bearing orthopyroxene, this change in the
29	Raman spectra and frequency shift is associated with the phase transition from β - to γ -phase,
30	whereas for En_{100} , it should be caused by the change of coordination number Si from 4 to 6, or
31	the presence of α -popx phase. Using the obtained Raman frequency shifts, we have also
32	calculated the Grüneisen parameters at high pressures. These parameters are useful for
33	understanding the thermoelastic properties of orthopyroxene at high pressures.
34	

- Keywords: Raman spectroscopy, orthopyroxene, Fe content, phase transition, high pressure
 36
- 37

38 1. INTRODUCTION

39	Orthopyroxene, $(Mg_{1-x}Fe_x)SiO_3$, is a crucial constituent of Earth's upper mantle (Bernard et al.,
40	2021; Herzberg and Gazel, 2009; Li et al., 2018; Shi et al., 2022; Tollan and Hermann, 2019).
41	According to the pyrolite model, the volume percentage of orthopyroxene is estimated to be 10
42	vol.% up to 350-km depth (Frost, 2008). Petrological observations suggest that the
43	orthopyroxene content in the subducted harzburgite and lherzolite layer can be as high as 22
44	vol.% (Bodinier and Godard, 2003; Ringwood, 1975; Ringwood and Irifune, 1988). Although
45	mantle orthopyroxene typically contains 6 mol.% Fe, some diamond inclusions originated from
46	100-500 km depth have shown than the Fe content in peridotitic orthopyroxene could vary from
47	3 and 19 mol.% (Stachel and Harris, 2008). In some high-pressure metamorphic rocks, the Fe
48	content in orthopyroxene exhibits a higher compositional range between 50 and 100 mol.%
49	(Brothers and Yokoyama, 1990; Davidson, 1968; Jaffe et al., 1978; White et al., 2001).
50	Therefore, investigating the physical properties of orthopyroxene with varying compositions
51	under relevant pressure and temperature conditions in the Earth's mantle is crucial for
52	understanding the structure and composition of the Earth's deep interior.
53	
54	Along the normal mantle geotherm, the orthorhombic orthopyroxene (<i>Pbca</i> space group, α -
55	phase) transforms to high-pressure clinopyroxene ($C2/c$ space group) at ~8 GPa and then
56	gradually dissolve into garnet at deeper depth (Akashi et al., 2009; Kung et al., 2005). However,
57	the path of phase transition in orthopyroxene at high pressures heavily relies on the temperature
58	and composition (Akashi et al., 2009). The transition of orthopyroxene to high-pressure
59	clinopyroxene will be inhibited when temperatures are significantly lower than the normal
60	mantle geotherm (Nishi et al., 2013; Van Mierlo et al., 2013). For example, the α -MgSiO ₃

61	orthopyroxene (En ₁₀₀) remains metastable and then transforms into its β -phase with a monoclinic
62	structure (<i>P2</i> ₁ / <i>c</i> space group) at 10.5-13.3 GPa (Kung et al., 2004; Lin, 2004; Xu et al., 2018),
63	which can be preserved to ~40 GPa (Serghiou et al., 2000). Both α - and β -phase can remain
64	metastable up to 800 K at 520-km depth (Xu et al., 2020). Previous studies also investigated the
65	influence of Fe on the phase transition of orthopyroxene (Xu et al., 2020). For orthopyroxene
66	with 9 mol.% Fe (En ₉₁ Fs ₉), the transition pressure from α - to β -phase is 12.3 GPa at 300 K,
67	which is similar to the Mg-endmember. However, Fe-bearing β -phase further transforms into the
68	γ -phase (<i>Pbca</i> Space group) at 28.4 GPa (Finkelstein et al., 2015). Increasing the Fe content
69	from 30 to 82 mol.% only can weakly decrease the α - β phase transition pressure to 11 GPa and
70	lower the β - γ phase transition pressure to 12 GPa (Dera et al., 2013; Xu et al., 2020). But for
71	pure Fe endmember (Fs ₁₀₀), orthopyroxene transforms into a different monoclinic β -phase with
72	space group $C2/c$ at ~6 GPa and then γ -phase at ~13 GPa (HughJones et al., 1996; Xu et al.,
73	2020). Experimental constraints on the transition from β - to γ -phase for orthopyroxene with less
74	than 20 mol.% Fe are still lacking.
75	
76	Here, we have performed high-pressure Raman measurements to well constrain the phase
77	transition of orthopyroxene in four different compositions with varying Fe content in symmetric
78	diamond anvil cells (DACs) up to 34 GPa and 300 K. Results from Raman measurements can
79	also be used to identify orthopyroxenes as geological marker (Borromeo et al., 2022). The
80	collected Raman spectra were used to determine the influence of Fe content on the variation of

81 the vibration modes and help to identify the occurrence of the phase transition. Together with

82 previous thermal equation of state, we have calculated thermal Grüneisen parameters of

metastable phases at high pressures which are of great importance to calculate the thermal and
elastic properties of orthopyroxene.

85

86 2. EXPERIMENTAL DETAILS

Four orthopyroxene single-crystal samples were used in this study. Composition of these four

samples were analyzed using electron microprobe in the Key Laboratory of Crust-Mantle

89 Materials and Environments, University of Science and Technology of China (USTC). The

analysis yielded compositions of MgSiO₃ (En_{100}), Mg_{0.91}Fe_{0.09}SiO₃ ($En_{91}Fs_9$),

91 $Mg_{0.86}Fe_{0.11}Al_{0.02}Ca_{0.01}Si_{0.99}O_3$ (En₈₆Fs₁₁) and $Mg_{0.735}Fe_{0.21}Al_{0.07}Si_{0.965}O_3$ (En₇₄Fs₂₁). En₁₀₀,

92 En₉₁Fs₉ and En₈₆Fs₁₁ are single crystals from Yangon, Myanmar. En₇₄Fs₂₁ was purchased from

Alfa Aesar Corp. Every sample was cut into random orientation with $\sim 25 \ \mu m$ in diameter and

double-side polished to $\sim 25 \,\mu m$ in thickness. Rhenium was used as gasket, and the gasket hole

95 was drilled to 235 μm in diameter. Two ruby spheres were loaded into the sample chamber as the

96 pressure calibrant, and argon was used as the pressure medium for high pressure experiments

97 (Dewaele et al., 2004).

