1	Revision 1
2 3	Machine-learning oxybarometer developed using zircon trace-element chemistry and its applications
4	Shaohao Zou ^{1,*} , Matthew J. Brzozowski ² , Xilian Chen ¹ , Deru Xu ¹
5	¹ State Key Laboratory of Nuclear Resources and Environment, East China University
6	of Technology, Nanchang 330013, China
7	² Department of Geology, Lakehead University, Thunder Bay, Ontario P7B 5E1,
8	Canada
9	*Corresponding authors: Shaohao Zou (shaohaozou@hotmail.com)
10	Deru Xu (xuderu@gig.ac.cn)

11 Abstract

12 Magmatic oxygen fugacity (fO₂) is a fundamental property to understanding the 13 long-term evolution of the Earth's atmosphere and the formation of magmatic-14 hydrothermal mineral deposits. Classically, the magmatic fO_2 is estimated using the 15 mineral chemistry, such as Fe-Ti oxides, zircon, and hornblende. These methods, 16 however, are only valid within certain limits and/or requires a significant amount of a 17 priori knowledge. In this contribution, a new oxybarometer, constructed by 18 data-driven machine learning algorithm using the trace elements of zircons and their 19 corresponding independent fO₂ constraints, is provided. Seven different algorithms

20	are initially trained and then validated on a data set that was never utilized in the
21	training processes. Results suggest that the oxybarometer constructed by the
22	extremely randomized trees model has the best performance, with the largest R^2 value
23	(0.91 \pm 0.01), smallest RMSE (0.45± 0.03), and low propagated analytical error
24	(~0.10 log units). Feature importance analysis demonstrates that U, Ti, Th, Ce, and Eu
25	in zircon are the key trace elements that preserved fO_2 information. This newly
26	developed oxybarometer has been applied in diverse systems, including the arc
27	magmas and mid ocean ridge basalts, the fertile and barren porphyry systems, and the
28	global S-type detrital zircon, which provide fO_2 constraints that are consistent with
29	other independent methods, suggesting that it has wide applicability. To improve
30	accessibility, the oxybarometer was developed into a software application aimed at
31	enabling more consistent and reliable fO_2 determinations in magmatic systems,
32	promoting further research.

33 Keywords: Machine learning; Zircon; Trace elements; Magmatic oxygen fugacity;
34 Oxybarometer.

35 1. Introduction

Oxygen fugacity (fO_2) is a fundamental thermodynamic property governing the speciation and behavior of multivalent elements (e.g., S, Ce, Eu, Fe, and V) during magma evolution, which in turn controls their solubility, mobility, and compatibility in silicate magmas (Brounce et al. 2014; Ni et al. 2020). Estimates of fO_2 have been

40	used to help address a range of important questions, including the compositional
41	evolution of the atmosphere (Trail et al. 2011b; Lee and Bachmann 2014) and the
42	mineralization potential of igneous rocks (Jugo et al. 2010; Sillitoe 2010; Richards
43	2015). Traditionally, the oxidation state of ancient rocks is constrained using the
44	bulk-rock Fe ²⁺ /Fe ³⁺ ratio (Kress and Carmichael 1991; Brounce et al. 2014; Zhang et
45	al. 2018), the Fe-Ti oxide oxybarometer (Ghiorso and Evans 2008), and the
46	hornblende oxybarometer (Ridolfi and Renzulli 2012; Ridolfi 2021). Previous studies,
47	however, have pointed out that these oxybarometers are only applicable in a limited
48	range of conditions. For example, the bulk Fe^{2+}/Fe^{3+} ratio of a glass is easily reset by
49	the subsequent metamorphism or alteration (Trail et al. 2011b), the Fe-Ti oxide
50	oxybarometer is only applicable rapidly quenched volcanic rocks (Loucks et al. 2018),
51	and the hornblende oxybarometer is only suitable for rocks emplaced deep in the crust
52	because hornblende is unstable in the shallow crust (Rutherford and Hill 1993).
53	Therefore, a more broadly applicable and robust oxybarometer is needed to unravel
54	the complex interplay between fO_2 , magmatic evolution, and metallogenesis through
55	geological time.

56 Zircon is an ubiquitous accessory mineral in crustal rocks and is geochemically 57 robustness, even in rocks that were hydrothermally altered, metamorphosed and 58 weathered (Cherniak and Watson 2003; Trail et al. 2011a). Zircon contains a variety 59 of trace elements, most of which include REEs, Ti, Y, U, Th, and Hf. These elements 60 mainly enter into the zircon crystal lattice via isomorphic and coupled substitution

61	mechanisms (Hoskin and Schaltegger 2003). The former includes $U^{4+} \leftrightarrow Zr^{4+}$, $Ti^{4+} \leftrightarrow$
62	Zr^{4+} , $Hf^{4+} \leftrightarrow Zr^{4+}$, and $Ce^{4+} \leftrightarrow Zr^{4+}$, and the latter includes $(REEs + Y)^{3+} + Na^{+} / K^{+} / K^{+}$
63	$H^+ \leftrightarrow Zr^{4+}$ and $P^{5+}/Nb^{5+} + (REEs +Y)^{3+} \leftrightarrow 2Zr^{4+}$. Substitution of these elements into
64	zircon is related to the similarity of their ionic radius and charge to Zr^{4+} , which are
65	controlled by the physicochemical conditions (e.g., temperature, oxidation state, and
66	magma composition) of magma during mineral growth (Ballard et al. 2002; Ferry and
67	Watson 2007). Oxidation state mainly affects substitution efficiency by changing the
68	valence state of redox-sensitive elements. Consequently, the concentrations of the
69	multivalent REEs (i.e., Ce and Eu) relative to the other monovalent REEs in zircon
70	and the parent magma has become a popular proxy to characterize the fO_2 of magmas
71	(Ballard et al. 2002; Trail et al. 2011b; Smythe and Brenan 2016; Loader et al. 2017;
72	Zhong et al. 2019; Loucks et al. 2020). However, recent studies (Zhong et al. 2019;
73	Zou et al. 2019) have demonstrated that such zircon REE oxybarometers may be
74	unreliable given the difficulty of accurately determining the composition of the parent
75	magma and the existence of REE-mineral inclusions within zircon. Accordingly,
76	Loucks et al. (2020) proposed a new oxybarometer using ratios of Ce, U, and Ti in
77	zircon (the U-Ti-Ce equation), which does not require knowledge of the parent
78	magma composition. We have evaluated the reliability of the U-Ti-Ce equation of
79	Loucks et al. (2020) by applying it to the global detrital zircon database from Tang et
80	al. (2021) and reference therein. The results of this assessment demonstrate that some
81	detrital zircons crystallized from a magma with an extremely (almost impossibly)

82	reduced fO_2 (less than FMQ-5) (Fig. S1), indicating that the linearly regressed U–Ti–
83	Ce equation does not capture all of the redox information of magmas and is not
84	always valid. In addition, the U-Ti-Ce equation may not work well in the strongly
85	peraluminous or peralkaline felsic magmas because their differentiation index (i.e.,
86	U/Ti) is not consistent with the variation of Ce/U ratio in melts (Loucks et al. 2020).
87	Recently, several studies have demonstrated that the data-driven machine learning
88	methods can be powerful tools for solving complex problems in mineralogy, petrology,
89	and geochemistry (Petrelli and Perugini 2016; Chen et al. 2021; Huang et al. 2022;
90	Lin et al. 2022; Nathwani et al. 2022; Qin et al. 2022; Wang et al. 2022; Zou et al.
91	2022), and for the construction of thermobarometers (Petrelli et al. 2020; Higgins et al.
92	2022; Jorgenson et al. 2022; Li and Zhang 2022), without having any a priori
93	knowledge. These research advances suggest that the machine learning method has
94	the potential to be used for calibrating a mineral chemical-based oxybarometer. In this
95	contribution, we present a novel machine learning-based approach to develop an
96	oxybarometer using zircon trace-element chemistry and their corresponding fO_2
97	values obtained by other independent methods. Initially, seven different
98	oxybarometers were first constructed and trained using prevalent machine learning
99	algorithms, including linear regression, decision trees (Cramer et al. 1976), random
100	forest (Breiman 2001), extremely randomized trees (ERT, Geurts et al. 2006), support
101	vector machines (Smola and Schölkopf 2004), K nearest neighbors (Fukunaga and
102	Narendra 1975) and XGboost (Chen and Guestrin 2016), and their performance was

103 then benchmarked on a testing set to select an optimal algorithm. The calibrated 104 oxybarometer was then applied in three different geological situations to test its 105 performance and to explore the breadth of its applicability. To enhance accessibility, 106 we developed a user-friendly web app and intuitive software with a graphical 107 interface, which allow free online or offline fO_2 estimation from zircon chemistry 108 using the machine learning oxybarometer, respectively. This study contributes a new 109 tool to determine oxidation states in silicate melts without a priori knowledge. The 110 approach circumvents limitations of existing methods dependent on specific 111 equilibrium mineral pairs or intensive variables. With appropriate training data, it 112 potentially provides a widely applicable oxybarometer to address outstanding 113 questions on magma fO_2 .

