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Abstract 11 

Magmatic oxygen fugacity (fO2) is a fundamental property to understanding the 12 

long-term evolution of the Earth’s atmosphere and the formation of magmatic–13 

hydrothermal mineral deposits. Classically, the magmatic fO2 is estimated using the 14 

mineral chemistry, such as Fe–Ti oxides, zircon, and hornblende. These methods, 15 

however, are only valid within certain limits and/or requires a significant amount of a 16 

priori knowledge. In this contribution, a new oxybarometer, constructed by 17 

data-driven machine learning algorithm using the trace elements of zircons and their 18 

corresponding independent fO2 constraints, is provided. Seven different algorithms 19 



are initially trained and then validated on a data set that was never utilized in the 20 

training processes. Results suggest that the oxybarometer constructed by the 21 

extremely randomized trees model has the best performance, with the largest R2 value 22 

(0.91 ± 0.01), smallest RMSE (0.45± 0.03), and low propagated analytical error 23 

(~0.10 log units). Feature importance analysis demonstrates that U, Ti, Th, Ce, and Eu 24 

in zircon are the key trace elements that preserved fO2 information. This newly 25 

developed oxybarometer has been applied in diverse systems, including the arc 26 

magmas and mid ocean ridge basalts, the fertile and barren porphyry systems, and the 27 

global S-type detrital zircon, which provide fO2 constraints that are consistent with 28 

other independent methods, suggesting that it has wide applicability. To improve 29 

accessibility, the oxybarometer was developed into a software application aimed at 30 

enabling more consistent and reliable fO2 determinations in magmatic systems, 31 

promoting further research. 32 

Keywords: Machine learning; Zircon; Trace elements; Magmatic oxygen fugacity; 33 

Oxybarometer.  34 

1. Introduction 35 

Oxygen fugacity (fO2) is a fundamental thermodynamic property governing the 36 

speciation and behavior of multivalent elements (e.g., S, Ce, Eu, Fe, and V) during 37 

magma evolution, which in turn controls their solubility, mobility, and compatibility 38 

in silicate magmas (Brounce et al. 2014; Ni et al. 2020). Estimates of fO2 have been 39 



used to help address a range of important questions, including the compositional 40 

evolution of the atmosphere (Trail et al. 2011b; Lee and Bachmann 2014) and the 41 

mineralization potential of igneous rocks (Jugo et al. 2010; Sillitoe 2010; Richards 42 

2015). Traditionally, the oxidation state of ancient rocks is constrained using the 43 

bulk-rock Fe2+/Fe3+ ratio (Kress and Carmichael 1991; Brounce et al. 2014; Zhang et 44 

al. 2018), the Fe–Ti oxide oxybarometer (Ghiorso and Evans 2008), and the 45 

hornblende oxybarometer (Ridolfi and Renzulli 2012; Ridolfi 2021). Previous studies, 46 

however, have pointed out that these oxybarometers are only applicable in a limited 47 

range of conditions. For example, the bulk Fe2+/Fe3+ ratio of a glass is easily reset by 48 

the subsequent metamorphism or alteration (Trail et al. 2011b), the Fe–Ti oxide 49 

oxybarometer is only applicable rapidly quenched volcanic rocks (Loucks et al. 2018), 50 

and the hornblende oxybarometer is only suitable for rocks emplaced deep in the crust 51 

because hornblende is unstable in the shallow crust (Rutherford and Hill 1993). 52 

Therefore, a more broadly applicable and robust oxybarometer is needed to unravel 53 

the complex interplay between fO2, magmatic evolution, and metallogenesis through 54 

geological time. 55 

Zircon is an ubiquitous accessory mineral in crustal rocks and is geochemically 56 

robustness, even in rocks that were hydrothermally altered, metamorphosed and 57 

weathered (Cherniak and Watson 2003; Trail et al. 2011a). Zircon contains a variety 58 

of trace elements, most of which include REEs, Ti, Y, U, Th, and Hf. These elements 59 

mainly enter into the zircon crystal lattice via isomorphic and coupled substitution 60 



mechanisms (Hoskin and Schaltegger 2003). The former includes U4+ ↔ Zr4+, Ti4+ ↔ 61 

Zr4+, Hf4+ ↔ Zr4+, and Ce4+ ↔ Zr4+, and the latter includes (REEs +Y)3+ + Na+ / K+ / 62 

H+ ↔ Zr4+ and P5+/Nb5+ + (REEs +Y)3+ ↔ 2Zr4+. Substitution of these elements into 63 

zircon is related to the similarity of their ionic radius and charge to Zr4+, which are 64 

controlled by the physicochemical conditions (e.g., temperature, oxidation state, and 65 

magma composition) of magma during mineral growth (Ballard et al. 2002; Ferry and 66 

Watson 2007). Oxidation state mainly affects substitution efficiency by changing the 67 

valence state of redox-sensitive elements. Consequently, the concentrations of the 68 

multivalent REEs (i.e., Ce and Eu) relative to the other monovalent REEs in zircon 69 

and the parent magma has become a popular proxy to characterize the fO2 of magmas 70 

(Ballard et al. 2002; Trail et al. 2011b; Smythe and Brenan 2016; Loader et al. 2017; 71 

Zhong et al. 2019; Loucks et al. 2020). However, recent studies (Zhong et al. 2019; 72 