98

In-situ single-crystal Raman measurements were performed using symmetric DACs equipped with a pair of 400-µm culet diamonds at the High-Pressure Mineral Physics Laboratory, USTC. An Olympus flat field achromatic objective lens was employed for the collection of Raman spectra with a 532-nm wavelength. The Raman spectra were measured in a backscattering geometry in a confocal configuration. The Raman spectra at ambient conditions were determined for all samples outside DACs. At high pressures, we have performed two runs of Raman

measurements on the intermediate composition including $En_{91}Fs_9$, $En_{86}Fs_{11}$ and $En_{74}Fs_{21}$. The pure Mg-endmember orthopyroxene was carried out in one run.

107

108 **3. RESULTS**

109 At ambient conditions, 19 to 23 modes were observed for all the investigated orthopyroxene

samples. Typical Raman spectra of orthopyroxene with different Fe contents are shown in Figure

111 1. The frequencies of Raman-active modes for our four investigated samples at ambient

112 conditions are shown in Figure 2 and Tables 1-4. The measured frequencies for these

113 orthopyroxene samples are in good relevance with the Fe content. Most frequencies have shown

negative linear dependence on the Fe content. The Raman mode at $\sim 400 \text{ cm}^{-1}$ for En₁₀₀ shows a

similar linear decrease with Fe content up to 50 mol.% but exhibits a much stronger reduction by

116 further increasing the Fe content to 100 mol.%. In addition, we noted that there were two Raman

117 modes around $\sim 900 \text{ cm}^{-1}$ increase with Fe content.

118

Based on the ambient conditions results, high-pressure Raman spectra for four samples were 119 collected up to 34 GPa at 300 K. For En₁₀₀, all the frequencies followed a nearly linear increase 120 with pressure up to 13.5 GPa. In exceed of 13.5 GPa, we observed the disappearance of modes at 121 ~425, ~560 and ~590 cm⁻¹ accompanied with new modes at ~400, ~500 and ~855 cm⁻¹. Similar 122 123 change in the Raman spectra and mode frequencies occur at 12.9 GPa for EnglFs₉, 15 GPa for En₈₆Fs₁₁ and En₇₄Fs₂₁ (Figures 4-6). Another obvious change in Raman spectra was noted to 124 occur at approximately 30 GPa for all the investigated orthopyroxene, characterized by the 125 variation in the pressure dependence of Raman frequencies. 126

127

128 **4. DISCUSSION**

129 4.1. Raman modes at ambient conditions

The obtained results were first used to understand the influence of Fe on the Raman frequency of orthopyroxene at ambient conditions. Our Raman spectra of orthopyroxene are similar to previous studies (Chopelas, 1999; Huang et al., 2000). Meaning of each Raman mode for orthopyroxene has been well interpreted by Stangarone et al. (2016). The variation of the Raman modes with Fe content are relevant to the vibrational frequency, *v*, of a simple harmonic oscillator (Huang et al., 2000; Stangarone et al., 2016), which can be expressed as:

$$v = -\frac{1}{2\pi} \sqrt{\frac{k}{\mu}} \tag{1}$$

where μ is the reduced mass, k is the force constant which is assumed to be an inverse function 136 of interatomic distance. Addition of Fe increases the reduced mass, u, and bond length of 137 orthopyroxene which explains the negative correlation of most Raman modes with Fe 138 substitution. When the Fe content in orthopyroxene is less than 50 mol.%, the Raman mode at 139 \sim 400 cm⁻¹ exhibits a similar trend with pressure to most other modes. Yet further elevating the 140 Fe content above 50 mol.% in orthopyroxene produces an enhanced reduction in the mode 141 frequencies. This may be due to different substitution mechanism in orthopyroxene by varying 142 the Fe content. Fe primarily occupies the M2 sites when the Fe content in orthopyroxene is less 143 144 than 50 mol.%, whereas it starts to substitute Mg in the M1 sites when the abundance is greater than 50% (Domeneghetti et al., 1995; Domeneghetti et al., 1985; Proyer et al., 2004; Stangarone 145 et al., 2016; Stangarone et al., 2023). The correlation of Raman frequency with Fe content is thus 146 mainly related to the variation of atomic mass, volume and bond length caused by Fe substitutes 147 for Mg. 148

149

150 **4.2. Phase transition of orthopyroxene**

We have also plotted the wavenumber of β - and γ -phase as function of Fe content at 16 and 30 151 GPa, respectively (Figures S1-S2 in the supplemental material). The Raman shifts of the β - and 152 γ -phase generally exhibit a negative correlation with Fe substitution, similar to the α -phase. 153 Specifically, around ~1000 cm⁻¹, the Raman mode for the β -phase increases with Fe content. The 154 phase transition in orthopyroxene at 300 K was determined by the frequency discontinuities and 155 156 change in the pressure dependence of some modes at high pressures (Figures 3-6). We identify the α - to β -phase transition to occur at 13.5 GPa for En₁₀₀, 12.9 GPa for En₉₁Fs₉, 15 GPa for 157 En₈₆Fs₁₁, and 15 GPa for En₇₄Fs₂₁ (Figure 7). Together with previous experimental results, our 158 159 experimental results have shown that the α - β phase transition pressure for Al-free orthopyroxene with varying Fe content is lower than the corresponding Al-bearing phase. Transition from the α -160 to β -phase for Al-free orthopyroxene with less than 60 mol.% Fe occurs between 10 and 13 GPa 161 (Dera et al., 2013; Finkelstein et al., 2015; Lin, 2004; Xu et al., 2020; Xu et al., 2018; Zhang et 162 al., 2013a; Zhang et al., 2013b). Further elevating the Fe content above 60% leads to a dramatic 163 decrease in the phase transition pressure (Dera et al., 2013; Xu et al., 2020). Addition of Al leads 164 to an increase in the α - to β -phase transition pressure. Orthopyroxene with 2-24 mol.% Al has a 165 phase transition to occur at 14-16 GPa (Xu et al., 2022; Zhang et al., 2013b). In contrast, Eng₁Fs₉ 166 167 contained virtually no other trace elements, consistent with previous research results. The phase boundary of the En₁₀₀ sample was found to be higher than those reported in previous studies, 168 primarily due to the large pressure intervals used in earlier experiments (Lin, 2004; Xu et al., 169 170 2020; Xu et al., 2018; Zhang et al., 2013b).