114 **2. Data and methods**

115 **2.1.** Data compilation and filtration

The data used to construct the machine learning models in this study were collated from published articles, and comprise zircon trace-element chemistry and independently constrained fO_2 values of their host rocks. The unfiltered calibration data set is composed of 1,450 data points of zircons from volcanic and plutonic rocks from 37 locations around the world; this data is summarized in Table S1 and the full data set can be found in Table S2. For the calibration of a robust oxybarometer, unreliable zircon analyses have been removed based on the following criteria. First,

123	analyses with Th/U ratios less than 0.1 have been excluded to avoid metamorphic
124	zircon (Kirkland et al. 2015). Second, analyses with La and P concentrations greater
125	than 1 and 2000 ppm, respectively, have been removed as these analyses were likely
126	contaminated by mineral inclusions (Zou et al. 2019; Zhu et al. 2020). Third,
127	elemental data with $>30\%$ of the values as missing or 0 were not included. These
128	criteria led to the selection of P, Ti, Y, Nb, Hf, Th, U, and other 14 REEs as the
129	elements of interest and a dataset consisting of 1,369 zircon compositions with fO_2
130	values ranging from FMQ-4.9 to FMQ+2.75.

131 2.2. Data treatment of null values

132 Following the filtration, a log-transformation has been employed to the dataset, 133 with the pre- and post-transformation features of the collected data illustrated in 134 Figure S2. The purpose of this transformation is to ensure the distribution of elements 135 approximate normality (Fig. S2b), thereby enhancing the performance of machine 136 learning models, as disputed in previous studies (e.g., Frenzel et al. 2016; Petrelli et al. 137 2021). Regrettably, a significant amount (<30%) of the included elements contained 138 null values or zeros, i.e., invalid data, which is an inevitability and may derived from 139 different analytical procedures and instruments utilized to obtain the data. 140 Consequently, the natural logarithm computation of null or 0 values becomes 141 meaningless, producing misleading outcomes. To address this issue, various types of invalid data can be imputed using appropriate multiple strategies before applying the 142 143 logarithmic transformation. In this study, the REEs are all analyzed in the collected

144	data set, and the invalid values in the REEs data means they are below the detection
145	limit; while invalid values in other elements indicate that they are not detected.
146	Accordingly, we addressed this matter by employing the method proposed by van den
147	Boogaart and Tolosana-Delgado (2013) to fill invalid data using normal distributions.
148	For the REEs, the normal distribution was constructed with the mean and standard
149	deviation parameters set to their respective detection limits, while for the other
150	elements, the normal distribution was established based on the mean and standard
151	deviation of not null data.

152 **2.3.** Dimensionality reduction

153 The correlation between the concentration of trace elements in zircon, especially 154 the heavy REEs, is high (Fig. S3). If these highly correlated trace elements were to be 155 utilized in the machine learning models, their interaction between elements would be 156 masked and the noise information would be magnified, leading to overfitting and 157 spurious interpretations (Hall 1999; Lösing and Ebbing 2021). To solve the problem 158 that trace elements in zircon are highly correlated, the strategy of reducing data 159 dimension and filtering noise by Principal Component Analysis (PCA) first, and then 160 training the machine learning models was adopted in this study. The PCA method is a 161 statistical procedure that identifies patterns among variables according to their 162 correlations (Jackson 2005), and can map high-dimensional data to low-dimensional data while retaining as much information as possible from the original dataset (Abdi 163 164 and Williams 2010). In addition, principal component loadings for each variable in the

165 compositional biplots can provide the contribution of the variable to the principal
166 component (Aitchison and Greenacre 2002), which can be used to discover the
167 representative element associations.

168 2.4 Machine learning model

169 2.4.1. Data labeling

170 Supervised machine learning algorithms were adopted to calibrate the 171 oxybarometer. Supervised machine learning is an algorithms that is trained by using 172 labeled datasets to learn an appropriately function that maps the inputs (i.e., the 173 trace-element composition of zircon in this study) to the predicted outputs (i.e., the 174 fO_2 values in this study) using an the optimization algorithm (Chen et al. 2022). Once 175 the training processes are complete, the trained model can be used as an oxybarmeter. 176 Accordingly, the preparation of a dataset with calibrated labels is the key to 177 constructing supervised machine learning models. In our case, the trace-element 178 composition of zircon can be labeled using fO_2 values (expressed as ΔFMQ) obtained 179 from the independent fO_2 constraints. Considering that the independent fO_2 180 constraints have some errors (Table S1), in this study, the trace-element composition 181 of zircon from the same locality was labeled with random values from a normal 182 distribution, and its mean and standard deviation are equal to the average fO_2 value 183 and uncertainty in this area, respectively.

184 2.4.2. Machine learning model construction workflow

185	In this study, seven widely used supervised machine learning methods, including
186	linear regression, decision trees (Cramer et al. 1976), random forest (Breiman 2001),
187	extremely randomized trees (ERT, Geurts et al. 2006), support vector machines
188	(Smola and Schölkopf 2004), K nearest neighbors (Fukunaga and Narendra 1975),
189	and XGboost (Chen and Guestrin 2016), were used to calibrate the oxybarometer.
190	Data processing and machine learning model construction procedures were completed
191	in Python 3.10 utilizing the python packages, including Scikit-Learn
192	(https://scikit-learn.org/stable/index.html) and XGboost
193	(https://xgboost.readthedocs.io/en/latest/). A detailed description of the model
194	building workflow used in this study (modified after (Li and Zhang 2022) and (Zou et
195	al. 2021)) is illustrated in Fig. 1 and can be summarized in the following nine steps: (1)
196	Data was collected from the pre-reviewed literatures and filtered based on the
197	aforementioned criteria. (2) The collected data was preprocessed to meet the
198	requirements of machine learning, including imputation of null data,
199	log-transformation, data dimensionality reduction, and data labeling. (3) The filtered
200	dataset was divided into a training (80% of the data) and testing (20% of the data) by
201	stratified random splitting. The training set was used to train the model and optimize
202	the hyperparameters, while the testing set was only used to evaluate the model. (4) A
203	grid searching algorithm with 5-fold cross validation (CV) was used to select the
204	optimal hyperparameters combination based on the performance metrics (i.e.,

205	coefficient of determination $[R^2]$ score and root-mean-square error [RMSE]). Detailed
206	regarding the tuning of hyperparameters can be found in Zou et al. (2022). (5) With
207	the optimal hyperparameters combination, the training set was used to retrain the
208	machine learning model, the performance of which was then evaluated using the
209	testing set. (6) To avoid overfitting, the data preprocessing, random splitting, training,
210	hyperparameters tuning, and model evaluation (i.e., steps 2, 3, 4 and 5) were repeated
211	1000 times, and 1000 paired R^2 scores and RMSE values were obtained. (7) By
212	comparing the mean R^2 scores and RMSE values generated by different machine
213	learning models, the best model (i.e., the one with the largest R^2 scores and the
214	smallest RMSE values) was chosen as the target model. (8) The target model was then
215	tuned using the entire filtered dataset using a grid searching algorithm with 5-fold CV
216	to figure out the optimal hyperparameters combination. (9) The final, calibrated
217	model was then trained using the entire dataset and the best hyperparameters
218	combination obtained in step (8).

