1

D	•	•	4
Rev	10	inn	
ILUI	10	IUII	

2	Equation of state and structural evolution of manganese dolomite
3	(kutnohorite) under high pressures
4	
5	Liangxu Xu ¹ , Weibin Gui ¹ , Kewei Shen ^{1,*} , Dongzhou Zhang ² , Jingui Xu ³ , Jin Liu ^{4,*}
6	
7	¹ Center for High Pressure Science and Technology Advanced Research, Beijing 100193, China
8	² Center for Advanced Radiation Sources, University of Chicago, Chicago, Illinois 60439, USA
9	³ Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou 550002, China
10	⁴ Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and
11	Technology, Yanshan University, Qinhuangdao 066004, China
12	*Correspondence to: K. Shen (kewei.shen@hpstar.ac.cn) and J. Liu (jinliu@ysu.edu.cn)
13	

14

Abstract

15 The structural evolution of carbonate minerals with increasing pressure is essential to decoding 16 the role of Earth's mantle in the global carbon cycle and long-term climate change. Here, we 17 carried out synchrotron single-crystal x-ray diffraction measurements on the natural sample of 18 manganese dolomite [kutnohorite, $Ca_{1,11}Mn_{0.89}(CO_3)_2$] in a diamond-anvil cell up to 51.2 GPa at 19 room temperature with neon as a pressure-transmitting medium. The manganese dolomite sample remains stable in the rhombohedral crystal structure from 1 bar to ~13.3 GPa. The 20 equation of state of the Ca_{1,11}Mn_{0.89}(CO₃)₂ sample was determined: $V_0 = 334.06 \pm 0.29$ Å³, $K_0 =$ 21 99.9±4.7 GPa, and $K'_0 = 4.3\pm0.9$; when K'_0 is fixed at 4.0, $V_0 = 334.04\pm0.24$ Å³ and $K_0 =$ 22 23 101.4±1.5 GPa. Upon further compression at room temperature, the split and disappearance of 24 diffraction spots were observed. That is, the rhombohedral structure of manganese dolomite 25 becomes highly distorted to lose the long-range order at 13.3–51.2 GPa at room temperature. 26 Moreover, our single-crystal x-ray diffraction results decode the mechanisms of the reported 27 lattice and internal Raman mode splits of the same manganese dolomite sample approximately at 28 13 and 24 GPa, respectively. These results suggest manganese-bearing carbonates could play a 29 distinct role in the deep carbon cycle. Keywords: High pressure; manganese dolomite; x-ray diffraction; deep carbon cycle 30

32

Introduction

33	Carbonate minerals are the important forms of carbon carriers from shallow subduction zones
34	to the deep mantle (Plank and Manning, 2019). Those carbonate minerals could account for the
35	major constituent of the global carbon fluxes, about 100 megatons of deep carbon entering the
36	Earth's interior via subducting slabs each year (Dasgupta and Hirschmann, 2010; Farsang et al.,
37	2021). Little to none carbon can be incorporated into the crystal lattice of mantle silicate
38	minerals, leading to the deep carbon being mostly stored and transported as carbonates, together
39	with graphite, diamond and carbides (Shcheka et al., 2006). The physical, chemical, and
40	transport properties of the deep mantle could be significantly influenced by the presence of
41	carbonates involving the crust-mantle interactions (Lavina et al., 2009; Lin et al., 2012; Dorfman
42	et al., 2018). In particular, it still remains enigmatic how those carbonate minerals evolve in
43	subducted slabs. This holds the key to better decode the global carbon cycle, long-term climate
44	dynamics, as well as mantle dynamics (Kelemen et al., 2011; Sanchez-Valle et al., 2011; Malusà
45	et al., 2018).
46	Thus far, the structural evolution and chemical reactions of carbonate minerals have been
47	investigated by a battery of probes under high-pressure and high-temperature conditions (e.g.,
48	Boulard et al., 2011; Zhao et al., 2020). Calcium carbonate (e.g., calcite and aragonite) could
49	react with pyroxene to form the dolomite group minerals $[CaM(CO_3)_2]$ with M = Mg, Fe, Mn, etc.]
50	under relatively shallow depths of 100–150 km (Kushiro, 1975). Dolomite minerals exhibit a

under relatively shallow depths of 100-150 km (Kushiro, 1975). Dolomite minerals exhibit a

51	rhombohedral structure (space group $R\overline{3}$) in which MO ₆ and CaO ₆ units alternate along the <i>c</i>
52	axis. The dolomite group minerals undergo a series of high-pressure phase transformations
53	including dolomite-II, -III, -IIIc, -IV, and -V (e.g., Santillan et al., 2003; Mao et al., 2011;
54	Merlini et al., 2012; Merlini et al., 2017; Wang et al., 2022). Dolomite minerals and their
55	high-pressure polymorphs likely occupy up to half of the Earth's accessible carbonate reservoirs
56	(Binck et al., 2020). Among all the dolomite group minerals investigated under high pressures,
57	the high-pressure behavior of manganese dolomite [CaMn(CO ₃) ₂] is least constrained in the
58	literature. Palaich et al. (2015) reported the bulk modulus and phase stability of a natural
59	manganese dolomite sample $[Ca_{0.76}Mn_{1.24}(CO_3)_2]$ (hereinafter referred to as "Ca76") in the
60	Ne-NaCl pressure-transmitting medium. Notably, varying pressure-transmitting media (e.g.,
61	NaCl, Ar, Ne and He) can have distinct effects on the structural transition paths and electronic
62	states with increasing pressure (Efthimiopoulos et al., 2017; Merlini et al., 2017; Efthimiopoulos
63	et al., 2018; Binck et al., 2020; Zhao et al., 2021). The use of NaCl generally induces a very large
64	deviatoric stress of $> 5-10$ GPa in a diamond-anvil cell (DAC), whereas Ne can keep the sample
65	under relatively hydrostatic conditions that more closely resemble the deep mantle (Klotz et al.,
66	2009). It is noted that the ideal manganese dolomite $CaMn(CO_3)_2$ (hereinafter referred to as
67	"Ca100") may feature separated CaO ₆ and MnO ₆ layers alternating along the c axis. Compared
68	with the Ca100, the Ca76 has a lower calcium content and features CaO ₆ and MnO ₆ octahedra
69	mixed in the same layer (Palaich et al., 2015). That is, varying manganese contents would
70	change the degree of cation ordering in manganese dolomite minerals. In particular, the different

71	sizes between Mn^{2+} and Ca^{2+} would induce rotation and distortion of the CaO_6 and MnO_6
72	octahedra in the same layer to some extent, which definitely influences the manganese
73	dolomite's behavior under high pressures. Therefore, manganese content shall also be evaluated
74	for constraining the structural transformation of manganese dolomite under Earth's mantle
75	pressures.