171

172	The change in the pressure dependence of Raman modes at ~29 GPa for all of our orthopyroxene
173	samples expect En_{100} is related to the β - to γ -phase transition (Figure 7). We observed that in
174	En ₁₀₀ , the Raman frequencies at around ~650 and ~1100 cm ⁻¹ have merged into a single mode,
175	each comprising three peaks. All the Raman modes above 31 GPa exhibit different pressure
176	dependence compared to modes between 14 and 30 GPa. This change in the Raman modes could
177	be related to the coordination number change of Si from 4 to 6 or the transition to α -popx phase
178	which have been reported by two previous experimental studies (Finkelstein et al., 2015;
179	Serghiou et al., 2000). Our experimental results indicate that the transition pressure from β - to γ -
180	phase are nearly independent of Fe when the Fe content in orthopyroxene is less than 60 mol.%.
181	Further increasing Fe content up to 82 mol.% leads to a substantial decrease in the phase
182	transition pressure (Dera et al., 2013; Xu et al., 2020). Once the Fe content in orthopyroxene is
183	above 80 mol.%, addition of Fe has minimum effect on the phase transition pressure to the γ -
184	phase. As a result, β -phase exists in a much narrow pressure range for orthopyroxene with 82-
185	100 mol.% than the corresponding phase with less than 82 mol.% Fe.

186

187 4.3. Grüneisen parameters

The obtained Raman frequency shifts allow us to derive the isothermal Grüneisen parameters at
high pressures. The isothermal Grüneisen parameter can be calculated as follows:

$$\gamma_{i} = -\frac{\partial \ln v_{i}}{\partial \ln V} = -\frac{V}{v_{i}} \frac{dv_{i}}{dV} = \frac{K_{T}}{v_{i}} \frac{dv_{i}}{dP}$$
(2)

where v_i is the *i*th mode of the lattice vibration, *V* is the unit-cell volume, and K_T is the isothermal bulk modulus at a given pressure. The values of *v* and dv/dP were derived by fitting the experimental data using a polynomial function in this study. The influence of Fe on the bulk modulus of α -orthopyroxene at ambient conditions, K_{T0} , was summarized in Figure 8 using

194	previous experimental results (Dera et al., 2013; Hovis et al., 2021; Hugh-Jones and Angel, 1997;
195	Jackson et al., 2003; Nestola et al., 2008; Xu et al., 2020; Xu et al., 2022; Xu et al., 2018; Zhang
196	et al., 2013a; Zhao et al., 1995). There is a strong trade-off between the bulk modulus K_{T0} and its
197	pressure derivative, K' determined from the X ray diffraction study. For α -orthopyroxene, the
198	value of K' is greater than general mantle minerals with values ranging between 7.5 and 8.5.
199	Here, we used an average K' of 8 and re-analyzed previous experimental results to constrain K_{T0}
200	and obtained (Figure 8):
201	$K_{\rm T0}$ (α -phase) = -0.05X _{Fe} + 109.80
202	Experimental constraints on the equation of state and elastic properties of both β - and γ -phase are
203	limited (Xu et al., 2020; Xu et al., 2022; Xu et al., 2018). We used fixed $K'=4$ to derive K_{T0} , and
204	the effect of Fe on K_{T0} is (Figure 8):
205	$K_{\rm T0}(\beta$ -phase) = 0.81X _{Fe} + 139.71
206	$K_{\rm T0} (\gamma$ -phase) = -0.01 $X_{\rm Fe}$ + 131.71
207	Grüneisen parameters, γ , at high pressures for each Raman mode was calculated and shown in
208	Table S5 in the supplemental material. In general, there is not a very clear correlation between
209	changes in Fe content and the γ value (Figure 9). In the α -phase, an increase in Fe content to 11%
210	leads to a decrease in γ for mode v_{10} . Among the compositions, En ₉₁ Fs ₉ exhibits a lower γ value
211	than the other three in the β -phase. In the γ -phase, there is no discernible trend in the γ value with
212	varying Fe content. For mode v_{24} and v_{32} in the α -phase, variations in Fe content have a
213	negligible influence on γ , considering calculation uncertainties. However, in both the β and γ -
214	phases, the relationship between changes in Fe content and the Grüneisen parameter remains
215	unclear.
216	

217

IMPLICATIONS

218	Orthopyroxene is an important mineral component of the mantle, but the β - and γ -phases of
219	metastable orthopyroxene that exist above 10 GPa can only be present in the cold subduction
220	zone harzburgite and lherzolite layers with temperatures 700-1000 K lower than the normal
221	mantle (Finkelstein et al., 2015; Ganguly et al., 2009). The significance of our study lies in the
222	detailed characterization of the effect of Fe content changes on the structural phase transition of
223	metastable orthopyroxene and the influence of the transitions on the Grüneisen parameter, which
224	can be directly applied to understand the effects of compositional changes on the sound velocity
225	and density structure of cold harzburgite and lherzolite layers in the subduction slab. Combined
226	with previous high-pressure research results, we observed that the effect of Fe content changes
227	from 0-80% on the α - to β -phase transition pressure of orthopyroxene is small, and the transition
228	mainly occurs from the bottom of the upper mantle to the top of the transition zone. For instance,
229	the α - to β -phase transition for orthopyroxene with 11% Fe has a small effect on the longitudinal
230	and transverse wave velocities, less than 2%, and a density change of about 2% (Li et al., 2022).
231	Additionally, the transition from metastable β -orthopyroxene to γ -phase occurs at pressures
232	exceeding 29 GPa. Therefore, the possibility of metastable γ -phase for orthopyroxene with less
233	than 20% Fe existing in the mantle is small from the 300-K experimental results. However, the
234	Clapeyron slope of the β - γ phase boundary remains unknown. Further high pressures and
235	temperatures experimental research is thus needed which is crucial for our understanding of the
236	density and sound velocity structure of subduction slabs in response to compositional changes.
237	