219 **3. Results**

220 3.1. Principal component analysis

PCA was performed on the entire filtered dataset to determine its dominant geochemical features. As illustrated in the compositional biplots, which combines the datapoints and PCA loadings (Figs. 2a and 2b), apart from a few abnormal data from the Lunar Highlands and kimberlites in southern Africa, most of the data are clustered

225	together, and the 21 elements can be roughly be divided into three groups by the PC
226	loadings — group 1 comprises U-Th-Ce, group 2 comprises of Ti, and group 3
227	comprises the REEs, with two subgroups for the light REEs and heavy REEs (Figs. 2a
228	and 2b). The PCA loadings also confirm the strong correlation between the REEs
229	(Figs. 2a and 2b). All of the elements, except for Ti, have negative loadings for the
230	PC1. PC2 is mainly expressed by negative loadings for U, Th, and Ce and a positive
231	loading for Ti. PC3 is dominated by a positive loading of La. The loadings for the
232	other PCs can be found in the Figure S4. In the scree plot, the first seven PCs (from
233	PC1 to PC7) cumulatively explain more than 90% of the total variance of the dataset
234	(Fig. 2c), and the last nine PCs (from PC13 to PC21) cumulatively explain less than 1%
235	of the variance (Fig. 2c). This means that PC1-PC7 preserve almost all the
236	information of the original dataset. Accordingly, the noise in the entire dataset can be
237	filtered out by reducing the dataset from its original 21 dimensions to 7 dimensions
238	via the PCA method; we use these 7 dimensions to train our machine learning-based
239	oxybarometer.

240 3.2. Comparation the performance of the different machine learning models

Previous studies have revealed that different machine learning algorithms exhibit unique strengths and weaknesses, with the most suitable model for a given task contingent on the data characteristics and intended outcomes (e.g., Petrelli et al. 2020; <u>Li and Zhang 2022</u>). As a result, it is customary to leverage a range of diverse machine learning algorithms for specific tasks, followed by an assessment of each

246 model's performance (quantifying the discrepancy between predicted and observed values) to identify the optimal algorithm. Typically, R^2 and RMSE values between 247 predicted and observed values serve as evaluation metrics. A higher R^2 value implies a 248 249 better model fit to true values, whereas a smaller RMSE value typically indicates reduced deviation between predicted and observed values. Consequently, both metrics 250 251 are frequently employed to assess the performance of machine learning models. In this study, we apply this approach, where we computed the mean R^2 and RMSE 252 values for 1000 repeated calculations using the identical dataset to assess and compare 253 254 the performance of several machine learning models used to estimate fO_2 . Figure 3 illustrates the probability density distributions of the R^2 and RMSE values for fO_2 255 256 estimations performed on the testing dataset.

Our results demonstrate that the performance of different machine learning models varies significantly, with R^2 values ranging from 0.3 to 0.9 and RMSE values ranging from 0.3 to1.25. Among all the models, the ERT algorithm exhibits the best performance, with the highest R^2 value of 0.91 ± 0.01 and the lowest RMSE value of 0.45 ± 0.03 . In addition, the ERT model performs better than the previously proposed equation by Loucks et al. (2020), with higher R^2 and lower RMSE value during the 1000 times repeated calculations.

The ERT algorithm is a powerful machine learning technique that constructs an ensemble of decision trees and aggregates their predictions to make a final prediction. Previous studies have demonstrated that the ERT algorithm performs well on high-dimensional datasets with noisy features, due to its ability to reduce the impact
of noisy features and avoid overfitting (Petrelli et al. 2020). Therefore, an ERT-based
model was chosen to construct the final, calibrated machine learning-based
oxybarometer in this study.

271 3.3. Estimation of error

The accuracy, stability, and uncertainty of the calibrated machine learning model must be assessed before it can be used as a reliable oxybarometer. During training and evaluation of the models, the probability density distributions of the R^2 and RMSE values of the extremely randomized trees model had the highest peaks and most constrained ranges, indicating that the model has limited variance and high stability (Fig. 3). The cross-validation error of the model can be expressed as RMSE of 0.45 ± 0.03.

279 The propagated error of the analysis uncertainties should also be evaluated; this 280 can be estimated using the residual values (i.e., the difference between the measured 281 fO_2 values and the predicted values from our model, (Jorgenson et al. 2022)). To avoid 282 self-validation and overfitting, the uncertainties should be evaluated using data that 283 was never used in the training process. Considering that the final constructed model 284 was trained using the entire dataset, we performed a bootstrap resampling (n = 1000)285 Monte Carlo calculation (Keller and Schoene 2012) using zircon data with analytical 286 errors equivalent to that of sample HB-18 (Δ FMQ = + 1.24) from (Meng et al. 2021)

287	to generate new data that can maximally represent HB-18. As shown in Table S3,
288	none of the newly generated zircon compositions appear in the training dataset. Thus,
289	we used these new data to predict their fO_2 values using the calibrated machine
290	learning-based oxybarometer; the predicted results and residuals are illustrated in
291	Figure 4. The results demonstrate that the predicted mean fO_2 value ($\Delta FMQ = +1.39 \pm$
292	0.27) is slightly higher than the measured value ($\Delta FMQ = +1.24$), but consistent with
293	the measured value within the 1 sigma standard error estimate (SEE). As shown in
294	Figure 4a, about 70% of predictions fall within the ± 1 SEE range and the median
295	residual of the 1000 values is 0.10 (Fig. 4b), suggesting that the analytical propagated
296	error is about 0.10 log units, which is negligible relative to the model error (0.45 \pm
297	0.03). For comparison, the equation from Loucks et al. (2020) was also used to predict
298	the fO_2 values of the new data. Figure 4c and 4d demonstrates that this oxybarometer
299	gives a predicted mean fO_2 value of 1.86 \pm 0.72, with an analytical propagated error
300	of 0.46 log units. This comparison reveals that the machine learning-based
301	oxybarometer performs better under these conditions.

302 **4. Discussion**

303 4.1. Mapping relationships between trace elements in zircon and oxygen fugacity

In order to understand the relationship between zircon trace elements and their oxygen fugacity in machine learning model, it is imperative to discern the pivotal input data that governs the model's predictions. The Shapley Additive exPlanations

(SHAP), a game theory-based approach that indicates the output of machine learning models, is a widely recognized technique. It facilitates the interpretation of results by recognizing the contribution of each feature to the model's output. By utilizing the SHAP method, we can gain a better comprehension of how the model arrived at its predictions and identify the features (i.e., elements in this study) that significantly influence the model's prediction-making.

313 In this study, the SHAP method was used to help explain the relative importance 314 of each PC to the output of the model; this was completed using the python package 315 of SHAP (https://shap.readthedocs.io/en/latest/index.html). This method involves 316 calculating the SHAP value for each feature (i.e., the PC in this study) of the sample, 317 which represents the influence of that feature on the prediction (Lundberg and Lee 318 2017). A higher average absolute-size SHAP values for a feature indicates a higher 319 influence on the prediction and vice versa. In addition, positive or negative SHAP 320 values of each datapoint represents whether its output is positive or negative. Figure 5 321 shows the relative importance of features (i.e., the 7-diminational data) are ordered 322 based on their mean absolute-size SHAP value. As shown in Figure 5a, relative 323 importance scores, from high to low, are PC2, PC4, PC3, PC5, PC7, PC6, and PC1. 324 Figure 5b shows the SHAP value of features for all individual analysis and also shows 325 that how the high and low SHAP values of the features (i.e., PC1 to PC7) impact the 326 model output. As shown in Figure 5b, the high values of PC2 and PC4 have the 327 greatest contribution for the model to obtain negative values, whereas the low values

328 of PC2 and PC4, and high values of PC5 have the greatest contribution to obtain 329 positive values. These results reveal that PC2, PC4, and high values of PC5 330 significantly impact the model output. It is worth noting that PC2 always contributes 331 more than the other PCs on the model output.