76 In this work, we carried out synchrotron x-ray diffraction measurements on a natural single-crystal manganese dolomite mineral $Ca_{1,11}Mn_{0.89}(CO_3)_2$ (hereinafter referred to as 77 78 "Call1") under high pressures up to 51.2 GPa at room temperature. Our manganese dolomite 79 sample has a calcium content slightly deviating from the ideal manganese dolomite (Ca100). 80 Together with neon serving as a pressure-transmitting medium, this study aims to investigate 81 how varying chemical compositions influence the structural evolution of manganese dolomite 82 under high pressures. It is found that our Call1 sample exhibits enhanced incompressibility with 83 respect to the Ca76 sample reported by Palaich et al. (2015). Upon further compression at room 84 temperature, a new set of splitting diffraction spots emerged at pressures greater than 13.3 GPa, 85 including {110}, {116} and {128} planes. Meanwhile, the diffraction intensity of the splitting diffraction spots diminished approximately from 22.4 to 51 GPa, suggesting that the manganese 86 dolomite structure becomes highly distorted at > 13.3 GPa and partially loses the long-range 87 88 order at > 22.4 GPa at room temperature. These results provide a better understanding of the 89 structural behavior of manganese-bearing carbonates at mantle pressures.

91

Experimental Methods

92	The starting material was the single-crystal Call1 sample, one natural manganese dolomite
93	(i.e., kutnohorite) from the Sterling Hill, New Jersey, USA. Back-scattered electron images and
94	elemental maps (Ca, Mn, C and O) were collected for the Ca111 sample by using a scanning
95	electron microscopy/energy dispersive x-ray spectroscopy (SEM/EDS, JOEL JSM-7900F). The
96	accelerating voltage is 10 kV with a beam current of 10 nA. The Ca111 sample was coated with
97	Pt. The chemical homogeneity of the starting material was confirmed as illustrated in Fig. 1. We
98	note that the high-pressure laser Raman spectroscopy of this sample has been investigated up to
99	56 GPa by Wang et al. (2022), where the chemical composition of this sample was determined to
100	be $Ca_{1.11}Mn_{0.89}(CO_3)_2$ with minor trace amounts of Mg and Fe by using electron probe
101	microanalyzer (JEOL JXA-8200). In addition, the rhombohedral crystal structure (space group:
102	$R\overline{3}$) was confirmed for the Call1 sample with lattice parameters of $a = 4.8644 \pm 0.0010$ Å, $c =$
103	16.294±0.003 Å, and the unit cell volume $V = 333.90\pm0.15$ Å ³ , by using an in-house
104	single-crystal x-ray diffractometer (Brucker D8 VENTURE) at the Center for High Pressure
105	Science and Technology Advanced Research (HPSTAR, Beijing). The diffractometer was
106	equipped with a Mo $K\alpha$ x-ray source and operated at the voltage of 50.0 kV with a current of 1.4
107	mA and a wavelength of 0.71073 Å. The x-ray beam was focused to the full width at half
108	maximum (FWHM) of ~100 μm at the sample position, and the diffraction patterns were
109	collected using a MAR CCD detector. The x-ray diffraction patterns of CeO ₂ powder were
110	collected for the calibration of laboratory x-ray diffractometer.

111	Symmetric diamond-anvil cells were employed to generate high pressures through squeezing
112	the two opposing diamond anvils with a flat culet of 200 $\mu m.$ A hole of 110 μm in diameter and
113	22–25 μm thick was drilled at the center of a pre-indented tungsten gasket and served as a
114	sample chamber. A small platelet of the single-crystal Ca111 sample was deliberately selected
115	with a thickness of 7–8 μm and 40–45 μm in diameter, and then it was loaded into the sample
116	chamber. One ruby ball of 7–8 μ m in diameter and a piece of platinum foil of approximate 15
117	μm in diameter were placed next to the Call1 sample for pressure calibration. Neon was
118	employed as a pressure-transmitting medium and loaded into the sample chamber by using the
119	high-pressure gas loading system at HPSTAR. The use of neon can ensure the quasi-hydrostatic
120	conditions at least up to 50 GPa, avoiding the influence of severe deviatoric stress inside the
121	sample chamber (Klotz et al., 2009). The pressure and its uncertainty were calculated by multiple
122	measurements of the ruby fluorescence before and after each x-ray diffraction measurement,
123	together cross-checked by the equation of state (EOS) of platinum under high pressures at room
124	temperature (Fei et al., 2007; Shen et al., 2020).
125	High programs single expetal x ray diffraction experiments were performed at beamling

High-pressure single-crystal x-ray diffraction experiments were performed at beamline 13BM-C of the GeoSoilEnviroCARS (GSECARS) at the Advanced Phonon Source, Argonne National Laboratory. A monochromatic x-ray beam was employed with a wavelength of 0.4340 Å. The incident x-ray beam was focused down to 15 μ m at the full width at half maximum on the sample position. A MAR165 CCD detector was used to record x-ray diffraction images while the sample was rotated from -19° to +20° about the x-ray beam direction for a total exposure time of