238

240	
241	FUNDING
242	Z. Mao acknowledges supports from China National Science Foundation (42241117 and
243	42272036), the B-type Strategic Priority Program of the Chinese Academy of Sciences (Grant
244	No. XDB41000000), and the Fundamental Research Funds for the Central Universities
245	(WK2080000144).
246	
247	REFERENCES CITED
248	Akashi, A., Nishihara, Y., Takahashi, E., Nakajima, Y., Tange, Y., and Funakoshi, Ki. (2009)
249	Orthoenstatite/clinoenstatite phase transformation in MgSiO ₃ at high-pressure and high-
250	temperature determined by in situ X-ray diffraction: Implications for nature of the X
251	discontinuity. Journal of Geophysical Research-Solid Earth, 114.
252	https://doi.org/10.1029/2008jb005894
253	Bernard, R.E., Schulte-Pelkum, V., and Behr, W.M. (2021) The competing effects of olivine and
254	orthopyroxene CPO on seismic anisotropy. Tectonophysics, 814, 228954.
255	Bodinier, JL., and Godard, M. (2003) Orogenic, Ophiolitic, and Abyssal Peridotites. Treatise on
256	Geochemistry, 2, 568. <u>https://doi.org/10.1016/b0-08-043751-6/02004-1</u>
257	Borromeo, L., Andò, S., Bersani, D., Garzanti, E., Gentile, P., Mantovani, L., and Tribaudino, M. (2022)
258	Detrital orthopyroxene as a tracer of geodynamic setting:: A Raman and SEM-EDS provenance
259	study. Chemical Geology, 596, 120809.
260	https://doi.org/https://doi.org/10.1016/j.chemgeo.2022.120809
261	Brothers, R.N., and Yokoyama, K. (1990) Fe-rich pyroxenes from a microdiorite dike, Whangarei, New
262	Zealand. American Mineralogist, 75(5-6), 620-630.
263	Chopelas, A. (1999) Estimates of mantle relevant Clapeyron slopes in the MgSiO ₃ system from high-
264	pressure spectroscopic data. American Mineralogist, 84(3), 233-244.
265	Davidson, L. (1968) Variation in ferrous iron-magnesium distribution coefficients of metamorphic
266	pyroxenes from Quairading, Western Australia. Contributions to Mineralogy and Petrology,
267	19(3), 239-259.
268	Dera, P., Finkelstein, G.J., Duffy, T.S., Downs, R.T., Meng, Y., Prakapenka, V., and Tkachev, S. (2013)
269	Metastable high-pressure transformations of orthoferrosilite Fs(82). Physics of the Earth and
270	Planetary Interiors, 221, 15-21. <u>https://doi.org/10.1016/j.pepi.2013.06.006</u>
271	Dewaele, A., Loubeyre, P., and Mezouar, M. (2004) Equations of state of six metals above 94 GPa.
272	Physical Review B, 70(9), 094112. <u>https://doi.org/https://doi.org/10.1103/physrevb.70.094112</u>
273	Domeneghetti, M.C., Molin, G.M., Stimpfl, M., and Tribaudino, M. (1995) Orthopyroxene from the Serra
274	de Mage Meteorite: Structure refinement and estimation of C2/c pyroxene contributions to
275	apparent Pbca diffraction violations. American Mineralogist, 80(9-10), 923-929.
276	Domenegnetti, M.C., Molin, G.M., and Tazzoli, V. (1985) Crystal-chemical implications of the Mg ²⁺ -Fe ²⁺
277	distribution in orthopyroxenes. American Mineralogist, 70(9-10), 987-995.