332 The features (i.e., PC1 to PC7) fed into the machine learning model are derived 333 from the first seven principal components that cumulatively explain 90% of the 334 variance of the original dataset. The PCA-derived loadings of elements can help 335 characterize the relationships between the PC values and the elemental concentrations. 336 Figure 2a and 2b illustrate that the low PC2 values are related to U-Th-Ce and its 337 high values are related to Ti. Similarly, low PC4 values are mainly related to Eu and 338 its high values are related to La (Fig. S4). High values of PC3 and PC5 are mainly 339 derived from La and Eu, respectively (Fig. S4). Given that the La content of zircon is 340 typically very low to the point that it is typically hard to measure accurately (Zhong et 341 al. 2019; Zou et al. 2019) and the fact that La is missing in nearly 20% of the original 342 dataset, the importance of La is likely being magnified, but the impact is still limited 343 relative to other elements (i.e., U, Ti, Th, Ce, and Eu) used in the model because PC2 always contributes more than the other PCs. Accordingly, we can conclude that the U, 344 345 Ti, Th, Ce, and Eu are the most important elements for the machine learning model 346 and preserved fO_2 information.

347 Loucks et al. (2020) discussed, in detail, the relationships between the U, Ti, and 348 Ce contents of zircons and the fO_2 conditions of their formation; this relationship was

349	described using the equation of log $fO_2(\Delta FMQ) = 3.998(\pm 0.124) \times \log 1000$
350	$[Ce/\sqrt{(U_{initial} \times Ti)}]$ + 2.284 (±0.101) (i.e., the U–Ti–Ce equation). Along with the
351	elements used in this equation, our machine learning model demonstrates that Th and
352	Eu also preserve fO_2 information and are important to predicting fO_2 of a magma.
353	This may be one of the reasons for the comparatively larger error of the fO_2 estimates
354	using the above equation. Previous studies have demonstrated that the compatibility
355	Th and Eu entering into zircon is controlled by oxygen fugacity (Burnham and Berry
356	2012). Because uranium is a redox-sensitive element with two major valance states
357	$(U^{4+} \text{ and } U^{6+})$, with U^{4+} being more compatible into zircon substitution of Zr^{4+} .
358	Thorium in the tetravalent state behaves geochemically similar to U^{4+} because of their
359	similar ionic radius, which may cause Th^{4+} and U^{4+} to compete for the Zr^{4+} position in
360	zircon. Therefore, the Th/U ratio of zircon may be controlled by the environmental
361	oxidation state of the magma. Similarly, Eu is also a redox-sensitive element and can
362	exist as Eu^{3+} and Eu^{2+} . Eu^{3+} is more compatible into zircon than Eu^{2+} , and so a Eu
363	anomaly in zircon can be used to estimate prevailing oxygen fugacity during its
364	formation (Burnham and Berry 2012; Loader et al. 2017). Taken together, we can
365	conclude that our constructed machine learning model correctly captures the
366	relationship between trace elements in zircon and oxygen fugacity.

367 4.2. Applications of the machine learning-based oxybarometer to natural systems

368 To further explore the range of applicability of this machine learning-based 369 oxybarometer, we have applied it to three different geological scenarios in which the

- fO_2 has been well constrained by previous studies i) arc magmas and mid ocean ridge basalts (MORB), ii) fertile and barren porphyry systems, and iii) a global database of S-type detrital zircon.
- 4.2.1. Estimation of fO_2 of arc magmas and MORB

374	Arcs and the mid ocean ridge are the two most important tectonic settings for the
375	production of magmas globally, the former of which producing more oxidized
376	magmas, on average, than the latter (Christie et al. 1986; Carmichael 1991; Brounce
377	et al. 2014; Wang et al. 2019). Evidence from whole-rock Fe^{3+}/Fe^{2+} , V/Sc, and Zn/Fe _T
378	ratios (Carmichael 1991; Lee et al. 2010; Brounce et al. 2014), Eu anomalies in zircon
379	(Burnham and Berry 2012), and the composition of spinel and olivine (Evans et al.
380	2012; Wang et al. 2019) indicate that the measured fO_2 value at different times in most
381	arc magmas vary from Δ FMQ = +0.5 to +2 (locally up to +3), while MORBs have fO_2
382	values in the range of $\Delta FMQ = -1$ to +0.5 (Jugo et al. 2010; Evans et al. 2012;
383	Richards 2015; Wang et al. 2019).

In this study, the composition of zircons from arcs and MORBs were used to validate the machine learning-based oxybarometer. Data for arcs (the Alenutian Arc, Andean Arc, and Central American Arc) were collated from the GEOROC database (https://georoc.eu/georoc/new-start.asp, accessed on October, 2022), and data for the Vema MORB are collected from (De Hoog et al. 2014); these data were filtered using criteria described above and are presented in Table S4. As illustrated in Fig. 6, the predicted mean fO_2 values of arcs are consistent with each other and are greater than

391	that of the Vema MORB by approximately 1 log unit. In addition, the average fO_2
392	values for arcs range from 1.05 to 1.17 log units above the FMQ buffer (FMQ+1.05 to
393	FMQ+1.17), whereas the average fO_2 value of the Vema MORB is similar to the FMQ
394	buffer (FMQ-0.01). These results are in excellently agreement with the fO_2 constraints
395	from previous works (Ballhaus 1993; Zhang et al. 2018). It is crucial to recognize that
396	the most fO_2 proxies from previous studies on arc magmas and MORB most likely
397	represent various stages of magma system evolution. Zircons are particularly effective
398	at capturing fO_2 information from the more evolved intermediate to felsic magma
399	products, whereas other proxies may be more sensitive to earlier, more mafic
400	conditions. From this point, our machine learning-based oxybarometer, when
401	combined with other proxies, has the potential to offer valuable insights into the
402	changes in redox conditions experienced by arc magmas and MORB during their
403	evolution.

404 *4.2.2. Fertile and barren porphyry systems*

Porphyry deposits are thought to form as a result of fluid exsolution derived from hydrous, volatile-rich and oxidized magmas (Sillitoe 2010; Richards 2015). It has been well established that, in oxidized magmas, S occurs as sulfate; in such environments, the sulfur content at sulfur saturation is higher, leading the presence of S undersaturated magmas that can interact with wall-rocks to form porphyry deposits (Streck and Dilles 1998; Jugo et al. 2010; Sillitoe 2010; Richards 2015; Shen et al. 2015; Sun et al. 2015). Therefore, the redox state of an intrusion is considered to have

412	a significant impact on the formation of porphyry deposits, and has been used as one
413	of the most important indicators to evaluate mineralization potential (Shen et al. 2015;
414	Lu et al. 2016). Previous studies have demonstrated that the fertile rocks generally
415	crystallized from highly oxidized ($\Delta FMQ > + 1$) and hydrous magmas, whereas
416	barren rocks generally crystallize from the relatively reduced $(\Delta FMQ < +1)$ and dry
417	melts (Richards 2015; Rezeau and Jagoutz 2020). Given the apparent link between
418	fO_2 and mineralization potential, we also applied our machine learning-based
419	oxybarometer to a large database of fertile and barren rocks from (Zou et al. 2022).
420	Our calculation revealed the average fO_2 value of fertile rocks in this database is
421	approximately 0.4 log units higher than that of barren rocks (FMQ + 1.40 vs. FMQ
422	+0.62), with about 30% of data overlapping each other (Fig. 7). The overlap between
423	the two rock groups may be attributed to the fact that the formation of porphyry
424	deposits is not independently dictated by oxygen fugacity, but is also related to the
425	water and volatile contents of the magma. It is, therefore, difficult to distinguish
426	between fertile and barren rocks based solely on their fO_2 (Zou et al. 2022). Although
427	overlap does exist, these results are consistent with others that fertile rocks generally
428	form from higher fO_2 magmas than barren rocks.