131	10 s. In addition, lanthanum hexaboride (LaB_6) powder was used to calibrate the
132	sample-to-detector distance and the tilting and rotation of the image plate with respect to the
133	incident x-ray beam. The sample-to-detector distance was calibrated to be 208.20 mm, and x-ray
134	diffraction patterns were processed to determine the lattice parameters of the Ca111 sample and
135	platinum (pressure calibrant) with increasing pressure using the GSE_ADA/RSV software
136	packages and Dioptas software (Dera et al., 2013; Prescher and Prakapenka, 2015).
137	
138	Results and Discussion
139	Synchrotron x-ray diffraction patterns were collected on the single-crystal Call1 sample at
140	room temperature up to 51.2 GPa via an interval of approximately 2–10 GPa. At 1.9 GPa, 10 sets
141	of diffraction planes were recorded at the <i>d</i> -spacing values ranging from 4.0650 Å to 1.2135 Å,
142	including {104}, {110}, {202}, {116}, {210}, {214}, {208}, {0210}, {128}, and {220} planes
143	(Fig. 2a). The <i>d</i> -spacing values of these planes systematically decreased with increasing pressure
144	while their diffraction spots shifted to higher degrees in x-ray diffraction patterns. Notably, all
145	these diffraction spots remained pretty sharp and round under high pressures up to 13.3 GPa,
146	indicating that the Ca111 sample was in good single-crystal quality in neon pressure medium
147	(Fig. 2b). Upon further compression, the diffraction spots became elongated and split at
148	pressures greater than 13.3 GPa (Fig. 2c). The dramatic decline in diffraction intensity was
149	observed at > 22.4 GPa, largely due to the fact that the Call1 sample underwent octahedral
150	distortion/rotation to lose the long-range order, which has also been reported in Ca-Mg dolomite

151	under high pressures (Santillan et al., 2003). This suggests the manganese dolomite symmetry is
152	broken approximately at > $13.3-22.4$ GPa and room temperature. It is consistent with the
153	previous Raman spectroscopic study on the same Call1 sample at room temperature, revealing
154	that several new T and L Raman modes of 150–450 cm ⁻¹ emerged at ~13 GPa and the splitting of
155	the v_1 mode at ~23–25 GPa (Wang et al., 2022).

- 156 The pressure-volume (*P-V*) experimental data between 1 bar and 13.3 GPa were fitted to the
- 157 third-order Birch-Murnaghan equation of state (EoS) (Table 1 and Fig. 3):

158
$$P = \frac{3}{2}K_0 \left[\left(\frac{V_0}{V}\right)^{\frac{7}{3}} - \left(\frac{V_0}{V}\right)^{\frac{5}{3}} \right] \left\{ \left[1 + \frac{3}{4}(K_0' - 4)\left(\left(\frac{V_0}{V}\right)^{\frac{2}{3}} - 1\right) \right] \right\},$$

159 where P is pressure, V_0 and K_0 are the unit-cell volume (V) and bulk modulus (K) at ambient conditions, and K'_0 is the pressure derivative of K_0 . With all the parameters fitted, we derived V_0 160 = 334.06±0.29 Å³, K_0 = 99.9±4.7 GPa, and K'_0 = 4.3±0.9 for the Call1 sample; with the V_0 161 fixed at the value of 333.90 Å³ measured at ambient conditions, the K_0 and K'_0 values were 162 calculated to be 101.8±3.4 GPa and 4.1±0.6, respectively; with the K'_0 fixed at 4.0, $V_0 =$ 163 334.04±0.24 Å³ and $K_0 = 101.4\pm 1.5$ GPa. We note that the *P*-*V* experimental data at >13.3 GPa 164 were not included for deriving the EoS of the Call1 sample in this study, due to the splits of 165 166 diffraction spots (Table 1).

170	$V_{0,} K_0$ and K'_0 values to be 331.88(27) Å ³ , 93.4(77) GPa and 2.7(1.5), respectively; with the K'_0
171	fixed at 4.0, the V_0 and K_0 values are 332.03(19) Å ³ and 87.4(13) GPa, respectively. As we can
172	see, the bulk modulus of the Ca76 sample is consistently smaller than our Ca111 sample,
173	evidencing that the Ca76 is more compressible than the Ca111 under high pressures. However,
174	this observation is counterintuitive because our Ca111 sample contains much more Ca^{2+} than the
175	Ca76. It is expected that the Ca111 is more compressible than the Ca76 on the basis of
176	comparative crystal chemistry (Hazen et al., 2000). This contradiction might be resolved from
177	the fact that the Ca111 sample is closer to the ideal composition of manganese dolomite Ca100,
178	while the Ca76 deviates from the ideal Ca100 composition to a greater degree. The Ca76 sample
179	could accumulate larger lattice strain (i.e., microstrain) due to the greater rotation and distortion
180	inside the cation layers at a given pressure and room temperature, originating from different sizes
181	of CaO ₆ and MnO ₆ units in the same layer (Palaich et al., 2015). How Ca ²⁺ and Mn ²⁺ cations are
182	arranged in the MO ₆ layers reflect the degree of cation ordering, which should be highly
183	associated with calcium contents of manganese dolomite. The degree of cation ordering has also
184	been frequently related to the phase stability of dolomite minerals. For instance, the ordered
185	CaMg(CO ₃) ₂ enters the disordered state approximately at 620–1100 °C upon compression and
186	further breaks down into MgCO ₃ and CaCO ₃ at higher temperatures (Morlidge et al., 2006;
187	Hammouda et al., 2011). As we can see, the structural transformation and compressiblity of
188	carbonate minerals highly depend upon both the degree of cation ordering. Additionally, it is
189	worth noting that the stress field within the sample chamber might also contribute to the