278	Finkelstein, G.J., Dera, P.K., and Duffy, T.S. (2015) Phase transitions in orthopyroxene (En ₉₀) to 49 GPa
279	from single-crystal X-ray diffraction. Physics of the Earth and Planetary Interiors, 244, 78-86.
200	Inteps://doi.org/inteps://doi.org/10.1010/j.pepi.2014.10.009
201	https://doi.org/10.2112/gsolements 4.2.171
202	Ganguly L. Freed A.M. and Savena S.K. (2009) Density profiles of oceanic slabs and surrounding
283	mantle: Integrated thermodynamic and thermal modeling, and implications for the fate of clabs
285	at the 660 km discontinuity. Physics of the Earth and Planetary Interiors, 172(3), 257-267.
286	https://doi.org/https://doi.org/10.1016/j.pepi.2008.10.005
287	Herzberg, C., and Gazel, E. (2009) Petrological evidence for secular cooling in mantle plumes. Nature,
288	458(7238), 619-622.
289	Hovis, G.L., Tribaudino, M., Leaman, A., Almer, C., Altomare, C., Morris, M., Maksymiw, N., Morris, D.,
290	Jackson, K., and Scott, B. (2021) Thermal expansion of minerals in the pyroxene system and
291	examination of various thermal expansion models. American Mineralogist: Journal of Earth and
292	Planetary Materials, 106(6), 883-899.
293 294	Huang, E., Chen, C., Huang, T., Lin, E., and Xu, Ja. (2000) Raman spectroscopic characteristics of Mg-Fe- Ca pyroxenes. American Mineralogist, 85(3-4), 473-479.
295	Hugh-Jones, D., and Angel, R. (1997) Effect of Ca^{2+} and Fe $^{2+}$ on the equation of state of MgSiO ₃
296	orthopyroxene. Journal of Geophysical Research: Solid Earth, 102(B6), 12333-12340.
297	HughJones, D., Sharp, T., Angel, R., and Woodland, A. (1996) The transition of orthoferrosilite to high-
298	pressure C2/c clinoferrosilite at ambient temperature. European Journal of Mineralogy, 8(6),
299	1337-1345.
300	Jackson, J.M., Palko, J.W., Andrault, D., Sinogeikin, S.V., Lakshtanov, D.L., Wang, J.Y., Bass, J.D., and Zha,
301	C.S. (2003) Thermal expansion of natural orthoenstatite to 1473 K. European Journal of
302	Mineralogy, 15(3), 469-473. <u>https://doi.org/10.1127/0935-1221/2003/0015-0469</u>
303	Jaffe, H., Robinson, P., and Tracy, R. (1978) Orthoferrosilite and other iron-rich pyroxenes in
304	microperthite gneiss of the Mount Marcy area, Adirondack Mountains. American Mineralogist,
305	63(11-12), 1116-1136.
306	Kung, J., and Li, B. (2014) Lattice Dynamic Behavior of Orthoferrosilite (FeSiO ₃) toward Phase Transition
307	under Compression. The Journal of Physical Chemistry C, 118(23), 12410-12419.
308	https://doi.org/10.1021/jp4112926
309	Kung, J., Li, B., Uchida, T., and Wang, Y. (2005) In-situ elasticity measurement for the unquenchable high-
310	pressure clinopyroxene phase: Implication for the upper mantle. Geophysical Research Letters,
311	32(1). <u>https://doi.org/https://doi.org/10.1029/2004GL021661</u>
312	Kung, J., LI, B.S., Uchida, T., Wang, Y.B., Neuville, D., and Liebermann, R.C. (2004) In situ measurements
313	of sound velocities and densities across the orthopyroxene -> high-pressure clinopyroxene
314	transition in MigSiO ₃ at high pressure. Physics of the Earth and Planetary Interiors, $14/(1)$, 27-44.
315	https://doi.org/10.1016/j.pepi.2004.05.008
316	Li, L., Sun, N., Shi, W., Mao, Z., Yu, Y., Zhang, Y., and Lin, J.F. (2022) Elastic Anomalies across the $lpha$ - eta
317	Phase Transition in Orthopyroxene: Implication for the Metastable Wedge in the Cold
318	Subduction Slab. Geophysical Research Letters, e2022GL099366.
319	Li, X., Zhang, L., Wei, C., Slabunov, A.I., and Bader, T. (2018) Quartz and orthopyroxene exsolution
320	lamellae in clinopyroxene and the metamorphic P–T path of Belomorian eclogites. Journal of
321	Metamorphic Geology, 36(1), 1-22.
322	Lin, CC. (2004) Pressure-induced polymorphism in enstatite (MgSiO ₃) at room temperature:
323	clinoenstatite and orthoenstatite. Journal of Physics and Chemistry of Solids, 65(5), 913-921.
324	https://doi.org/10.1016/j.jpcs.2003.09.028

325 326	Nestola, F., Ballaran, T.B., Balic-Zunic, T., Secco, L., and Dal Negro, A. (2008) The high-pressure behavior of an Al-and Fe-rich natural orthopyroxene. American Mineralogist, 93(4), 644-652.
327	Nishi M Kubo T Obfuii H Kato T Nishihara Y and Irifune T (2013) Slow Si-Al interdiffusion in
327	garnet and stagnation of subducting slabs Earth and Planetary Science Letters 361 AA-A9
329	https://doi.org/https://doi.org/10.1016/j.epsl.2012.11.022
330	Okada T. Narita T. Nagai T. and Vamanaka T. (2008) Comparative Raman spectroscopic study on
331	ilmenite-type MgSiO ₂ (akimotoite) MgGeO ₂ and MgTiO ₂ (geikielite) at high temperatures and
337	high pressures American Mineralogist 93(1) 39-47
222	Prover A Dacks E and McCammon C (2004) Pitfalls in geothermoharometry of eclogites: Ee^{3+} and
337	changes in the mineral chemistry of omnhacite at ultrahigh pressures. Contributions to
335	mineralogy and netrology 147, 305-318
336	Ringwood A E (1975) Composition and Petrology of the Earth's Mantle 618 n McGraw-Hill New York
227	Ringwood, A.E. (1973) composition and rectology of the Earth's Mantie. 018 p. McGraw-Hill, New Tork.
228	mantle dynamics and differentiation. Nature 221/6152), 121, 126
220	h_{a}
240	Sorghiou C. Roohler P. and Chanalas A. (2000) Reversible coordination changes in crystalline silicates
241	at high procesure and ambient temperature. Journal of Dhysics: Condensed Matter, 12(6), 840
242	857 https://doi.org/10.1088/0052.8084/12/6/200
542 242	657. <u>IIIIIpS.//U01.018/10.1086/0955-6964/12/0/509</u>
243 244	Sill, F., Wally, F., Well, J., Fu, T., Zilu, L., Hually, T., and Wally, K. (2022) Metalliorphism-facilitated
244 245	Drospodings of the National Academy of Sciences (110/11), a2112286110
245	Stachol T, and Harris LW. (2008) The origin of cratenic diamonds Constraints from minoral inclusions
240 247	Ore Coolegy Povious 24/1) 5 22
24/ 249	bttps://doi.org/bttps://doi.org/10.1016/j.orggoorov.2007.05.002
348 240	<u>Inteps://doi.org/inteps://doi.org/i0.1016/j.oregeorev.2007.05.002</u>
349 250	Stangarone, C., Inibaudino, M., Prencipe, M., and Lottici, P.P. (2010) Raman modes in Pola ensitable (Mar Si O.): an assignment by guantum machanical calculation to interpret experimental results
251	(Mg2512O6). an assignment by quantum mechanical calculation to interpret experimental results.
252	bttps://doi.org/bttps://doi.org/10.1002/irs.4042
332 252	(2022) Raman modes in Physical activity (Mg. Si. O.): an assignment by quantum mechanical
252	(2025) Raman modes in Poca enstatute (Mg251206). an assignment by quantum mechanical investigation and possible implications on the determination of intracrystalline ordering
255	
256	JOURNAL OF RAMAN SPECTROSCOPT, 47 (2010), 1247-1258.
257	incorporation in orthonyrayana, Natura gaassianca, 12(8), 667,671
259 259	Van Mierle, W.L. Langenbergt, E. Freet, D.L. and Public, D.C. (2012) Stagnation of subducting slabs in
250	vali Mierio, W.L., Langerinioisi, F., Flosi, D.J., and Ruble, D.C. (2013) Stagnation of Subducting Stabs in the transition zone due to clow diffusion in majoritic garnet. Nature Conscience, C(E), 400, 402
339 260	https://doi.org/10.1028/pgoo1772
261	M/hite R. Rewell R. and Helland T. (2001) Calculation of partial molting equilibria in the system Na O
262	while, R., Powell, R., and Holland, T. (2001) Calculation of partial melting equilibria in the system Na_2O –
302	$CaO - K_2O - FeO - MgO - Al_2O_3 - SIO_2 - H_2O (NCKFIMASH). Journal of metamorphic Geology, 19(2),$
363	139-153.
364	Xu, J., Fan, D., Zhang, D., Guo, X., Zhou, W., and Dera, P.K. (2020) Phase Transition of Enstatite-Ferrosilite
365	Solid Solutions at High Pressure and High Temperature: Constraints on Metastable
366	Orthopyroxene in Cold Subduction. Geophysical Research Letters, 47(12).
367	https://doi.org/10.1029/2020gl087363
368	Xu, J., Fan, D., Zhang, D., Ma, M., Zhou, Y., Tkachev, S.N., Zhou, W., and Dera, P.K. (2022) Phase
369	Transitions of Fe-, Al- and Ca-Bearing Orthopyroxenes at High Pressure and High Temperature:
370	Implications for Metastable Orthopyroxenes in Stagnant Slabs. Journal of Geophysical Research:
371	Solid Earth, 127(1), e2021JB023133. <u>https://doi.org/https://doi.org/10.1029/2021JB023133</u>