429 4.2.3. Global S-type detrital zircons

The rise of atmospheric oxygen has had a profound impact on the chemical
environment of the Earth's surface, ultimately leading to the evolution of a diverse
biosphere (Kaufman et al. 2007; Lyons et al. 2014). It is widely agreed upon that two

433	events caused the oxygen content of the atmosphere to rise to current levels: the Great
434	Oxidation Event (GOE) that occurred approximately 2.5-2.2 billion years ago, and
435	the later Neoproterozoic Oxidation Event (NOE) that occurred around 800-540 Myr
436	ago (Bekker et al. 2004; Frei et al. 2009; Crowe et al. 2013; Planavsky et al. 2014; Liu
437	et al. 2019; Chen et al. 2022; Hodgskiss and Sperling 2022). This established
438	knowledge provides a basis for testing our oxybarometer. In this study, the detrital
439	zircon derived from S-type granite (referred to as "S-type zircon") is employed to
440	reconstruct the history of atmospheric oxygenation. S-type granites crystallize from
441	strongly peraluminous magmas derived (dominantly) from metasedimentary rocks
442	(Chappell and White 1992), which are derived from sedimentary rocks through
443	several steps, including metamorphism, partial melting, and subsequent crystallization.
444	As sediments provide a record of Earth surface processes, including variations in
445	atmospheric oxygen levels, and are the precursors to S-type granites, it is reasonable
446	to assume that the latter would also retain a record of atmospheric oxygen changes.
447	Trace element concentrations in zircon have been employed to distinguish S type
448	zircon from others. One method for distinguishing S-type zircon involves examining
449	its phosphorus concentration (e.g., Burnham and Berry 2017; Zhu et al. 2020). This
450	method assumes that the higher solubility of apatite in peraluminous S-type granite
451	magma results a relatively high phosphorus content in S-type zircon, assuming
452	consistent zircon-melt P partition coefficients across diverse melts. However, recent

453 study has shown that the reliability of this approach is limited to zircon samples

454	younger than 720 Ma (Bucholz 2022; Bucholz et al. 2022), as the phosphorus content
455	in S-type granite before this age does not consistently exceed that of other granites
456	(Bucholz et al. 2022). As an alternative method, a machine learning approach utilizing
457	trace element data from known zircon type has been proposed by Zhong et al. (2023).
458	This method considers the influence of trace elements and has demonstrated high
459	identification accuracy (about 0.85). It is important to note, however, that this
460	approach did not incorporate ancient zircon samples predating 800 Ma in the model
461	training process and, as a result, may not be suitable for analyzing zircon from these
462	ages.

463 Therefore, this study aims to investigate the NOE through the fO_2 value of the global S-type detrital zircon with an age younger than 720 Ma. To achieve this goal, 464 465 the trace-element composition of detrital zircons globally were collected from Tang et 466 al. (2021) and references therein, and S-type zircons (< 720 Ma) were identified based on the criteria of Zhu et al. (2020): S-type zircons have a the molar concentration of 467 468 REE +Y greater than 0.77 * P and less than 1.23 * P, and the molar concentration of P 469 is greater than 15 µmol/g. After data filtering, a total of 116 data points of S-type 470 detrital zircon were recognized, as shown in Table S5, and their fO_2 of formation was 471 estimated using our machine learning-based oxybarometer. The predicted fO_2 values 472 of S-type zircon is displayed in Figure 8, with a curve fit in every 100 Myr interval. 473 Our findings are consistent with prior studies on sediments (e.g., Partin et al. 2013; 474 Reinhard and Planavsky 2022), verifying a gradual increase in the fO₂ value of S-type

475	detrital zircon from 800 Ma to 200 Ma (Fig. 8). Notably, our analysis reveals a
476	distinctive shift in fO_2 levels of S-type zircons during the late Neoproterozoic period
477	(650 Ma) (Canfield et al. 2007), coinciding with the timing of the NOE; and the sharp
478	increase from 550-450 Ma, which is consistent with independent evidence indicating
479	comprehensive ocean oxidation during that time (Fig.8b-c). Accordingly, although
480	S-type zircon collected in this study do not provide a complete and continuous record
481	of fO_2 fluctuations (Fig. 8), our study identifies key oxidation events. This highlights
482	the effectiveness of the machine learning-based oxybarometer we developed, even in
483	in strongly peraluminous environments.

484 4.3. Implications and possible uncertainty

485 Compared to the traditional oxybarometer, the data-driven machine learning 486 oxybarometer in this study is constructed based on the contents of P, Ti, Y, Nb, Hf, Th, 487 U and other 14 REEs in zircon. The greater number of elements used in the 488 calibration process means that less meaningful information is lost, leading to higher 489 precision and accuracy. More importantly, the successful application of the oxybarometer to the three different geologic systems (i.e., MORB-arc, porphyry 490 491 systems, detrital zircons) suggests that it has the potential to be more widely 492 applicable than traditional equations. The calibration approach does not require any a 493 priori knowledge of physicochemical information and magma composition, which 494 makes it a valuable tool for researchers studying a wide range of environments. 495 However, further investigations with extensive datasets and analysis are needed to

496	confirm the effectiveness of this approach for more different geological environments.
497	For example, researchers could refine calibration procedures or develop new methods
498	for predicting oxygen fugacity by collecting additional data (especially data with low
499	fO_2 values that were not included in this study) and improving the existing model. The
500	continuous development of this model could help researchers to understand the
501	changes of fO_2 more accurately in diverse magma systems, which is essential for
502	improving our understanding of crustal evolution.

503 The uncertainties of the machine learning model are significantly dependent on 504 the features used. In this study, the input features are trace elements in zircon and the 505 output feature is their corresponding fO_2 values. The bootstrap resampling Monte 506 Carlo calculation shows that uncertainties from the analytical error of the input 507 features is low (~ 0.01 log unit), which can largely be ignored compared to the model 508 error. In contrast, the uncertainty of the output feature is more significant because of 509 its relatively narrow range of possible values (between FMQ-4.9 and FMQ+3.0). The 510 uncertainty in the output feature mainly comes from the fact that data with fO_2 values 511 outside of this range have not been published so far, which leads to those data not 512 being learned by the computer. Nevertheless, considering that the fO_2 of most natural 513 magma systems is between FMQ-4.9 and FMQ+3 (Loucks et al. 2020), our model 514 can still solve most problems. In addition, as more published data becomes available, 515 the machine learning model will become increasingly more intelligent, and its 516 performance will continuously improve. Lastly, when inputting the trace-element data

- 517 into the model, we recommend using the average composition of several analyses on
- 518 zircon from the same sample to avoid errors from spurious analyses.

519 4.4. Online web application and offline software

- To make the oxybarometer more accessible and user friendly, a browser-based application and a GUI software (named ZirconfO2) have been developed, which can be used online (<u>https://shaohaozou-fo2-webapp-7xqvo0.streamlit.app/</u>) or offline (on Windows), respectively. These applications have been published on the GitHub platform (<u>https://github.com/shaohaozou/fO2</u>) and will be updated as additional geochemical data of zircon becomes publicly available.
- The web-based oxybarometer and the GUI software are easy to use and do not need any programming knowledge. It should be noted that accessing the web-based oxybarometer requires a Streamlit account. Following the introduction provided on the webpage or within the software, users can upload their data in the same format as the template file (this can be download from the website) and click the "Calculate" and "Download your results" buttons in turn to complete the calculation and get the results.