Zou et al. 2019) have demonstrated that such zircon REE oxybarometers may be 73 

unreliable given the difficulty of accurately determining the composition of the parent 74 

magma and the existence of REE-mineral inclusions within zircon. Accordingly, 75 

Loucks et al. (2020) proposed a new oxybarometer using ratios of Ce, U, and Ti in 76 

zircon (the U–Ti–Ce equation), which does not require knowledge of the parent 77 

magma composition. We have evaluated the reliability of the U–Ti–Ce equation of 78 

Loucks et al. (2020) by applying it to the global detrital zircon database from Tang et 79 

al. (2021) and reference therein. The results of this assessment demonstrate that some 80 

detrital zircons crystallized from a magma with an extremely (almost impossibly) 81 



reduced fO2 (less than FMQ-5) (Fig. S1), indicating that the linearly regressed U–Ti–82 

Ce equation does not capture all of the redox information of magmas and is not 83 

always valid. In addition, the U–Ti–Ce equation may not work well in the strongly 84 

peraluminous or peralkaline felsic magmas because their differentiation index (i.e., 85 

U/Ti) is not consistent with the variation of Ce/U ratio in melts (Loucks et al. 2020).  86 

Recently, several studies have demonstrated that the data-driven machine learning 87 

methods can be powerful tools for solving complex problems in mineralogy, petrology, 88 

and geochemistry (Petrelli and Perugini 2016; Chen et al. 2021; Huang et al. 2022; 89 

Lin et al. 2022; Nathwani et al. 2022; Qin et al. 2022; Wang et al. 2022; Zou et al. 90 

2022), and for the construction of thermobarometers (Petrelli et al. 2020; Higgins et al. 91 

2022; Jorgenson et al. 2022; Li and Zhang 2022), without having any a priori 92 

knowledge. These research advances suggest that the machine learning method has 93 

the potential to be used for calibrating a mineral chemical-based oxybarometer. In this 94 

contribution, we present a novel machine learning-based approach to develop an 95 

oxybarometer using zircon trace-element chemistry and their corresponding fO2 96 

values obtained by other independent methods. Initially, seven different 97 

oxybarometers were first constructed and trained using prevalent machine learning 98 

algorithms, including linear regression, decision trees (Cramer et al. 1976), random 99 

forest (Breiman 2001), extremely randomized trees (ERT, Geurts et al. 2006), support 100 

vector machines (Smola and Schölkopf 2004), K nearest neighbors (Fukunaga and 101 

Narendra 1975) and XGboost (Chen and Guestrin 2016), and their performance was 102 



then benchmarked on a testing set to select an optimal algorithm. The calibrated 103 

oxybarometer was then applied in three different geological situations to test its 104 

performance and to explore the breadth of its applicability. To enhance accessibility, 105 

we developed a user-friendly web app and intuitive software with a graphical 106 

interface, which allow free online or offline fO2 estimation from zircon chemistry 107 

using the machine learning oxybarometer, respectively. This study contributes a new 108 

tool to determine oxidation states in silicate melts without a priori knowledge. The 109 

approach circumvents limitations of existing methods dependent on specific 110 

equilibrium mineral pairs or intensive variables. With appropriate training data, it 111 

potentially provides a widely applicable oxybarometer to address outstanding 112 

questions on magma fO2. 113 

2. Data and methods 114 

2.1. Data compilation and filtration 115 

The data used to construct the machine learning models in this study were 116 

collated from published articles, and comprise zircon trace-element chemistry and 117 

independently constrained fO2 values of their host rocks. The unfiltered calibration 118 

data set is composed of 1,450 data points of zircons from volcanic and plutonic rocks 119 

from 37 locations around the world; this data is summarized in Table S1 and the full 120 

data set can be found in Table S2. For the calibration of a robust oxybarometer, 121 

unreliable zircon analyses have been removed based on the following criteria. First, 122 



analyses with Th/U ratios less than 0.1 have been excluded to avoid metamorphic 123 

zircon (Kirkland et al. 2015). Second, analyses with La and P concentrations greater 124 

than 1 and 2000 ppm, respectively, have been removed as these analyses were likely 125 

contaminated by mineral inclusions (Zou et al. 2019; Zhu et al. 2020). Third, 126 

elemental data with >30% of the values as missing or 0 were not included. These 127 

criteria led to the selection of P, Ti, Y, Nb, Hf, Th, U, and other 14 REEs as the 128 

elements of interest and a dataset consisting of 1,369 zircon compositions with fO2 129 

values ranging from FMQ-4.9 to FMQ+2.75. 130 

2.2. Data treatment of null values 131 

Following the filtration, a log-transformation has been employed to the dataset, 132 

with the pre- and post-transformation features of the collected data illustrated in 133 

Figure S2. The purpose of this transformation is to ensure the distribution of elements 134 

approximate normality (Fig. S2b), thereby enhancing the performance of machine 135 

learning models, as disputed in previous studies (e.g., Frenzel et al. 2016; Petrelli et al. 136 

2021). Regrettably, a significant amount (<30%) of the included elements contained 137 

null values or zeros, i.e., invalid data, which is an inevitability and may derived from 138 

different analytical procedures and instruments utilized to obtain the data. 139 

Consequently, the natural logarithm computation of null or 0 values becomes 140 

meaningless, producing misleading outcomes. To address this issue, various types of 141 

invalid data can be imputed using appropriate multiple strategies before applying the 142 

logarithmic transformation. In this study, the REEs are all analyzed in the collected 143 



data set, and the invalid values in the REEs data means they are below the detection 144 

limit; while invalid values in other elements indicate that they are not detected. 145 

Accordingly, we addressed this matter by employing the method proposed by van den 146 