190	observed different compressibility between the Ca76 and Ca111 samples. Recently, it has been
191	unraveled how the quasi- and non-hydrostatic conditions influence the structural evolution and
192	compressibility of carbonate minerals as the pressure rises (Fiquet and Reynard, 1999; Zhao et
193	al., 2021).
194	The nature and state of carboante minerals are largely related to the radii of cations (e.g.,
195	Ca^{2+} , Mg^{2+} , Fe^{2+} , and Mn^{2+}) under high presssures. Fig. 3 and Table 2 show that calcite (CaCO ₃)
196	exhibts the largest unit-cell volume (V) and the least bulk modulus at ambient conditons among
197	all single and double carbonate minerals with the chemical compositon of (Ca,Mn,Fe,Mg)CO ₃
198	(Redfern and Angel, 1999; Redfern, 2000). Intriguingly, rhodochrosite (MnCO ₃) exhibits the
199	greatest bulk modulus among all the (Ca,Mn,Fe,Mg)CO ₃ carbonates, though its V value is much
200	larger than siderite (FeCO ₃) and magnesite (MgCO ₃) at ambient conditons (Fiquet and Reynard,
201	1999; Liu et al., 2015; Liu et al., 2016; Zhang et al., 1998). Moreover, the V values of the
202	dolomite group minerals $CaM(CO_3)_2$ (M = Mn, Fe, and Mg) are in between rhodochrosite and
203	calcite under high pressures (Fig. 3). Interestingly, $CaMg_{0.92}Fe_{0.08}(CO_3)_2$ and $CaMg_{0.6}Fe_{0.4}(CO_3)_2$
204	exhibit the similar V values with increasing pressure (Martinez et al., 1996; Mao et al., 2011;
205	Merlini et al., 2012). In other words, iron substitution appears to have minimal effects on the V
206	of $CaMg(CO_3)_2$ at least up to 13 GPa at room temperature. However, manganese substitution
207	presents distinct effects. The V values of the Ca76 and Ca111 are much larger than that of
208	$CaMg(CO_3)_2$ under high pressures (Fig. 3). Unlike iron-bearing $CaMg(CO_3)_2$, the V values of
209	manganese dolomite are highly related to manganese concentration. In general, manganese can 11

210	more readily replace calcium in manganese dolomite while iron moslty substitutes magnesium in
211	Ca-Mg dolomite. This is largely because the radius of Ca^{2+} (1.00 Å) is much larger than that of
212	Mg^{2+} (0.72 Å) and Fe ²⁺ (0.78 Å in the high-spin state and 0.61 Å in the low-spin state) in the
213	octahedral configuration (Shannon, 1976).
214	Further, the relative compressiblity of carbonate minerals can be demonstrated evidently as a
215	function of the V/V_0 ratio against pressure. Fig. 4 shows the three features regarding how the
216	V/V_0 ratio decreases with increasing pressure. First, all the single and double divalent metal
217	carbonates (Ca,Mn,Fe,Mg)CO3 exhibit the similar values that reach ~0.985 at 2 GPa, except
218	calcite-type CaCO ₃ . Secondly, the single divalent metal carbonates of (Mn,Fe,Mg)CO ₃ in the
219	calcite-type structure have the V/V_0 ratios greater than the double divalent metal carbonates of
220	(Ca,Mn,Fe,Mg)CO ₃ in the dolomite-type structure at > 2 GPa. Third, the Ca111 sample has the
221	V/V_0 ratios greater than iron-bearing dolomite CaMg(CO ₃) ₂ at 0–13 GPa. These differences
222	diminish with increasing pressure, and the Ca111, Ca76 and iron-bearing dolomite samples all
223	could share the same V/V_0 ratios at ~15 GPa as illustrated in Fig. 4. Additioanly, it is worth
224	noting that the magnitude of deviation from the ideal calcium content of the Ca100 may control
225	the evolution of V/V_0 and c/c_0 ratios of manganese dolomite minerals with increasing pressure
226	as shown in Figs. 4–5 (Palaich et al., 2015). On the contrary, the a/a_0 ratios between the Ca76
227	and Call1 samples are almost the same as the pressure rises (Fig. 5). More importantly, all the
228	single and double carbonate minerals share comparable a/a_0 ratio values under high pressures. In
229	other words, all those carbonates have the similar response of the a axis unpon compression. It is

primarily because of the relatively rigid $CO_3^{2^2}$ planar configurations aligning perpendicular to the c axis. In other words, the type and size of MO₆ octahedra have little influence on the a axial compressiblity of carbonate minerals.

233 Interesingly, the c/c_0 ratios exhibit a more diverged feature than the a/a_0 ratios (Fig. 5). This 234 intrisically reflects the MO₆ octahedra (M = Ca, Mn, Fe, and Mg) are more compressible than the CO_3^{2-} units. MnCO₃ has the greatest c/c_0 ratios at 0–15 GPa at room temperature (Liu et al., 2016; 235 236 Palaich et al., 2015). However, this tendancy is changed with increasing pressure (Fig. 5). In particular, MnCO₃ and (Mg,Fe)CO₃ single divalent metal carbonates have nearly the same c/c_0 237 238 ratios at 15–20 GPa. Moreover, unlike the a/a_0 ratios of those carbonates, the c/c_0 ratios of single 239 divalent metal carbonates appear to be much more larger than that of double carbonates under high pressures (Fig. 5). In principle, the larger effective cation radius features longer bonding 240 lengths and weaker interactions between the CO_3^{2-} group and metal cations (Hazen et al., 2000). 241 242 In particular, the c axial compressibilibity of those carbonates are highly related to the effective 243 cation radii in the MO₆ octahedral configurtion under high pressures. As to manganese dolomite, Mn^{2+} can largely substitute Ca^{2+} , and the c axis compressibility is significantly affected by the 244 245 coexisting MnO₆ and CaO₆ octahedra with different sizes and distortion/rotation in the same 246 layer. 247 By the same logic, the c/a ratios are also sensitive to the relative size of effective cation radii

in those carboantes as shown in Fig. 6. The difference in the c/a ratios could be as large as 5%

between calcite and magnesite (Fiquet and Reynard, 1999; Redfern and Angel, 1999). Notably,