272	Yu J. Zhang D. Fan D. Zhang J.S. Ju V. Cup V. Dara D. and Zhau W. (2010) Phase Transitions in
312	Xu, J., Zhang, D., Fan, D., Zhang, J.S., Hu, Y., Guo, X., Dera, P., and Zhou, W. (2018) Phase Transitions in Orthopostatite and Subduction Zong Dynamics: Effects of Water and Transition Motal Long
271	Internal of Goophysical Posoarch: Solid Earth, 122(4), 2722, 2727
275	bttps://doi.org/10.1002/2017ib015160
375	Zedgenizov D. Kagi H. Obtani E. Tsujimori T. and Komatsu K. (2020) Retrograde phases of former
370	bridgmanite inclusions in superdeen diamonds Lithos 370 105659
378	Zhang D. Jackson J.M. Chan, B. Sturbahn W. Zhao, J. Van, J. and Caracas, R. (2013a) Elasticity and
379	lattice dynamics of enstatite at high pressure. Journal of Geophysical Research: Solid Farth
380	118/8) 4071-4082 https://doi.org/10.1002/jgrb 50303
381	Thang LS Reynard B Montagnac G Wang B C and Bass LD (2013b) Pressure-induced Phra-P2./c
382	nhase transition of natural orthoenstatite: Compositional effect and its geophysical implications
383	American Mineralogist 98(5-6) 986-992 https://doi.org/10.2138/am.2013.4345
384	Zhao Y Schiferl D and Shankland T I (1995) A high P-T single-crystal X-ray diffraction study of
385	thermoelasticity of MgSiO ₂ orthoenstatite. Physics and Chemistry of Minerals. 22(6), 393-398
386	https://doi.org/10.1007/BE00213337
200	
387	
388	
390	
391	
392	
393	
394 305	
396	
397	
398	
399	
400	
402	
403	
404	
405	
406	
407	
409	
410	
411	FIGURE 1. Typical Raman spectra of orthopyroxene at high pressures and 300 K. (a) En ₁₀₀ ; (b)
412	En ₉₁ Fs ₉ ; (c) En ₈₆ Fs ₁₁ ; (d) En ₇₄ Fs ₂₁ . Blue ticks: Raman modes of α -orthopyroxene; red ticks:
413	Raman modes of β -orthopyroxene; orange ticks: Raman modes of γ -orthopyroxene.
414	
415	FIGURE 2. Raman shifts of orthopyroxene with different Fe content at ambient conditions.
416	Solid circles: this study; open circles: previous experimental results (Chopelas, 1999; Huang et
417	al., 2000). Red lines: fitting results.
418	

FIGURE 3. Raman shifts of En_{100} at high pressures and 300 K. Blue: α -orthopyroxene; red: β -419 420 orthopyroxene; orange: γ-orthopyroxene. 421 422 **FIGURE 4.** Raman shifts of $En_{91}Fs_9$ at high pressures and 300 K. Blue: α -orthopyroxene; red: β orthopyroxene; orange: γ -orthopyroxene; circles and diamonds represent different experimental 423 424 runs. 425 **FIGURE 5.** Raman shifts of $En_{86}Fs_{11}$ at high pressures and 300 K. Blue: α -orthopyroxene; red: 426 β -orthopyroxene; orange: γ -orthopyroxene; circles and diamonds represent different 427 experimental runs. 428 429 **FIGURE 6.** Raman shifts of $En_{74}Fs_{21}$ at high pressures and 300 K. Blue: α -orthopyroxene; red: 430 β -orthopyroxene; orange: γ -orthopyroxene; circles and diamonds represent different 431 432 experimental runs. 433 FIGURE 7. Phase diagram of orthopyroxene at high pressures. Red: this study; green: (Lin, 434 2004); pink: (Zhang et al., 2013b); gray: (Zhang et al., 2013a); yellow: (Dera et al., 2013); 435 purple: (Finkelstein et al., 2015); blue: (Xu et al., 2018); orange: (Xu et al., 2020); black: (Xu et 436 al., 2022); circle: Fe-bearing orthopyroxene; diamond: Fe- and Al-bearing orthopyroxene; solid 437 lines: phase boundary for the Al-free orthopyroxene; dash line: phase boundary for the Al-438 bearing orthopyroxene. The subscript in Al on the figure shows the Al content in orthopyroxene: 439 Al/(Mg+Fe+Al). 440 441 **FIGURE 8.** Unit cell volume (V_0) and isothermal bulk modulus (K_{T0}) of orthopyroxene at 442 443 ambient conditions. (a) V_0 for α -orthopyroxene; (b) V_0 for β -orthopyroxene; (c) V_0 for γ orthopyroxene; (d) K_{T0} for α -orthopyroxene; (e) K_{T0} for β -orthopyroxene; (f) K_{T0} for γ -444 orthopyroxene; We reanalyzed the pressure-volume data in literature with fixed K_{T0} ' = 8 for α -445 orthopyroxene (Dera et al., 2013; Hovis et al., 2021; Hugh - Jones and Angel, 1997; Nestola et 446 al., 2008; Xu et al., 2020; Xu et al., 2022; Xu et al., 2018; Zhang et al., 2013a). For both β- and 447 γ -phase, with fixed K_{T0} ' = 4, V_0 and K_{T0} are from previous experimental studies (Xu et al., 2020; 448 Xu et al., 2022; Xu et al., 2018). 449