Boogaart and Tolosana-Delgado (2013) to fill invalid data using normal distributions. 147 

For the REEs, the normal distribution was constructed with the mean and standard 148 

deviation parameters set to their respective detection limits, while for the other 149 

elements, the normal distribution was established based on the mean and standard 150 

deviation of not null data. 151 

2.3. Dimensionality reduction 152 

The correlation between the concentration of trace elements in zircon, especially 153 

the heavy REEs, is high (Fig. S3).If these highly correlated trace elements were to be 154 

utilized in the machine learning models, their interaction between elements would be 155 

masked and the noise information would be magnified, leading to overfitting and 156 

spurious interpretations (Hall 1999; Lösing and Ebbing 2021). To solve the problem 157 

that trace elements in zircon are highly correlated, the strategy of reducing data 158 

dimension and filtering noise by Principal Component Analysis (PCA) first, and then 159 

training the machine learning models was adopted in this study. The PCA method is a 160 

statistical procedure that identifies patterns among variables according to their 161 

correlations (Jackson 2005), and can map high-dimensional data to low-dimensional 162 

data while retaining as much information as possible from the original dataset (Abdi 163 

and Williams 2010). In addition, principal component loadings for each variable in the 164 



compositional biplots can provide the contribution of the variable to the principal 165 

component (Aitchison and Greenacre 2002), which can be used to discover the 166 

representative element associations. 167 

2.4 Machine learning model 168 

2.4.1. Data labeling 169 

Supervised machine learning algorithms were adopted to calibrate the 170 

oxybarometer. Supervised machine learning is an algorithms that is trained by using 171 

labeled datasets to learn an appropriately function that maps the inputs (i.e., the 172 

trace-element composition of zircon in this study) to the predicted outputs (i.e., the 173 

fO2 values in this study) using an the optimization algorithm (Chen et al. 2022). Once 174 

the training processes are complete, the trained model can be used as an oxybarmeter. 175 

Accordingly, the preparation of a dataset with calibrated labels is the key to 176 

constructing supervised machine learning models. In our case, the trace-element 177 

composition of zircon can be labeled using fO2 values (expressed as ∆FMQ) obtained 178 

from the independent fO2 constraints. Considering that the independent fO2 179 

constraints have some errors (Table S1), in this study, the trace-element composition 180 

of zircon from the same locality was labeled with random values from a normal 181 

distribution, and its mean and standard deviation are equal to the average fO2 value 182 

and uncertainty in this area, respectively. 183 



2.4.2. Machine learning model construction workflow 184 

In this study, seven widely used supervised machine learning methods, including 185 

linear regression, decision trees ( Cramer et al. 1976), random forest (Breiman 2001), 186 

extremely randomized trees (ERT, Geurts et al. 2006), support vector machines 187 

(Smola and Schölkopf 2004), K nearest neighbors (Fukunaga and Narendra 1975), 188 

and XGboost (Chen and Guestrin 2016), were used to calibrate the oxybarometer. 189 

Data processing and machine learning model construction procedures were completed 190 

in Python 3.10 utilizing the python packages, including Scikit-Learn 191 

(https://scikit-learn.org/stable/index.html) and XGboost 192 

(https://xgboost.readthedocs.io/en/latest/). A detailed description of the model 193 

building workflow used in this study (modified after (Li and Zhang 2022) and (Zou et 194 

al. 2021)) is illustrated in Fig. 1 and can be summarized in the following nine steps: (1) 195 

Data was collected from the pre-reviewed literatures and filtered based on the 196 

aforementioned criteria. (2) The collected data was preprocessed to meet the 197 

requirements of machine learning, including imputation of null data, 198 

log-transformation, data dimensionality reduction, and data labeling. (3) The filtered 199 

dataset was divided into a training (80% of the data) and testing (20% of the data) by 200 

stratified random splitting. The training set was used to train the model and optimize 201 

the hyperparameters, while the testing set was only used to evaluate the model. (4) A 202 

grid searching algorithm with 5-fold cross validation (CV) was used to select the 203 

optimal hyperparameters combination based on the performance metrics (i.e., 204 



coefficient of determination [R2] score and root-mean-square error [RMSE]). Detailed 205 

regarding the tuning of hyperparameters can be found in Zou et al. (2022). (5) With 206 

the optimal hyperparameters combination, the training set was used to retrain the 207 

machine learning model, the performance of which was then evaluated using the 208 

testing set. (6) To avoid overfitting, the data preprocessing, random splitting, training, 209 

hyperparameters tuning, and model evaluation (i.e., steps 2, 3, 4 and 5) were repeated 210 

1000 times, and 1000 paired R2 scores and RMSE values were obtained. (7) By 211 

comparing the mean R2 scores and RMSE values generated by different machine 212 

learning models, the best model (i.e., the one with the largest R2 scores and the 213 

smallest RMSE values) was chosen as the target model. (8) The target model was then 214 

tuned using the entire filtered dataset using a grid searching algorithm with 5-fold CV 215 

to figure out the optimal hyperparameters combination. (9) The final, calibrated 216 

model was then trained using the entire dataset and the best hyperparameters 217 

combination obtained in step (8). 218 

3. Results 219 

3.1. Principal component analysis 220 

PCA was performed on the entire filtered dataset to determine its dominant 221 

geochemical features. As illustrated in the compositional biplots, which combines the 222 

datapoints and PCA loadings (Figs. 2a and 2b), apart from a few abnormal data from 223 

the Lunar Highlands and kimberlites in southern Africa, most of the data are clustered 224 



together, and the 21 elements can be roughly be divided into three groups by the PC 225 

loadings — group 1 comprises U–Th–Ce, group 2 comprises of Ti, and group 3 226 

comprises the REEs, with two subgroups for the light REEs and heavy REEs (Figs. 2a 227 

and 2b). The PCA loadings also confirm the strong correlation between the REEs 228 