250	the c/a ratios of manganese dolomite lie between calcite and magnesite at ambient conditions.
251	Additionally, the differene in the c/a ratios between single and double carbonates decreases with
252	increasing pressure, principally ascribed to the relatively greater compressibility of CaO_6
253	octahedra along the c axis, with respect to MnO ₆ , MgO ₆ , and FeO ₆ octahedra under high
254	pressures (Palaich et al., 2015). Meanwhile, MO ₆ octahedra may distort and rotate with
255	increasing pressure, as demonstrated by the c/a ratio slope of carbonates (Fig. 7). Except
256	magnesite (MgCO ₃), other single divalent metal carbonates remain a relatively stable and low
257	slope with increasing pressure (Palaich et al., 2015). Remarkably, double carbonates feature
258	abrupt changes in the c/a ratio slope, likely associated with the extent of MO ₆ octahedral
259	distortion and rotation (Fig. 7). It is worth noting that both the Calll and Ca76 show a dramatic
260	change in the c/a ratio slope at ~ 8 GPa, which might be an intrinsic high-pressure behavior
261	common for manganese dolomite minerals upon compression at room temperature. Furthermore,
262	the Ca111 has the absolute values of the c/a ratio slope samller than the Ca76 at < 13.3 GPa,
263	reflecting the Ca111 less compressible than the Ca76 (Fig. 7).
264	The evolving distortion/rotation of CaO ₆ and MnO ₆ octahedra in the same layer may hold the
265	key to decode the splits of single-crystal diffraction spots observed in the Ca111 sample with
266	increasing pressure (Fig. 2). The high-angle diffraction spots such as {128} became slightly
267	elongated at 13.3 GPa while the low-angle diffraction spots were still pretty round (Fig. 2b). This

change reflects the lattice distortion is accumulating to be visible initially via the deformation of

the high-angle diffraction spots. We note that the splits of the lattice modes were observed at

270	pressures greater than 10.5 GPa in the Raman spectra of the Calll sample when being
271	compressed in neon (Wang et al., 2022). Compared with x-ray diffraction measurements, the use
272	of the same pressure-transmitting medium indicates that laser Raman spectroscopy is a more
273	sensitive probe to detect the lattice distortion of carbonates. Additionally, Wang et al. (2022)
274	pointed out that the use of helium serving as a pressure-transmitting medium would postpone the
275	splits of the lattice Raman modes to 13.7 GPa for the Ca111 sample. It is principally because
276	deviatoric stress accumulates slower in helium than neon. Upon further compression in neon, the
277	splits of high-angle diffraction spots were visible at 14.7 GPa while the splits of low-angle
278	diffraction were until 17.5 GPa for the single-crystal Call1 sample (Fig. 2c). This is largely due
279	to the higher spatial resolutions at the higher angles in x-ray diffraction patterns. The diffraction
280	split magnitudes of {104}, {110}, and {116} planes are comparable to each other and they could
281	be as large as 0.040±0.002 Å at 22.4 GPa (Fig. 2d).
282	The diffraction intensities dramatically decreased at 28.1 GPa and vanished with increasing
283	pressure to 51.2 GPa. Such changes in diffraction intensities reflect the significant adjustments in
284	the atomic positions of Ca^{2+} and Mn^{2+} for the Ca111 sample at pressures greater than 22.4–28.1
285	GPa. At the same time, the splits of the internal modes occurred in the single-crystal Call1's
286	Raman spectra at approximately 24 GPa, including the symmetric stretching (v_1) , out-of-plane
287	bending (v_2) and in-plane bending (v_4) (Wang et al., 2022). These internal Raman modes are
288	originated from the vibrations of the CO_3^{2-} group. Thus, the reported Raman peak splits are
289	intrisically related to the dramatic changes in the bonding environments of the CO ₃ ²⁻ group,

290	corresponding to the dolomite-III phase of Calll assigned by Wang et al. (2022) approximately
291	at 24-50 GPa. In other words, the dramatic adjustments in atomic positions not only break up the
292	long-range order of the cation layers of MnO ₆ and CaO ₆ causing the blurred diffraction spots and
293	vanished intensities, but also alter the bonding environments of the CO_3^{2-} group in the Call1
294	sample at \geq 24 GPa. In addition, the Call1 sample features the splits of the lattice modes in
295	Raman spectra at 13.3–22.4 GPa while the internal modes of the CO_3^{2-} group remain unaffected,
296	corresponding to the dolomite-II phase in Wang et al. (2022).
297	Together with the x-ray diffraction results in this study, it is convincing to conclude that the
298	lattice distortion is mainly accumulated in the cation layers of CaO ₆ and MnO ₆ octahedra in the
299	dolomite-II phase of Ca111. It appears to minimally influence the rigid CO_3^{2-} group. Moreover,
300	Figs. 2d–2e vividly demonstrate that Call1 might contain two domains that were subjected to
301	different lattice strains at 17.5 and 22.4 GPa. When the <i>d</i> -spacing difference between the two
302	domains exceeded 0.040 Å at 28.1–51.2 GPa, no characteristic diffraction with moderate-strong
303	intensities could be observed in the Ca111 sample (Figs. 2e-2f). Therefore, the dolomite-III
304	phase has the lattice much more distorted than the dolomite-II phase for Call1 as shown in
305	Raman spectra collected by Wang et al. (2022). Additionally, those high-pressure phase
306	transitions are reversible and the recovered Ca111 sample did not feature the characteristic
307	Raman peaks of CaCO3 and MnCO3 at ambient conditions, evidencing that the manganese
308	dolomite would not decompose up to 60 GPa at room temperature.