533 **5.** Conclusions

We calibrated a new oxybarometer based on data-driven machine learning algorithms using the trace-element contents of zircon and their corresponding fO_2 constraints as model inputs. Although the developed oxybarometer does not provide a specific

537	mathematical equation to illustrate the relationship between the trace-element content
538	of zircon and oxygen fugacity, a reliable machine learning-based relationship has been
539	recognized. In addition, this oxybarometer does not rely on any assumptions, and
540	shows a higher performance and lower error than traditional oxybarometer equations.
541	Feature importance analysis indicates that the machine learning model can well
542	identify fO_2 information in zircon and make fO_2 predictions. The successful
543	application of this oxybarometer to three different geologic situations demonstrates
544	that it has great potential to be widely applicable to geoscience. This work
545	demonstrates that machine learning is a promising tool that can be applied to
546	investigate other regression questions in the Earth sciences.

547 Data Availability Statement

The datasets, code and software for the machine learning models developed in this study are available at http://doi.org/10.5281/zenodo.7578390 and can be also found at https://github.com/shaohaozou/fO2, which will be updated as more geochemical data of zircon becomes publicly available. Further descriptions regarding the construction of the machine learning models are available through the scikit-learn documentation (https://scikit-learn.org/stable/index.html).

554 Acknowledgments

555 This work was co-funded by the National Natural Science Foundation of China (Nos.

556 42002089, 42102095, 41930428), the Jiangxi Provincial Natural Science Foundation

557	(Nos. 20224BAB213040, 20224BAB203036, 20224ACB203008), and the DHBK
558	project from East China University of Technology (No. DHBK2019320). We thank
559	two anonymous reviewers and handling editor Claire Bucholz for their very
560	constructive comments, which have markedly improved the quality, presentation and
561	development of the machine learning model described herein. Their suggestions
562	prompted changes that considerably strengthened the work.
563	References
564 565	Abdi, H., and Williams, L.J. (2010) Principal component analysis. Wiley interdisciplinary reviews: computational statistics, 2, 433–459.
566 567	Aitchison, J., and Greenacre, M. (2002) Biplots of compositional data. Journal of the Royal Statistical Society: Series C (Applied Statistics), 51, 375–392.
568 569 570 571	Ballard, J.R., Palin, M.J., and Campbell, I.H. (2002) Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: application to porphyry copper deposits of northern Chile. Contributions to Mineralogy and Petrology, 144, 347–364.
572 573	Ballhaus, C. (1993) Redox states of lithospheric and asthenospheric upper mantle. Contributions to Mineralogy and Petrology, 114, 331–348.
574 575 576	Bekker, A., Holland, H.D., Wang, PL., Rumble, D., Stein, H.J., Hannah, J.L., Coetzee, L.L., and Beukes, N.J. (2004) Dating the rise of atmospheric oxygen. Nature, 427, 117–120.
577	Breiman, L. (2001) Random forests. Machine learning, 45, 5–32.
578 579 580	Brounce, M.N., Kelley, K.A., and Cottrell, E. (2014) Variations in Fe3+/∑ Fe of Mariana Arc basalts and mantle wedge f O2. Journal of Petrology, 55, 2513– 2536.
581 582 583	Bucholz, C., Liebmann, J., and Spencer, C.J. (2022) Secular variability in zircon phosphorus concentrations prevents simple petrogenetic classification. Geochemical Perspectives Letters, 24, 12–16.
584	Bucholz, C.E. (2022) Coevolution of sedimentary and strongly peraluminous granite

585	phosphorus records. Earth and Planetary Science Letters, 596, 117795.
586 587 588	Burnham, A.D., and Berry, A.J. (2012) An experimental study of trace element partitioning between zircon and melt as a function of oxygen fugacity. Geochimica et Cosmochimica Acta, 95, 196–212.
589 590	Burnham, A.D., and Berry, A.J. (2017) Formation of Hadean granites by melting of igneous crust. Nature Geoscience, 10, 457–461.
591 592	Canfield, D.E., Poulton, S.W., and Narbonne, G.M. (2007) Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science, 315, 92–95.
593 594 595	Carmichael, I.S. (1991) The redox states of basic and silicic magmas: a reflection of their source regions? Contributions to Mineralogy and Petrology, 106, 129–141.
596 597 598	Chappell, B.W., and White, A.J.R. (1992) I-and S-type granites in the Lachlan Fold Belt. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83, 1–26.
599 600 601	Chen, G., Cheng, Q., Lyons, T.W., Shen, J., Agterberg, F., Huang, N., and Zhao, M. (2022) Reconstructing Earth's atmospheric oxygenation history using machine learning. Nature Communications, 13, 5862.
602 603 604	Chen, H., Su, C., Tang, Y., Li, A., Wu, S., Xia, Q., and ZhangZhou, J. (2021) Machine Learning for Identification of Primary Water Concentrations in Mantle Pyroxene. Geophysical Research Letters, 48.
605 606 607	Chen, T., and Guestrin, C. (2016) Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining pp. 785–794.
608 609	Cherniak, D.J., and Watson, E.B. (2003) Diffusion in zircon. Reviews in mineralogy and geochemistry, 53, 113–143.
610 611 612	Christie, D.M., Carmichael, I.S.E., and Langmuir, C.H. (1986) Oxidation states of mid-ocean ridge basalt glasses. Earth and Planetary Science Letters, 79, 397–411.
613 614	Cramer, G.M., Ford, R.A., and Hall, R.L. (1976) Estimation of toxic hazard—a decision tree approach. Food and cosmetics toxicology, 16, 255–276.
615 616 617	Crowe, S.A., Døssing, L.N., Beukes, N.J., Bau, M., Kruger, S.J., Frei, R., and Canfield, D.E. (2013) Atmospheric oxygenation three billion years ago. Nature, 501, 535–538.

- De Hoog, J.C.M., Lissenberg, C.J., Brooker, R.A., Hinton, R., Trail, D., and
 Hellebrand, E. (2014) Hydrogen incorporation and charge balance in natural
 zircon. Geochimica et Cosmochimica Acta, 141, 472–486.
- Evans, K.A., Elburg, M.A., and Kamenetsky, V.S. (2012) Oxidation state of subarc
 mantle. Geology, 40, 783–786.
- Ferry, J.M., and Watson, E.B. (2007) New thermodynamic models and revised
 calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions
 to Mineralogy and Petrology, 154, 429–437.
- Frei, R., Gaucher, C., Poulton, S.W., and Canfield, D.E. (2009) Fluctuations in
 Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature,
 461, 250–253.
- Fukunaga, K., and Narendra, P.M. (1975) A branch and bound algorithm for
 computing k-nearest neighbors. IEEE transactions on computers, 100, 750–
 753.
- Geurts, P., Ernst, D., and Wehenkel, L. (2006) Extremely randomized trees. Machine
 learning, 63, 3–42.
- Ghiorso, M.S., and Evans, B.W. (2008) Thermodynamics of rhombohedral oxide solid
 solutions and a revision of the Fe-Ti two-oxide geothermometer and
 oxygen-barometer. American Journal of science, 308, 957–1039.
- Hall, M.A. (1999) Correlation-based feature selection for machine learning. PhD
 Thesis, The University of Waikato.
- Higgins, O., Sheldrake, T., and Caricchi, L. (2022) Machine learning
 thermobarometry and chemometry using amphibole and clinopyroxene: a
 window into the roots of an arc volcano (Mount Liamuiga, Saint Kitts).
 Contributions to Mineralogy and Petrology, 177, 10.
- Hodgskiss, M.S.W., and Sperling, E.A. (2022) A prolonged, two-step oxygenation of
 Earth's early atmosphere: Support from confidence intervals. Geology, 50,
 158–162.
- Hoskin, P.W.O., and Schaltegger, U. (2003) The composition of zircon and igneous
 and metamorphic petrogenesis. Reviews in mineralogy and geochemistry, 53,
 27–62.
- Huang, W., Lyu, Y., Du, M., He, C., Gao, S., and Xu, R. (2022) Estimating ferric iron
 content in clinopyroxene using machine learning models. American
 Mineralogist, 48.