(Figs. 2a and 2b). All of the elements, except for Ti, have negative loadings for the 229 

PC1. PC2 is mainly expressed by negative loadings for U, Th, and Ce and a positive 230 

loading for Ti. PC3 is dominated by a positive loading of La. The loadings for the 231 

other PCs can be found in the Figure S4. In the scree plot, the first seven PCs (from 232 

PC1 to PC7) cumulatively explain more than 90% of the total variance of the dataset 233 

(Fig. 2c), and the last nine PCs (from PC13 to PC21) cumulatively explain less than 1% 234 

of the variance (Fig. 2c). This means that PC1–PC7 preserve almost all the 235 

information of the original dataset. Accordingly, the noise in the entire dataset can be 236 

filtered out by reducing the dataset from its original 21 dimensions to 7 dimensions 237 

via the PCA method; we use these 7 dimensions to train our machine learning-based 238 

oxybarometer. 239 

3.2. Comparation the performance of the different machine learning models 240 

Previous studies have revealed that different machine learning algorithms exhibit 241 

unique strengths and weaknesses, with the most suitable model for a given task 242 

contingent on the data characteristics and intended outcomes (e.g.,Petrelli et al. 2020; 243 

Li and Zhang 2022). As a result, it is customary to leverage a range of diverse 244 

machine learning algorithms for specific tasks, followed by an assessment of each 245 



model's performance (quantifying the discrepancy between predicted and observed 246 

values) to identify the optimal algorithm. Typically, R2 and RMSE values between 247 

predicted and observed values serve as evaluation metrics. A higher R2 value implies a 248 

better model fit to true values, whereas a smaller RMSE value typically indicates 249 

reduced deviation between predicted and observed values. Consequently, both metrics 250 

are frequently employed to assess the performance of machine learning models. In 251 

this study, we apply this approach, where we computed the mean R2 and RMSE 252 

values for 1000 repeated calculations using the identical dataset to assess and compare 253 

the performance of several machine learning models used to estimate fO2. Figure 3 254 

illustrates the probability density distributions of the R2 and RMSE values for fO2 255 

estimations performed on the testing dataset.  256 

Our results demonstrate that the performance of different machine learning 257 

models varies significantly, with R2 values ranging from 0.3 to 0.9 and RMSE values 258 

ranging from 0.3 to1.25. Among all the models, the ERT algorithm exhibits the best 259 

performance, with the highest R2 value of 0.91 ± 0.01 and the lowest RMSE value of 260 

0.45 ± 0.03. In addition, the ERT model performs better than the previously proposed 261 

equation by Loucks et al. (2020), with higher R2 and lower RMSE value during the 262 

1000 times repeated calculations.  263 

The ERT algorithm is a powerful machine learning technique that constructs an 264 

ensemble of decision trees and aggregates their predictions to make a final prediction. 265 

Previous studies have demonstrated that the ERT algorithm performs well on 266 



high-dimensional datasets with noisy features, due to its ability to reduce the impact 267 

of noisy features and avoid overfitting (Petrelli et al. 2020). Therefore, an ERT-based 268 

model was chosen to construct the final, calibrated machine learning-based 269 

oxybarometer in this study. 270 

3.3. Estimation of error 271 

The accuracy, stability, and uncertainty of the calibrated machine learning model 272 

must be assessed before it can be used as a reliable oxybarometer. During training and 273 

evaluation of the models, the probability density distributions of the R2 and RMSE 274 

values of the extremely randomized trees model had the highest peaks and most 275 

constrained ranges, indicating that the model has limited variance and high stability 276 

(Fig. 3). The cross-validation error of the model can be expressed as RMSE of 0.45 ± 277 

0.03. 278 

The propagated error of the analysis uncertainties should also be evaluated; this 279 

can be estimated using the residual values (i.e., the difference between the measured 280 

fO2 values and the predicted values from our model, (Jorgenson et al. 2022)). To avoid 281 

self-validation and overfitting, the uncertainties should be evaluated using data that 282 

was never used in the training process. Considering that the final constructed model 283 

was trained using the entire dataset, we performed a bootstrap resampling (n = 1000) 284 

Monte Carlo calculation (Keller and Schoene 2012) using zircon data with analytical 285 

errors equivalent to that of sample HB-18 (∆FMQ = + 1.24) from (Meng et al. 2021) 286 



to generate new data that can maximally represent HB-18. As shown in Table S3, 287 

none of the newly generated zircon compositions appear in the training dataset. Thus, 288 

we used these new data to predict their fO2 values using the calibrated machine 289 

learning-based oxybarometer; the predicted results and residuals are illustrated in 290 

Figure 4. The results demonstrate that the predicted mean fO2 value (∆FMQ = +1.39 ± 291 

0.27) is slightly higher than the measured value (∆FMQ = +1.24), but consistent with 292 

the measured value within the 1 sigma standard error estimate (SEE). As shown in 293 

Figure 4a, about 70% of predictions fall within the ±1 SEE range and the median 294 

residual of the 1000 values is 0.10 (Fig. 4b), suggesting that the analytical propagated 295 

error is about 0.10 log units, which is negligible relative to the model error (0.45 ± 296 