310

Implications

311	Carbonates are key deep carbon-bearing phases in the Earth's interior and it is essential to
312	decode how carbonate structure evolves with respect to varying cations as pressure rises.
313	Compared with the Ca76 sample investigated by Palaich et al. (2015), our Ca111 sample exhibits
314	higher bulk moduli as its Ca ²⁺ content is more close to the ideal manganese dolomite Ca100
315	composition having 50% cations to be Ca^{2+} . We note that there might be diffraction splits in the
316	polycrystalline Ca76 at 11.4-19.1 GPa in Palaich et al. (2015). Polycrystalline x-ray diffraction
317	patterns generally feature broadened peaks, which may conceal the diffraction splits. More
318	importantly, diffraction splits may be a common high-pressure behavior of the dolomite group
319	minerals. Santillan et al. (2003) reported the split and disappearance of x-ray diffraction peaks
320	for polycrystalline $CaMg(CO_3)_2$ at pressures greater than ~20 GPa at room temperature, with a
321	16:3:1 mixture of methanol:ethanol:water serving as the pressure-transmitting medium.
322	Compared with the Ca111 sample, the elevated transition pressure for $CaMg(CO_3)_2$ is mainly
323	because the effective radius of Mg^{2+} is much smaller than that of Mn^{2+} . Similarly, the {104} and
324	$\{116\}$ diffraction peaks of polycrystalline CaMg(CO ₃) ₂ split into two components and this
325	doublet could remain stable approximately to 50 GPa at room temperature. Santillan et al. (2003)
326	suggested that the dolomite-II phase of CaMg(CO ₃) ₂ likely has a doubled unit cell relative to the
327	calcite-III structure, but this feature could not be well resolved based on their powder diffraction
328	patterns. Here with the help of single-crystal diffraction patterns in this study, the splits of all
329	diffraction spots of our manganese dolomite sample are highly associated with the magnitude of

330	lattice distortion (microstrain) accumulated with increasing pressure. Furthermore, Wang et al.
331	(2022) revealed that the rigid CO_3^{2-} group in highly-distorted $CaMg(CO_3)_2$ is subjected to more
332	complex bonding environments than the Ca111 sample at 50 GPa and room temperature. In other
333	words, chemical variations can modulate the bonding environments in the highly-distorted
334	dolomite group minerals under high pressures as illustrated in iron-bearing carbonates (Hu et al.,
335	2023). The structural evolution of the dolomite group minerals can be further complicated when
336	the distorted CaO ₆ octahedra enter the regime of distorted polyhedra of CaO _n (7 $\leq n \leq 9$) (Binck et
337	al., 2020).
338	Subducting slabs contain some amount of manganese-bearing carbonate minerals,
339	considering that Mn substitution for Mg, Fe, and Ca is ubiquitous in natural minerals (Richard J.
340	Reeder, 1989; Rividi et al., 2010; Efthimiopoulos et al., 2017). Besides, inclusions in super-deep
341	diamonds embrace manganese-bearing dolomite minerals, evidencing the undisputed presence of
342	manganese-bearing carbonates in the deep mantle (Brenker, 2007; Logvinova et al., 2019). The
343	incorporation of manganese into mantle carbonates may alter their structural evolution when
344	being subjected to deep mantle conditions. Thus far, the high-pressure polymorphs of
345	(Mg,Fe)-dolomite have been considered to be potential carbon carriers in the deep mantle (Mao
346	et al., 2011; Merlini et al., 2012). Mn^{2+} has an effective radius larger than Fe^{2+} and Mg^{2+}
347	throughout the entire mantle pressures (Shannon, 1976). Hence, the substitution by Mn^{2+} could
348	exert a relatively larger chemical strain to the carbonate lattice, which would generally lower the
349	phase transition pressure. Recently, Lv et al. (2021) propsoed a reversal of carbonate-silicate 18

350	cation exchange of Ca^{2+} and Mg^{2+} in cold slabs at lower-mantle conditions. However, it still
351	remains unclear how the presence of Mn^{2+} influences the structural evoltion of carbonate
352	minerals and its interactions with mantle silicates. Further, high temperature plays an important
353	role in the stability and dynamics of mantle carbonates and places another dimension to be
354	constrained for decoding the deep carbon cycle (e.g., Boulard et al., 2011; Cerantola et al. 2017;
355	Hou et al., 2019; Lv et al., 2021; Gui et al., 2023). It is worth noting that there is still no
356	agreement on whether $MnCO_3$ decomposes into diamond under high temperatures at > 12 GPa
357	(Liu et al., 2001; Ono, 2007). Therefore, further work is demanded for elucidating the nature and
358	state of Mn-bearing carbonate minerals at lower-mantle conditions in these regards.

Acknowledgments

361	We thank Chaoshuai Zhao, Xiaowan Su, and Fuyang Liu for their assistance in data collection
362	and interpretation. This study is funded by the National Key Research and Development Program
363	of China (2019YFA0708502) and the National Natural Science Foundation of China (42072052).
364	The Department of Mineral Sciences, Smithsonian Institution is acknowledged for supplying the
365	manganese dolomite sample (Kutnohorite, no. NMNH148722). We acknowledge the use of
366	synchrotron x-ray diffraction at the 13BM-C of GSECARS, Advanced Photon Sciences,
367	Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National Science
368	Foundation- Earth Sciences (EAR-1634415) and the Department of Energy-GeoSciences
369	(DE-FG02-94ER14466). 13BM-C is partially supported by COMPRES under NSF Cooperative
370	Agreement EAR -1606856. This research used resources of the Advanced Photon Source, a U.S.
371	Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of
372	Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Some
373	experiments are supported by the Synergic Extreme Condition User Facility (SECUF).
374	

References

Binck, J., Chariton, S., Stekiel, M., Bayarjargal, L., Morgenroth, W., Milman, V., Dubrovinsky,
L., and Winkler, B. (2020) High-pressure, high-temperature phase stability of iron-poor
dolomite and the structures of dolomite-IIIc and dolomite-V. Physics of the Earth and
Planetary Interiors, 299, 106403.