- 450
- 451 **FIGURE 9.** Grüneisen parameter of orthopyroxene at high pressures. (a) v_1 ; (b) v_{10} ; (c) v_{24} ; (d)
- 452 v_{32} . Blue: En₁₀₀; red: En₉₁Fs₉; orange: En₈₆Fs₁₁; black: En₇₄Fs₂₁. The data are calculated using the
- 453 single experimental Raman-active mode in this study together with data summarized in Figure 8,
- Table S5. Calculated uncertainties are shown as vertical ticks on the bottom left.
- 455
- 456
- 457
- 458
- 459

460 **TABLE 1.** Regression constants of En_{100} for Raman modes determined in $\Delta v = v_0 + aP$ at high

461 pressures and 300 K.

		a-orthopyroxene			β-orthopyroxene			γ-orthopyroxene		
	Vi	<i>V</i> ₀	а	R ²	<i>V</i> ₀	а	R ²	<i>V</i> ₀	а	R ²
v1	237.9	239.2	1.34	0.985	241.5	0.95	0.987	253.4	0.35	1.000
v2								301.3	0.54	1.000
v3	279.0	282.1	2.04	0.963	304.1	1.40	0.994	279.9	1.83	1.000
v4	302.4	302.0	2.45	0.984	315.6	1.82	0.997	342.2	0.83	1.000
v5								348.8	1.33	1.000
νб										
v7								398.9	0.62	1.000
v8					364.4	2.42	0.983			
v9										
v10	345.4	348.5	4.99	0.994	376.9	2.60	0.992	397.7	1.79	1.000
v11	385.6	385.1	3.16	0.992						
v12	403.0	405.3	3.43	0.986	433.9	1.20	0.970			
v13	421.1	423.2	2.15	0.977	410.8	2.86	0.932			
v14					439.4	2.07	0.979			
v15	446.2	446.4	2.27	0.999	447.1	2.22	0.997	490.2	0.92	1.000
v16								492.3	1.25	1.000
v17								515.1	1.13	1.000
v18					442.0	3.84	0.987	517.3	1.54	1.000
v19	524.4	523.6	2.69	0.995						
v20	540.3	539.8	1.77	0.954						
v21	551.0	551.3	2.66	0.994						
v22	579.9	579.9								
v23	663.8	664.2	3.34	1.000	663.0	3.10	0.998			
v24	686.5	687.3	3.08	0.999	678.4	2.94	0.997	718.0	1.83	1.000
v25					691.9	3.33	0.998			
v26	753.3	753.3								
v27					825.2	2.43	0.994	856.4	1.46	1.000
v28	853.7	847.6	2.11	0.914	844.5	3.44	0.994	881.3	1.46	1.000
v29	933.8	933.0	2.40	0.831						
v30										
v31					1016.5	3.32	0.995			
v32	1011.8	1013.5	5.22	0.998	1029.3	3.83	0.990	1102.2	0.75	1.000
v33	1033.3	1035.0	4.77	0.998	1041.2	4.14	0.993			

462 v_i , v_0 , and Δv are in cm⁻¹, P in GPa, and the constant, a has the corresponding units. v_i is the frequency measured at

463 ambient conditions. R^2 is the correlation coefficient.

465 **TABLE 2.** Regression constants of $En_{91}Fs_9$ for Raman modes determined in $\Delta v = v_0 + aP$ at high

466 pressures and 300 K.

		α-orthopyroxene			β-orthopyroxene			γ-orthopyroxene		
	Vi	<i>V</i> ₀	а	R ²	<i>V</i> ₀	а	R ²	<i>V</i> ₀	а	<i>R</i> ²
v1	236.9	239.5	1.14	0.961	234.6	1.38	0.980	245.6	0.87	0.702
v2								256.7	1.15	0.884
v3		288.8	1.20	0.894	289.9	0.83	0.302	291.7	0.72	0.600
v4	301.3	302.0	1.67	0.858	303.8	1.38	0.964			
v5					316.6	1.98	0.992	339.2	1.11	0.767
vб										
v7										
v8					384.7	1.43	0.909	389.8	1.23	0.654
v9								428.9	0.38	0.846
v10	341.4	348.2	4.83	0.963	381.4	2.40	0.963	427.6	0.83	0.868
v11	378.9	376.5	4.11	0.984						
v12	400.8	405.8	3.58	0.948	435.2	1.23	0.870	442.7	0.90	0.646
v13	416.9	417.0	2.40	0.985	404.7	3.60	0.962	505.6	0.05	0.005
v14										
v15	442.4	442.7	2.74	0.996	442.5	2.67	0.983	501.6	0.77	0.598
v16										
v17										
v18					441.7	4.05	0.968	541.9	0.59	0.081
v19	525.8	524.3	2.82	0.955	518.2	3.36	0.988	545.6	2.24	0.941
v20	539.0	540.0	1.78	0.944	525.9	3.59	0.980	548.6	2.54	0.982
v21	549.4	549.9	3.17	0.984						
v22										
v23	663.1	664.1	3.28	0.995						
v24	684.5	686.9	2.99	0.978	683.6	2.84	0.981	751.4	0.65	0.613
v25					696.2	3.38	0.993	774.7	0.73	0.565
v26	750.8	751.0	3.59	0.996	732.7	3.58	0.990			
v27					819.7	2.75	0.994	886.4	0.59	0.437
v28	858.1	851.8	2.92	0.964	848.8	3.94	0.990	901.1	2.03	0.759
v29	937.7	930.0	3.41	0.972	941.9	2.52	0.981	976.4	1.15	0.786
v30		938.3	6.34	0.965						
v31										
v32	1011.2	1016.1	3.79	0.981	1020.4	3.64	0.990	1068.1	1.86	0.806
v33	1028.9	1032.7	4.89	0.991	1043.6	4.11	0.988	1087.7	2.35	0.815

467

468 v_i , v_0 , and Δv are in cm⁻¹, P in GPa, and the constant, a has the corresponding units. v_i is the frequency measured at

469 ambient conditions. R^2 is the correlation coefficient.