0.03). For comparison, the equation from Loucks et al. (2020) was also used to predict 297 

the fO2 values of the new data. Figure 4c and 4d demonstrates that this oxybarometer 298 

gives a predicted mean fO2 value of 1.86 ± 0.72, with an analytical propagated error 299 

of 0.46 log units. This comparison reveals that the machine learning-based 300 

oxybarometer performs better under these conditions. 301 

4. Discussion 302 

4.1. Mapping relationships between trace elements in zircon and oxygen fugacity 303 

In order to understand the relationship between zircon trace elements and their 304 

oxygen fugacity in machine learning model, it is imperative to discern the pivotal 305 

input data that governs the model's predictions. The Shapley Additive exPlanations 306 



(SHAP), a game theory-based approach that indicates the output of machine learning 307 

models, is a widely recognized technique. It facilitates the interpretation of results by 308 

recognizing the contribution of each feature to the model's output. By utilizing the 309 

SHAP method, we can gain a better comprehension of how the model arrived at its 310 

predictions and identify the features (i.e., elements in this study) that significantly 311 

influence the model's prediction-making.  312 

In this study, the SHAP method was used to help explain the relative importance 313 

of each PC to the output of the model; this was completed using the python package 314 

of SHAP (https://shap.readthedocs.io/en/latest/index.html). This method involves 315 

calculating the SHAP value for each feature (i.e., the PC in this study) of the sample, 316 

which represents the influence of that feature on the prediction (Lundberg and Lee 317 

2017). A higher average absolute-size SHAP values for a feature indicates a higher 318 

influence on the prediction and vice versa. In addition, positive or negative SHAP 319 

values of each datapoint represents whether its output is positive or negative. Figure 5 320 

shows the relative importance of features (i.e., the 7-diminational data) are ordered 321 

based on their mean absolute-size SHAP value. As shown in Figure 5a, relative 322 

importance scores, from high to low, are PC2, PC4, PC3, PC5, PC7, PC6, and PC1. 323 

Figure 5b shows the SHAP value of features for all individual analysis and also shows 324 

that how the high and low SHAP values of the features (i.e., PC1 to PC7) impact the 325 

model output. As shown in Figure 5b, the high values of PC2 and PC4 have the 326 

greatest contribution for the model to obtain negative values, whereas the low values 327 



of PC2 and PC4, and high values of PC5 have the greatest contribution to obtain 328 

positive values. These results reveal that PC2, PC4, and high values of PC5 329 

significantly impact the model output. It is worth noting that PC2 always contributes 330 

more than the other PCs on the model output. 331 

The features (i.e., PC1 to PC7) fed into the machine learning model are derived 332 

from the first seven principal components that cumulatively explain 90% of the 333 

variance of the original dataset. The PCA-derived loadings of elements can help 334 

characterize the relationships between the PC values and the elemental concentrations. 335 

Figure 2a and 2b illustrate that the low PC2 values are related to U–Th–Ce and its 336 

high values are related to Ti. Similarly, low PC4 values are mainly related to Eu and 337 

its high values are related to La (Fig. S4). High values of PC3 and PC5 are mainly 338 

derived from La and Eu, respectively (Fig. S4). Given that the La content of zircon is 339 

typically very low to the point that it is typically hard to measure accurately (Zhong et 340 

al. 2019; Zou et al. 2019) and the fact that La is missing in nearly 20% of the original 341 

dataset, the importance of La is likely being magnified, but the impact is still limited 342 

relative to other elements (i.e., U, Ti, Th, Ce, and Eu) used in the model because PC2 343 

always contributes more than the other PCs. Accordingly, we can conclude that the U, 344 

Ti, Th, Ce, and Eu are the most important elements for the machine learning model 345 

and preserved fO2 information. 346 

Loucks et al. (2020) discussed, in detail, the relationships between the U, Ti, and 347 

Ce contents of zircons and the fO2 conditions of their formation; this relationship was 348 



described using the equation of log ƒO2(∆FMQ) = 3.998(±0.124) × log 349 

[Ce/ (Uinitial×Ti)] + 2.284 (±0.101) (i.e., the U–Ti–Ce equation). Along with the 350 

elements used in this equation, our machine learning model demonstrates that Th and 351 

Eu also preserve fO2 information and are important to predicting fO2 of a magma. 352 

This may be one of the reasons for the comparatively larger error of the fO2 estimates 353 

using the above equation. Previous studies have demonstrated that the compatibility 354 

Th and Eu entering into zircon is controlled by oxygen fugacity (Burnham and Berry 355 

2012). Because uranium is a redox-sensitive element with two major valance states 356 

(U4+ and U6+), with U4+ being more compatible into zircon substitution of Zr4+. 357 