- Jackson, J.E. (2005) A user's guide to principal components, 1–597 p. John Wiley &
 Sons.
- Jorgenson, C., Higgins, O., Petrelli, M., Bégué, F., and Caricchi, L. (2022) A Machine
 Learning-Based Approach to Clinopyroxene Thermobarometry: Model
 Optimization and Distribution for Use in Earth Sciences. Journal of
 Geophysical Research: Solid Earth, 127, e2021JB022904.
- Jugo, P.J., Wilke, M., and Botcharnikov, R.E. (2010) Sulfur K-edge XANES analysis
 of natural and synthetic basaltic glasses: Implications for S speciation and S
 content as function of oxygen fugacity. Geochimica et Cosmochimica Acta, 74,
 5926–5938.
- Kaufman, A.J., Johnston, D.T., Farquhar, J., Masterson, A.L., Lyons, T.W., Bates, S.,
 Anbar, A.D., Arnold, G.L., Garvin, J., and Buick, R. (2007) Late Archean
 Biospheric Oxygenation and Atmospheric Evolution. Science, 317, 1900–
 1903.
- Keller, C.B., and Schoene, B. (2012) Statistical geochemistry reveals disruption in
 secular lithospheric evolution about 2.5 Gyr ago. Nature, 485, 490–493.
- Kirkland, C.L., Smithies, R.H., Taylor, R.J.M., Evans, N., and McDonald, B. (2015)
 Zircon Th/U ratios in magmatic environs. Lithos, 212, 397–414.

Kress, V.C., and Carmichael, I.S.E. (1991) The compressibility of silicate liquids
containing Fe2O3 and the effect of composition, temperature, oxygen fugacity
and pressure on their redox states. Contributions to Mineralogy and Petrology,
108, 82–92.

- Lee, C.-T.A., and Bachmann, O. (2014) How important is the role of crystal
 fractionation in making intermediate magmas? Insights from Zr and P
 systematics. Earth and Planetary Science Letters, 393, 266–274.
- Lee, C.-T.A., Luffi, P., Le Roux, V., Dasgupta, R., Albaréde, F., and Leeman, W.P.
 (2010) The redox state of arc mantle using Zn/Fe systematics. Nature, 468,
 681–685.
- Li, X., and Zhang, C. (2022) Machine Learning Thermobarometry for Biotite-Bearing
 Magmas. Journal of Geophysical Research: Solid Earth, 127.
- Lin, X., Cicchella, D., Hong, J., and Meng, G. (2022) A Test of the Hypothesis That
 Syn-Collisional Felsic Magmatism Contributes to Continental Crustal Growth
 Via Deep Learning Modeling and Principal Component Analysis of Big
 Geochemical Datasets. Journal of Geophysical Research: Solid Earth, 127.

686 687	Liu, H., Zartman, R.E., Ireland, T.R., and Sun, W. (2019) Global atmospheric oxygen variations recorded by Th/U systematics of igneous rocks. Proceedings of the
688	National Academy of Sciences, 116, 18854–18859.
689	Liu, XM., Kah, L.C., Knoll, A.H., Cui, H., Wang, C., Bekker, A., and Hazen, R.M.
690	(2021) A persistently low level of atmospheric oxygen in Earth's middle age.
691	Nature Communications, 12, 351.
692	Loader, M.A., Wilkinson, J.J., and Armstrong, R.N. (2017) The effect of titanite
693	crystallisation on Eu and Ce anomalies in zircon and its implications for the
694	assessment of porphyry Cu deposit fertility. Earth and Planetary Science
695	Letters, 472, 107–119.
696	Lösing, M., and Ebbing, J. (2021) Predicting Geothermal Heat Flow in Antarctica
697	With a Machine Learning Approach. Journal of Geophysical Research: Solid
698	Earth, 126.
699	Loucks, R.R., Fiorentini, M.L., and Rohrlach, B.D. (2018) Divergent T-fO 2 paths
700	during crystallisation of H 2 O-rich and H 2 O-poor magmas as recorded by
701	Ce and U in zircon, with implications for TitaniQ and TitaniZ geothermometry.
702	Contributions to Mineralogy and Petrology, 173, 104.
703	Loucks, R.R., Fiorentini, M.L., and Henríquez, G.J. (2020) New Magmatic
704	Oxybarometer Using Trace Elements in Zircon. Journal of Petrology, 61,
705	egaa034.
706	Lu, Y., Loucks, R., Fiorentini, M., McCuaig, T., Evans, N.J., Yang, ZM., Hou, ZQ.,
707	Kirkland, C.L., Avila, L.P., and Kobussen, A. (2016) Zircon compositions as a
708	pathfinder for porphyry Cu±Mo±Au deposits. Society of Economic Geologists.
709	Special Publications Series, 19, 329–347.
710	Lundberg, S.M., and Lee, SI. (2017) A unified approach to interpreting model
711	predictions. In Proceedings of the 31st international conference on neural
712	information processing systems pp. 4768–4777.
713	Lyons, T.W., Reinhard, C.T., and Planavsky, N.J. (2014) The rise of oxygen in Earth's
714	early ocean and atmosphere. Nature, 506, 307-315.
715	Meng, X., Kleinsasser, J.M., Richards, J.P., Tapster, S.R., Jugo, P.J., Simon, A.C.,
716	Kontak, D.J., Robb, L., Bybee, G.M., Marsh, J.H., and others (2021) Oxidized
717	sulfur-rich arc magmas formed porphyry Cu deposits by 1.88 Ga. Nature
718	Communications, 12, 2189.
719	Nathwani, C.L., Wilkinson, J.J., Fry, G., Armstrong, R.N., Smith, D.J., and Ihlenfeld,
720	C. (2022) Machine learning for geochemical exploration: classifying

721 722	metallogenic fertility in arc magmas and insights into porphyry copper deposit formation. Mineralium Deposita.
723	Ni, Z., Arevalo, R., Piccoli, P., and Reno, B.L. (2020) A Novel Approach to
724	Identifying Mantle-Equilibrated Zircon by Using Trace Element Chemistry.
725	Geochemistry, Geophysics, Geosystems, 21.
726	Partin, C.A., Bekker, A., Planavsky, N.J., Scott, C.T., Gill, B.C., Li, C., Podkovyrov,
727	V., Maslov, A., Konhauser, K.O., Lalonde, S.V., and others (2013) Large-scale
728	fluctuations in Precambrian atmospheric and oceanic oxygen levels from the
729	record of U in shales. Earth and Planetary Science Letters, 369–370, 284–293.
730	Petrelli, M., and Perugini, D. (2016) Solving petrological problems through machine
731	learning: the study case of tectonic discrimination using geochemical and
732	isotopic data. Contributions to Mineralogy and Petrology, 171, 81.
733	Petrelli, M., Caricchi, L., and Perugini, D. (2020) Machine Learning Thermo-
734	Barometry: Application to Clinopyroxene-Bearing Magmas. Journal of
735	Geophysical Research: Solid Earth, 125.
736	Planavsky, N.J., Asael, D., Hofmann, A., Reinhard, C.T., Lalonde, S.V., Knudsen, A.,
737	Wang, X., Ossa Ossa, F., Pecoits, E., Smith, A.J.B., and others (2014)
738	Evidence for oxygenic photosynthesis half a billion years before the Great
739	Oxidation Event. Nature Geoscience, 7, 283–286.
740	Qin, B., Huang, F., Huang, S., Python, A., Chen, Y., and ZhangZhou, J. (2022)
741	Machine Learning Investigation of Clinopyroxene Compositions to Evaluate
742	and Predict Mantle Metasomatism Worldwide. Journal of Geophysical
743	Research: Solid Earth, 127.
744	Reinhard, C.T., and Planavsky, N.J. (2022) The History of Ocean Oxygenation.
745	Annual Review of Marine Science, 14, 331–353.
746 747	Rezeau, H., and Jagoutz, O. (2020) The importance of H2O in arc magmas for the formation of porphyry Cu deposits. Ore Geology Reviews, 126, 103744.
748 749	Richards, J.P. (2015) The oxidation state, and sulfur and Cu contents of arc magmas: implications for metallogeny. Lithos, 233, 27–45.
750	Ridolfi, F. (2021) Amp-TB2: An Updated Model for Calcic Amphibole
751	Thermobarometry. Minerals, 11, 324.
752 753 754	Ridolfi, F., and Renzulli, A. (2012) Calcic amphiboles in calc-alkaline and alkaline magmas: thermobarometric and chemometric empirical equations valid up to 1,130°C and 2.2 GPa. Contributions to Mineralogy and Petrology, 163, 877–

755 895.