- Boulard, E., Gloter, A., Corgne, A., Antonangeli, D., Auzende, A.L., Perrillat, J.P., Guyot, F.,
 and Fiquet, G. (2011) New host for carbon in the deep Earth. Proceedings of the National
 Academy of Sciences of the United States of America, 108, 5184-5187.
- Brenker, F.E., Vollmer, C., Vincze, L., Vekemans, B., Szymanski, A., Janssens, K., Szaloki, I.,
 Nasdala, L., Joswig, W., Kaminsky, F. (2007) Carbonates from the lower part of
 transition zone or even the lower mantle. Earth and Planetary Science Letters, 260(1-2),
 1-9.
- Cerantola, V., Bykova, E., Kupenko, I., Merlini, M., Ismailova, L., McCammon, C., Bykov, M.,
 Chumakov, A.I., Petitgirard, S., Kantor, I., Svitlyk, V., Jacobs, J., Hanfland, M., Mezouar,
 M., Prescher, C., Ruffer, R., Prakapenka, V.B., and Dubrovinsky, L. (2017) Stability of
 iron-bearing carbonates in the deep Earth's interior. Nature Communications, 8, 15960.
- Dasgupta, R., and Hirschmann, M.M. (2010) The deep carbon cycle and melting in Earth's
 interior. Earth and Planetary Science Letters, 298, 1-13.
- 393Dera, P., Zhuravlev, K., Prakapenka, V., Rivers, M.L., Finkelstein, G.J., Grubor-Urosevic, O.,394Tschauner, O., Clark, S.M., and Downs, R.T. (2013) High pressure single-crystal micro395X-ray diffraction analysis with GSE_ADA/RSV software. High Pressure Research, 33(3),396466-484.
- 397 Dorfman, S.M., Badro, J., Nabiei, F., Prakapenka, V.B., Cantoni, M., and Gillet, P. (2018)
 398 Carbonate stability in the reduced lower mantle. Earth and Planetary Science Letters, 489,
 399 84-91.
- Efthimiopoulos, I., Germer, M., Jahn, S., Harms, M., Reichmann, H.J., Speziale, S., Schade, U.,
 Sieber, M., and Koch-Müller, M. (2018) Effects of hydrostaticity on the structural
 stability of carbonates at lower mantle pressures: The case study of dolomite. High
 Pressure Research, 39, 36-49.
- Efthimiopoulos, I., Jahn, S., Kuras, A., Schade, U., and Koch-Müller, M. (2017) Combined
 high-pressure and high-temperature vibrational studies of dolomite: Phase diagram and
 evidence of a new distorted modification. Physics and Chemistry of Minerals, 44,
 407 465-476.
- Farsang, S., Louvel, M., Zhao, C., Mezouar, M., Rosa, A.D., Widmer, R.N., Feng, X., Liu, J.,
 and Redfern, S.A.T. (2021) Deep carbon cycle constrained by carbonate solubility.
 Nature Communications, 12, 4311.
- Fei, Y., Ricolleau, A., Frank, M., Mibe, K., Shen, G., and Prakapenka, V. (2007) Toward an
 internally consistent pressure scale. Proceedings of the National Academy of Sciences,

413	104, 9182-9186.
414	Fiquet, G., and Reynard, B. (1999) High-pressure equation of state of magnesite: New data and a
415	reappraisal. American Mineralogist, 84, 856–860.
416	Gui, W., Shen, K., and Liu, J. (2023) Phase stability and reactions of subducting CaCO ₃ under
417	upper mantle conditions. Acta Geologica Sinica (English Edition), 97(1), 309-315.
418	Hammouda, T., Andrault, D., Koga, K., Katsura, T., and Martin, A.M. (2011) Ordering in double
419	carbonates and implications for processes at subduction zones. Contributions to
420	Mineralogy and Petrology, 161, 439-450.
421	Hazen, R.M., Downs, R.T., and Prewitt, C.T. (2000) Principles of comparative crystal chemistry.
422	Reviews in Mineralogy and Geochemistry, 41, 1-33.
423	Hou, M., Zhang, Q., Tao, R., Liu, H., Kono, Y., Mao, Hk., Yang, W., Chen, B., and Fei, Y.
424	(2019) Temperature-induced amorphization in CaCO ₃ at high pressure and implications
425	for recycled $CaCO_3$ in subduction zones. Nature Communications, 10(1), 1963.
426	Hu, J., Xu, L., Liu, J., and Yue, D. (2023) Effects of spin transition and cation substitution on the
427	optical properties and iron partitioning in carbonate minerals. Acta Geologica Sinica
428	(English Edition), 97(1), 350-357.
429	Kelemen, P., Matter, J., Falk, E., Rudge, J., Curry, W., and Blusztajn, J. (2011) Rates and
430	mechanisms of mineral carbonation in peridotite: Natural processes and recipes for
431	enhanced, in situ CO2 capture and storage. Annual Review of Earth and Planetary
432	Sciences, 39, 545-576.
433	Klotz, S., Chervin, J.C., Munsch, P., and Le Marchand, G. (2009) Hydrostatic limits of 11
434	pressure transmitting media. Journal of Physics D-Applied Physics, 42, 075413.
435	Kushiro, I. (1975) Carbonate-silicate reactions at high presures and possible presence of
436	dolomite and magnesite in the upper mantle. Earth and Planetary Science Letters, 28,
437	116-120.
438	Lavina, B., Dera, P., Downs, R.T., Prakapenka, V., Rivers, M., Sutton, S., and Nicol, M. (2009)
439	Siderite at lower mantle conditions and the effects of the pressure-induced spin-pairing
440	transition. Geophysical Research Letters, 36, L23306.
441	Lin, JF., Liu, J., Jacobs, C., and Prakapenka, V.B. (2012) Vibrational and elastic properties of
442	ferromagnesite across the electronic spin-pairing transition of iron. American
443	Mineralogist, 97, 583-591.
444	Liu, J., Caracas, R., Fan, D., Bobocioiu, E., Zhang, D., and Mao, W.L. (2016) High-pressure
445	compressibility and vibrational properties of (Ca,Mn)CO ₃ . American Mineralogist, 101,
446	2723-2730.
447	Liu, J., Lin, JF., and Prakapenka, V.B. (2015) High-pressure orthorhombic ferromagnesite as a
448	potential deep-mantle carbon carrier. Scientific Reports, 5, 7640.
449	Liu., LG., Lin, CC. and Yang, YJ. (2001) Formation of diamond by decarbonation of
450	MnCO ₃ . Solid State Communications, 118, 195-198.
451	Logvinova, A.M., Shatskiy, A., Wirth, R., Tomilenko, A.A., Ugap'eva, S.S., and Sobolev, N.V.