Thorium in the tetravalent state behaves geochemically similar to U4+ because of their 358 

similar ionic radius, which may cause Th4+ and U4+ to compete for the Zr4+ position in 359 

zircon. Therefore, the Th/U ratio of zircon may be controlled by the environmental 360 

oxidation state of the magma. Similarly, Eu is also a redox-sensitive element and can 361 

exist as Eu3+ and Eu2+. Eu3+ is more compatible into zircon than Eu2+, and so a Eu 362 

anomaly in zircon can be used to estimate prevailing oxygen fugacity during its 363 

formation (Burnham and Berry 2012; Loader et al. 2017). Taken together, we can 364 

conclude that our constructed machine learning model correctly captures the 365 

relationship between trace elements in zircon and oxygen fugacity.  366 

4.2. Applications of the machine learning-based oxybarometer to natural systems 367 

To further explore the range of applicability of this machine learning-based 368 

oxybarometer, we have applied it to three different geological scenarios in which the 369 



fO2 has been well constrained by previous studies — i) arc magmas and mid ocean 370 

ridge basalts (MORB), ii) fertile and barren porphyry systems, and iii) a global 371 

database of S-type detrital zircon. 372 

4.2.1. Estimation of fO2 of arc magmas and MORB 373 

Arcs and the mid ocean ridge are the two most important tectonic settings for the 374 

production of magmas globally, the former of which producing more oxidized 375 

magmas, on average, than the latter (Christie et al. 1986; Carmichael 1991; Brounce 376 

et al. 2014; Wang et al. 2019). Evidence from whole-rock Fe3+/Fe2+, V/Sc, and Zn/FeT 377 

ratios (Carmichael 1991; Lee et al. 2010; Brounce et al. 2014), Eu anomalies in zircon 378 

(Burnham and Berry 2012), and the composition of spinel and olivine (Evans et al. 379 

2012; Wang et al. 2019) indicate that the measured fO2 value at different times in most 380 

arc magmas vary from ∆FMQ = +0.5 to +2 (locally up to +3), while MORBs have fO2 381 

values in the range of ∆FMQ = –1 to +0.5 (Jugo et al. 2010; Evans et al. 2012; 382 

Richards 2015; Wang et al. 2019). 383 

In this study, the composition of zircons from arcs and MORBs were used to 384 

validate the machine learning-based oxybarometer. Data for arcs (the Alenutian Arc, 385 

Andean Arc, and Central American Arc) were collated from the GEOROC database 386 

(https://georoc.eu/georoc/new-start.asp, accessed on October, 2022), and data for the 387 

Vema MORB are collected from (De Hoog et al. 2014); these data were filtered using 388 

criteria described above and are presented in Table S4. As illustrated in Fig. 6, the 389 

predicted mean fO2 values of arcs are consistent with each other and are greater than 390 



that of the Vema MORB by approximately 1 log unit. In addition, the average fO2 391 

values for arcs range from 1.05 to 1.17 log units above the FMQ buffer (FMQ+1.05 to 392 

FMQ+1.17), whereas the average fO2 value of the Vema MORB is similar to the FMQ 393 

buffer (FMQ-0.01). These results are in excellently agreement with the fO2 constraints 394 

from previous works (Ballhaus 1993; Zhang et al. 2018). It is crucial to recognize that 395 

the most fO2 proxies from previous studies on arc magmas and MORB most likely 396 

represent various stages of magma system evolution. Zircons are particularly effective 397 

at capturing fO2 information from the more evolved intermediate to felsic magma 398 

products, whereas other proxies may be more sensitive to earlier, more mafic 399 

conditions. From this point, our machine learning-based oxybarometer, when 400 

combined with other proxies, has the potential to offer valuable insights into the 401 

changes in redox conditions experienced by arc magmas and MORB during their 402 

evolution. 403 

4.2.2. Fertile and barren porphyry systems 404 

Porphyry deposits are thought to form as a result of fluid exsolution derived from 405 

hydrous, volatile-rich and oxidized magmas (Sillitoe 2010; Richards 2015). It has 406 

been well established that, in oxidized magmas, S occurs as sulfate; in such 407 

environments, the sulfur content at sulfur saturation is higher, leading the presence of 408 

S undersaturated magmas that can interact with wall-rocks to form porphyry deposits 409 

(Streck and Dilles 1998; Jugo et al. 2010; Sillitoe 2010; Richards 2015; Shen et al. 410 

2015; Sun et al. 2015). Therefore, the redox state of an intrusion is considered to have 411 



a significant impact on the formation of porphyry deposits, and has been used as one 412 

of the most important indicators to evaluate mineralization potential (Shen et al. 2015; 413 

Lu et al. 2016). Previous studies have demonstrated that the fertile rocks generally 414 

crystallized from highly oxidized (∆FMQ > + 1) and hydrous magmas, whereas 415 

barren rocks generally crystallize from the relatively reduced  (∆FMQ < + 1) and dry 416 

melts (Richards 2015; Rezeau and Jagoutz 2020). Given the apparent link between 417 

fO2 and mineralization potential, we also applied our machine learning-based 418 

oxybarometer to a large database of fertile and barren rocks from (Zou et al. 2022). 419 

Our calculation revealed the average fO2 value of fertile rocks in this database is 420 

approximately 0.4 log units higher than that of barren rocks (FMQ + 1.40 vs. FMQ 421 

+0.62), with about 30% of data overlapping each other (Fig. 7). The overlap between 422 

the two rock groups may be attributed to the fact that the formation of porphyry 423 

deposits is not independently dictated by oxygen fugacity, but is also related to the 424 

water and volatile contents of the magma. It is, therefore, difficult to distinguish 425 

between fertile and barren rocks based solely on their fO2 (Zou et al. 2022). Although 426 

overlap does exist, these results are consistent with others that fertile rocks generally 427 

form from higher fO2 magmas than barren rocks. 428 

4.2.3. Global S-type detrital zircons 429 

The rise of atmospheric oxygen has had a profound impact on the chemical 430 

environment of the Earth's surface, ultimately leading to the evolution of a diverse 431 

biosphere (Kaufman et al. 2007; Lyons et al. 2014). It is widely agreed upon that two 432 



events caused the oxygen content of the atmosphere to rise to current levels: the Great 433 