- 471 **TABLE 3.** Regression constants of $En_{86}Fs_{11}$ for Raman modes determined in $\Delta v = v_0 + aP$ at
- 472 high pressures and 300 K.

		a-orthopyroxene			β-orthopyroxene			γ-orthopyroxene		
	Vi	<i>V</i> ₀	а	R ²	V ₀	а	R ²	V ₀	а	R ²
v1	236.0	240.8	0.90	0.814	237.1	0.93	0.955	251.1	0.33	0.411
v2					292.4	0.14	0.409	301.3	-0.11	0.601
v3		288.4	0.99	0.955	295.7	0.53	0.658	325.1	-0.32	0.638
v4	297.3	297.2	1.51	0.938	288.8	1.90	0.959	328.4	0.25	0.644
v5					315.6	1.63	0.947	339.5	0.80	0.853
v6	321.7	324.0	3.27	0.991						
v7										
v8					370.7	1.85	0.896	394.0	1.04	0.757
v9										
v10	340.8	347.2	4.37	0.985	367.9	2.85	0.918	432.5	0.56	0.664
v11	380.6	379.7	3.25	0.986						
v12	399.6	399.6	4.27	0.952	414.9	1.67	0.964	446.6	0.62	0.688
v13	414.4	411.9	2.41	0.960	427.4	1.61	0.345			
v14										
v15	441.6	441.4	2.44	0.981	449.5	1.81	0.932			
v16										
v17								492.6	1.39	0.835
v18	465.1	464.7	2.80	0.986	450.0	3.34	0.957			
v19	521.8	522.2	2.50	0.986	544.5	0.65	0.208			
v20	538.6	537.4	1.58	0.973	537.5	2.21	0.980			
v21	549.5	548.6	2.50	0.995						
v22		575.6	1.95	0.998						
v23	662.2	663.0	3.16	0.998						
v24	683.8	685.3	2.93	0.996	665.3	3.48	0.961	731.3	1.03	0.723
v25					678.5	3.78	0.902	736.2	1.57	0.870
v26										
v27					834.1	2.16	0.834	864.9	1.31	0.651
v28	857.7	850.2	2.18	0.951	833.5	3.89	0.965	903.4	1.42	0.657
v29	936.0	932.2	3.41	0.979	937.7	2.79	0.804	1055.5	-1.02	0.779
v30	938.2	940.9	4.73	0.986						
v31					1005.5	3.83	0.947	1122.6	-0.28	0.685
v32	1009.8	1011.9	5.15	0.993	1026.4	3.86	0.931	1127.7	0.43	0.892
v33	1029.8	1030.5	4.86	0.997	1041.5	3.98	0.902	1172.0	-0.19	0.732

473

474 v_i , v_0 , and Δv are in cm⁻¹, P in GPa, and the constant, a has the corresponding units. v_i is the frequency measured at

475 ambient conditions. R^2 is the correlation coefficient.

- 477 **TABLE 4.** Regression constants of $En_{74}Fs_{21}$ for Raman modes determined in $\Delta v = v_0 + aP$ at
- 478 high pressures and 300 K.

		a-orthopyroxene			β-orthopyroxene			γ-orthopyroxene		
	Vi	<i>V</i> ₀	а	R ²	<i>V</i> ₀	а	<i>R</i> ²	<i>V</i> ₀	а	R ²
v1	231.6	236.1	1.11	0.940	232.44	1.23	0.963	239.0	0.94	0.937
v2										
v3										
v4	294.7	292.9	1.66	0.930						
v5										
v6	312.3	309.8	4.18	0.966						
v7										
v8					373.58	1.61	0.942	313.0	3.52	0.792
v9										
v10	337.4	346.5	4.02	0.973	363.59	2.76	0.981	307.7	4.45	0.877
v11	371.2	366.5	2.69	0.952						
v12	397.6	401.6	3.18	0.981	430.78	0.95	0.790			
v13					411.58	2.58	0.920			
v14										
v15		436.7	2.66	0.967	447.98	1.77	0.937	507.5	0.02	0.801
v16										
v17										
v18										
v19	517.9	517.8	2.69	0.987	481.42	5.10	0.981			
v20	532.0	531.8	1.97	0.966	484.84	5.30	0.988	630.3	0.20	0.777
v21	543.9	545.2	2.82	0.982						
v22		570.9	3.72	0.988	589.48	2.32	0.943	650.2	0.51	0.417
v23	656.7	658.7	3.16	0.986	655.50	3.15	0.997			
v24	678.8	682.1	3.01	0.989	684.93	2.46	0.929	770.7	-0.16	0.827
v25					698.81	2.81	0.951	804.4	-0.45	0.719
v26	748.5	749.2	3.05	0.991						
v27					830.74	2.54	0.970	849.8	2.03	0.691
v28	850.7	848.9	2.97	0.963	819.66	4.77	0.980			
v29	936.3	937.3	2.98	0.940	945.05	2.73	0.944			
v30		952.2	3.61	0.994						
v31										
v32	1002.6	1007.6	5.02	0.995	1005.46	3.65	0.964	1095.3	0.76	0.670
v33	1020.1	1028.4	4.16	0.974	1021.91	4.29	0.962	1119.7	1.06	0.662

479

480 v_i , v_0 , and Δv are in cm⁻¹, P in GPa, and the constant, a has the corresponding units. v_i is the frequency measured at

481 ambient conditions. R^2 is the correlation coefficient.