756 757 758	Rutherford, M.J., and Hill, P.M. (1993) Magma ascent rates from amphibole breakdown: an experimental study applied to the 1980–1986 Mount St. Helens eruptions. Journal of Geophysical Research: Solid Earth, 98, 19667–19685.
759 760 761	Scott, C., Lyons, T.W., Bekker, A., Shen, Y., Poulton, S.W., Chu, X., and Anbar, A.D. (2008) Tracing the stepwise oxygenation of the Proterozoic ocean. Nature, 452, 456–459.
762 763 764 765	Shen, P., Hattori, K., Pan, H., Jackson, S., and Seitmuratova, E. (2015) Oxidation condition and metal fertility of granitic magmas: Zircon trace-element data from porphyry Cu deposits in the Central Asian orogenic belt. Economic Geology, 110, 1861–1878.
766	Sillitoe, R.H. (2010) Porphyry Copper Systems. Economic Geology, 105, 3-41.
767 768	Smola, A.J., and Schölkopf, B. (2004) A tutorial on support vector regression. Statistics and computing, 14, 199–222.
769 770 771	Smythe, D.J., and Brenan, J.M. (2016) Magmatic oxygen fugacity estimated using zircon-melt partitioning of cerium. Earth and Planetary Science Letters, 453, 260–266.
772 773	Streck, M.J., and Dilles, J.H. (1998) Sulfur evolution of oxidized arc magmas as recorded in apatite from a porphyry copper batholith. Geology, 26, 523–526.
774 775 776	Sun, W., Huang, R., Li, H., Hu, Y., Zhang, C., Sun, S., Zhang, L., Ding, X., Li, C., Zartman, R.E., and others (2015) Porphyry deposits and oxidized magmas. Ore Geology Reviews, 65, 97–131.
777 778	Tang, M., Chu, X., Hao, J., and Shen, B. (2021) Orogenic quiescence in Earth's middle age. Science, 371, 728–731.
779 780	Trail, D., Thomas, J.B., and Watson, E.B. (2011a) The incorporation of hydroxyl into zircon. American Mineralogist, 96, 60–67.
781 782	Trail, D., Watson, E.B., and Tailby, N.D. (2011b) The oxidation state of Hadean magmas and implications for early Earth's atmosphere. Nature, 480, 79–82.
783 784	van den Boogaart, K.G., and Tolosana-Delgado, R. (2013) Analyzing compositional data with R Vol. 122. Springer.
785 786 787	Wang, J., Xiong, X., Takahashi, E., Zhang, L., Li, L., and Liu, X. (2019) Oxidation State of Arc Mantle Revealed by Partitioning of V, Sc, and Ti Between Mantle Minerals and Basaltic Melts. Journal of Geophysical Research: Solid Earth,

788 124, 4617–4638.

Wang, L., Su, C., Wang, L.-Q., ZhangZhou, J., Xia, Q.-K., and Wang, Q.-Y. (2022)
Refined estimation of Li in mica by a machine learning method. American Mineralogist, 107, 1034–1044.

Zhang, H.L., Cottrell, E., Solheid, P.A., Kelley, K.A., and Hirschmann, M.M. (2018)
Determination of Fe3+/ΣFe of XANES basaltic glass standards by Mössbauer
spectroscopy and its application to the oxidation state of iron in MORB.
Chemical Geology, 479, 166–175.

Zhong, S., Seltmann, R., Qu, H., and Song, Y. (2019) Characterization of the zircon
Ce anomaly for estimation of oxidation state of magmas: a revised Ce/Ce*
method. Mineralogy and Petrology, 113, 755–763.

Zhong, S.H., Liu, Y., Li, S.Z., Bindeman, I.N., Cawood, P.A., Seltmann, R., Niu, J.H.,
Guo, G.H., and Liu, J.Q. (2023) A machine learning method for distinguishing
detrital zircon provenance. Contributions to Mineralogy and Petrology, 178,
35.

Zhu, Z., Campbell, I.H., Allen, C.M., and Burnham, A.D. (2020) S-type granites: Their origin and distribution through time as determined from detrital zircons. Earth and Planetary Science Letters, 536, 116140.

Zou, S., Chen, X., Xu, D., Brzozowski, M.J., Lai, F., Bian, Y., Wang, Z., and Deng, T.
(2021) A machine learning approach to tracking crustal thickness variations in the eastern North China Craton. Geoscience Frontiers, 12, 101195.

- Zou, S., Chen, X., Brzozowski, M.J., Leng, C., and Xu, D. (2022) Application of
 machine learning to characterizing magma fertility in porphyry Cu deposits.
 Journal of Geophysical Research: Solid Earth, 127, 2022JB024584.
- Zou, X., Qin, K., Han, X., Li, G., Evans, N.J., Li, Z., and Yang, W. (2019) Insight into
 zircon REE oxy-barometers: A lattice strain model perspective. Earth and
 Planetary Science Letters, 506, 87–96.

815

816 Figure captions

- 817 Figure 1. Schematic diagram illustrating the data pre-processing and construction
- 818 workflow used for the development of machine learning models.
- 819 Figure 2. Compositional biplots for a) PC1–PC2 and b) PC2–PC3 showing the zircon
- 820 data points and principle component loadings. PC loadings for each element are
- 821 plotted as orange lines. The numbers in brackets in the axis titles denote the variance
- 822 accounted for by the PCs. (c) Scree plot for zircon trace-element chemistry combined
- 823 with the cumulative explanation of the total variance of PCs.
- 824 Figure 3. Probability density distribution of (a) R^2 and (b) RMSE values for
- predictions made on the test dataset by the machine learning algorithms. The valuesare based on 1000 Monte Carlo simulations.

Figure 4. Results of the propagated error calculated based on the trace-element contents of zircon obtained via 1000 Monte Carlo simulations. (a) The fO_2 values predicted using the machine learning-based oxybarometer, and (b) the probability density distribution and kernel density estimation for residuals (from machine learning-based oxybarometer) between the predicted and the measured fO_2 values. (c) The fO_2 values calculated using the U–Ti–Ce equation, and (d) the probability density 833 distribution and kernel density estimation for residuals (from U–Ti–Ce equation) 834 between the calculated and measured fO_2 values.

835 Figure 5. (a) Feature importance bar plots generated by the extremely randomized 836 trees algorithm, which shows the relative importance of different elements when 837 predicting the fO_2 value of a magma. (b) SHAP summary plots showing the influence 838 of individual samples on the prediction. The SHAP value of the individual elements 839 are calculated across all samples, which are used to explore the impact of each 840 element on predicting the fO_2 values. The color of the data point (from red to blue) 841 illustrates the influence of a feature on the output of the prediction value (from high to 842 low).

Figure 6. Box-whisker plots illustrating the range of fO_2 values of arcs and MORBs predicted by the machine learning-based oxybarometer. The original data are collated from the GEOROC database and the utilized data (after filtering) are provided in Table S4.

Figure 7. Box-whisker plots illustrating the range of fO_2 values of fertile and barren rocks from porphyry systems using the machine learning-based oxybarometer.

Figure 8. (a) The fO_2 values are predicted using our machine learning-based oxybarometer and zircons from S-type granites. (b) Sediments U contents in black shales (Scott et al. 2008). (c) The blue line shows the best estimate of atmospheric

- 852 oxygen (pO₂ (% PAL)) best on the Ce anomaly in marine carbonates (in red line),
- 853 which are from Liu et al. (2021).

Figure 3

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