Oxidation Event (GOE) that occurred approximately 2.5–2.2  billion years ago, and 434 

the later Neoproterozoic Oxidation Event (NOE) that occurred around 800–540 Myr 435 

ago (Bekker et al. 2004; Frei et al. 2009; Crowe et al. 2013; Planavsky et al. 2014; Liu 436 

et al. 2019; Chen et al. 2022; Hodgskiss and Sperling 2022). This established 437 

knowledge provides a basis for testing our oxybarometer. In this study, the detrital 438 

zircon derived from S-type granite (referred to as “S-type zircon”) is employed to 439 

reconstruct the history of atmospheric oxygenation. S-type granites crystallize from 440 

strongly peraluminous magmas derived (dominantly) from metasedimentary rocks 441 

(Chappell and White 1992), which are derived from sedimentary rocks through 442 

several steps, including metamorphism, partial melting, and subsequent crystallization. 443 

As sediments provide a record of Earth surface processes, including variations in 444 

atmospheric oxygen levels, and are the precursors to S-type granites, it is reasonable 445 

to assume that the latter would also retain a record of atmospheric oxygen changes.  446 

Trace element concentrations in zircon have been employed to distinguish S type 447 

zircon from others. One method for distinguishing S-type zircon involves examining 448 

its phosphorus concentration (e.g., Burnham and Berry 2017; Zhu et al. 2020). This 449 

method assumes that the higher solubility of apatite in peraluminous S-type granite 450 

magma results a relatively high phosphorus content in S-type zircon, assuming 451 

consistent zircon-melt P partition coefficients across diverse melts. However, recent 452 

study has shown that the reliability of this approach is limited to zircon samples 453 



younger than 720 Ma (Bucholz 2022; Bucholz et al. 2022), as the phosphorus content 454 

in S-type granite before this age does not consistently exceed that of other granites 455 

(Bucholz et al. 2022). As an alternative method, a machine learning approach utilizing 456 

trace element data from known zircon type has been proposed by Zhong et al. (2023). 457 

This method considers the influence of trace elements and has demonstrated high 458 

identification accuracy (about 0.85). It is important to note, however, that this 459 

approach did not incorporate ancient zircon samples predating 800 Ma in the model 460 

training process and, as a result, may not be suitable for analyzing zircon from these 461 

ages.  462 

Therefore, this study aims to investigate the NOE through the fO2 value of the 463 

global S-type detrital zircon with an age younger than 720 Ma. To achieve this goal, 464 

the trace-element composition of detrital zircons globally were collected from Tang et 465 

al. (2021) and references therein, and S-type zircons (< 720 Ma) were identified based 466 

on the criteria of Zhu et al. (2020): S-type zircons have a the molar concentration of 467 

REE +Y greater than 0.77 * P and less than 1.23 * P, and the molar concentration of P 468 

is greater than 15 μmol/g. After data filtering, a total of 116 data points of S-type 469 

detrital zircon were recognized, as shown in Table S5, and their fO2 of formation was 470 

estimated using our machine learning-based oxybarometer. The predicted fO2 values 471 

of S-type zircon is displayed in Figure 8, with a curve fit in every 100 Myr interval. 472 

Our findings are consistent with prior studies on sediments (e.g., Partin et al. 2013; 473 

Reinhard and Planavsky 2022), verifying a gradual increase in the fO2 value of S-type 474 



detrital zircon from 800 Ma to 200 Ma (Fig. 8). Notably, our analysis reveals a 475 

distinctive shift in fO2 levels of S-type zircons during the late Neoproterozoic period 476 

(650 Ma) (Canfield et al. 2007), coinciding with the timing of the NOE; and the sharp 477 

increase from 550–450 Ma, which is consistent with independent evidence indicating 478 

comprehensive ocean oxidation during that time (Fig.8b-c). Accordingly, although 479 

S-type zircon collected in this study do not provide a complete and continuous record 480 

of fO2 fluctuations (Fig. 8), our study identifies key oxidation events. This highlights 481 

the effectiveness of the machine learning-based oxybarometer we developed, even in 482 

in strongly peraluminous environments. 483 

4.3. Implications and possible uncertainty 484 

Compared to the traditional oxybarometer, the data-driven machine learning 485 

oxybarometer in this study is constructed based on the contents of P, Ti, Y, Nb, Hf, Th, 486 

U and other 14 REEs in zircon. The greater number of elements used in the 487 

calibration process means that less meaningful information is lost, leading to higher 488 

precision and accuracy. More importantly, the successful application of the 489 

oxybarometer to the three different geologic systems (i.e., MORB–arc, porphyry 490 

systems, detrital zircons) suggests that it has the potential to be more widely 491 

applicable than traditional equations. The calibration approach does not require any a 492 

priori knowledge of physicochemical information and magma composition, which 493 

makes it a valuable tool for researchers studying a wide range of environments. 494 

However, further investigations with extensive datasets and analysis are needed to 495 



confirm the effectiveness of this approach for more different geological environments. 496 

For example, researchers could refine calibration procedures or develop new methods 497 

for predicting oxygen fugacity by collecting additional data (especially data with low 498 

fO2 values that were not included in this study) and improving the existing model. The 499 

continuous development of this model could help researchers to understand the 500 

changes of fO2 more accurately in diverse magma systems, which is essential for 501 

improving our understanding of crustal evolution. 502 

The uncertainties of the machine learning model are significantly dependent on 503 

the features used. In this study, the input features are trace elements in zircon and the 504 

output feature is their corresponding fO2 values. The bootstrap resampling Monte 505 

Carlo calculation shows that uncertainties from the analytical error of the input 506 

features is low (~0.01 log unit), which can largely be ignored compared to the model 507 

error. In contrast, the uncertainty of the output feature is more significant because of 508 

its relatively narrow range of possible values (between FMQ–4.9 and FMQ+3.0). The 509 

uncertainty in the output feature mainly comes from the fact that data with fO2 values 510 

outside of this range have not been published so far, which leads to those data not 511 

being learned by the computer. Nevertheless, considering that the fO2 of most natural 512 

magma systems is between FMQ–4.9 and FMQ+3 (Loucks et al. 2020), our model 513 

can still solve most problems. In addition, as more published data becomes available, 514 

the machine learning model will become increasingly more intelligent, and its 515 

performance will continuously improve. Lastly, when inputting the trace-element data 516 



into the model, we recommend using the average composition of several analyses on 517 

zircon from the same sample to avoid errors from spurious analyses. 518 

4.4. Online web application and offline software 519 

To make the oxybarometer more accessible and user friendly, a browser-based 520 

application and a GUI software (named ZirconfO2) have been developed, which can 521 

be used online (https://shaohaozou-fo2-webapp-7xqvo0.streamlit.app/) or offline (on 522 

Windows), respectively. These applications have been published on the GitHub 523 

platform (https://github.com/shaohaozou/fO2) and will be updated as additional 524 

geochemical data of zircon becomes publicly available.  525 

The web-based oxybarometer and the GUI software are easy to use and do not 526 

need any programming knowledge. It should be noted that accessing the web-based 527 

oxybarometer requires a Streamlit account. Following the introduction provided on 528 

the webpage or within the software, users can upload their data in the same format as 529 

the template file (this can be download from the website) and click the “Calculate” 530 

and “Download your results” buttons in turn to complete the calculation and get the 531 

results. 532 

5. Conclusions 533 

We calibrated a new oxybarometer based on data-driven machine learning algorithms 534 

using the trace-element contents of zircon and their corresponding fO2 constraints as 535 

model inputs. Although the developed oxybarometer does not provide a specific 536 



mathematical equation to illustrate the relationship between the trace-element content 537 

of zircon and oxygen fugacity, a reliable machine learning-based relationship has been 538 

recognized. In addition, this oxybarometer does not rely on any assumptions, and 539 

shows a higher performance and lower error than traditional oxybarometer equations. 540 

Feature importance analysis indicates that the machine learning model can well 541 

identify fO2 information in zircon and make fO2 predictions. The successful 542 

application of this oxybarometer to three different geologic situations demonstrates 543 

that it has great potential to be widely applicable to geoscience. This work 544 

demonstrates that machine learning is a promising tool that can be applied to 545 

investigate other regression questions in the Earth sciences. 546 
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 815 

Figure captions 816 

Figure 1. Schematic diagram illustrating the data pre-processing and construction 817 

workflow used for the development of machine learning models. 818 

Figure 2. Compositional biplots for a) PC1–PC2 and b) PC2–PC3 showing the zircon 819 

data points and principle component loadings. PC loadings for each element are 820 

plotted as orange lines. The numbers in brackets in the axis titles denote the variance 821 

accounted for by the PCs. (c) Scree plot for zircon trace-element chemistry combined 822 

with the cumulative explanation of the total variance of PCs. 823 

Figure 3. Probability density distribution of (a) R2 and (b) RMSE values for 824 

predictions made on the test dataset by the machine learning algorithms. The values 825 

are based on 1000 Monte Carlo simulations. 826 

Figure 4. Results of the propagated error calculated based on the trace-element 827 

contents of zircon obtained via 1000 Monte Carlo simulations. (a) The fO2 values 828 

predicted using the machine learning-based oxybarometer, and (b) the probability 829 

density distribution and kernel density estimation for residuals (from machine 830 

learning-based oxybarometer) between the predicted and the measured fO2 values. (c) 831 

The fO2 values calculated using the U–Ti–Ce equation, and (d) the probability density 832 



distribution and kernel density estimation for residuals (from U–Ti–Ce equation) 833 

between the calculated and measured fO2 values. 834 

Figure 5. (a) Feature importance bar plots generated by the extremely randomized 835 

trees algorithm, which shows the relative importance of different elements when 836 

predicting the fO2 value of a magma. (b) SHAP summary plots showing the influence 837 

of individual samples on the prediction. The SHAP value of the individual elements 838 

are calculated across all samples, which are used to explore the impact of each 839 

element on predicting the fO2 values. The color of the data point (from red to blue) 840 

illustrates the influence of a feature on the output of the prediction value (from high to 841 

low). 842 

Figure 6. Box-whisker plots illustrating the range of fO2 values of arcs and MORBs 843 

predicted by the machine learning-based oxybarometer. The original data are collated 844 

from the GEOROC database and the utilized data (after filtering) are provided in 845 

Table S4. 846 

Figure 7. Box-whisker plots illustrating the range of fO2 values of fertile and barren 847 

rocks from porphyry systems using the machine learning-based oxybarometer. 848 

Figure 8. (a) The fO2 values are predicted using our machine learning-based 849 

oxybarometer and zircons from S-type granites. (b) Sediments U contents in black 850 

shales (Scott et al. 2008). (c) The blue line shows the best estimate of atmospheric 851 



oxygen (pO2 (% PAL)) best on the Ce anomaly in marine carbonates (in red line), 852 

which are from Liu et al. (2021). 853 
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