452	(2019) Carbonatite melt in type Ia gem diamond. Lithos, 342-343, 463-467.
453	Lv, M., Dorfman, S.M., Badro, J., Borensztajn, S., Greenberg, E., and Prakapenka, V.B. (2021)
454	Reversal of carbonate-silicate cation exchange in cold slabs in Earth's lower mantle.
455	Nature Communications, 12, 1712.
456	Malusà, M., Frezzotti, M.L., Ferrando, S., Brandmayr, E., Romanelli, F., and Panza, G. (2018)
457	Active carbon sequestration in the Alpine mantle wedge and implications for long-term
458	climate trends. Scientific Reports, 8, 4740.
459	Mao, Z., Armentrout, M., Rainey, E., Manning, C.E., Dera, P., Prakapenka, V.B., and Kavner, A.
460	(2011) Dolomite III: A new candidate lower mantle carbonate. Geophysical Research
461	Letters, 38, L22303.
462	Martinez, I., Zhang, J., and Reeder, R.J. (1996) In situ X-ray diffraction of aragonite and
463	dolomite at high pressure and high temperature: Evidence for dolomite breakdown to
464	aragonite and magnesite. American Mineralogist, 81, 611-624.
465	Merlini, M., Cerantola, V., Gatta, G.D., Gemmi, M., Hanfland, M., Kupenko, I., Lotti, P., Müller,
466	H., and Zhang, L. (2017) Dolomite-IV: Candidate structure for a carbonate in the Earth's
467	lower mantle. American Mineralogist, 102, 1763-1766.
468	Merlini, M., Crichton, W.A., Hanfland, M., Gemmi, M., Müller, H., Kupenko, I., and
469	Dubrovinsky, L. (2012) Structures of dolomite at ultrahigh pressure and their influence
470	on the deep carbon cycle. Proceedings of the National Academy of Sciences, 109,
471	13509-13514.
472	Morlidge, M., Pawley, A., and Droop, G. (2006) Double carbonate breakdown reactions at high
473	pressures: An experimental study in the system CaO-MgO-FeO-MnO-CO ₂ . Contributions
474	to Mineralogy and Petrology, 152, 365-373.
475	Ono, S. (2007) High-pressure phase transformation in MnCO ₃ : A synchrotron XRD study.
476	Mineralogical Magazine, 71(1), 105-111.
477	Palaich, S.E.M., Heffern, R.A., Watenphul, A., Knight, J., and Kavner, A. (2015) High-pressure
478	compressibility and phase stability of Mn-dolomite (kutnohorite). American Mineralogist,
479	100, 2242–2245.
480	Plank, T., and Manning, C. (2019) Subducting carbon. Nature, 574, 343-352.
481	Prescher, C., and Prakapenka, V.B. (2015) DIOPTAS: a program for reduction of
482	two-dimensional X-ray diffraction data and data exploration. High Pressure Research, 35,
483	223-230.
484	Redfern, S.A.T. (2000) Structural variations in carbonates. Reviews in Mineralogy and
485	Geochemistry, 41, 289-308.
486	Redfern, S.A.T., and Angel, R.J. (1999) High-pressure behaviour and equation of state of calcite,
487	CaCO ₃ . Contributions to Mineralogy and Petrology, 134, 102-106.
488	Richard J. Reeder, W.A.D. (1989) Structural variation in the dolomite-ankerite solid-solution
489	series An X-ray, Miissbauer, and TEM study. American Mineralogist, 74, 1159-1167.
490	Rividi, N., van Zuilen, M., Philippot, P., Menez, B., Godard, G., and Poidatz, E. (2010)

491	Calibration of carbonate composition using micro-Raman analysis: application to
492	planetary surface exploration. Astrobiology, 10, 293-309.
493	Sanchez-Valle, C., Ghosh, S., and Rosa, A.D. (2011) Sound velocities of ferromagnesian
494	carbonates and the seismic detection of carbonates in eclogites and the mantle.
495	Geophysical Research Letters, 38, L24315.
496	Santillan, J., Williams, Q., and Knittle, E. (2003) Dolomite-II: A high-pressure polymorph of
497	CaMg(CO ₃) ₂ . Geophysical Research Letters, 30, 1054.
498	Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic
499	distances in halides and chaleogenides. Acta Crystallographica, A32, 751-767.
500	Shcheka, S.S., Wiedenbeck, M., Frost, D.J., and Keppler, H. (2006) Carbon solubility in mantle
501	minerals. Earth and Planetary Science Letters, 245, 730-742.
502	Shen, G., Wang, Y., Dewaele, A., Wu, C., Fratanduono, D.E., Eggert, J., Klotz, S., Dziubek,
503	K.F., Loubeyre, P., Fat'yanov, O.V., Asimow, P.D., Mashimo, T., and Wentzcovitch,
504	R.M.M. (2020) Toward an international practical pressure scale: A proposal for an IPPS
505	ruby gauge (IPPS-Ruby2020). High Pressure Research, 40, 299-314.
506	Wang, F., Zhao, C., Xu, L., and Liu, J. (2022) Effects of hydrostaticity and Mn-substitution on
507	dolomite stability at high pressures. American Mineralogist, 107, 2234-2241.
508	Zhang, J., Isabelle, M., Francois, G., Richard J. R.(1998) Effects of Mg-Fe ²⁺ substitution in
509	calcite-structure carbonates: Thermoelastic properties. American Mineralogist, 83,
510	280-287.
511	Zhao, C., Lv, C., Xu, L., Liang, L., and Liu, J. (2021) Raman signatures of the distortion and
512	stability of MgCO ₃ to 75 GPa. American Mineralogist, 106, 367-373.
513	Zhao, C., Xu, L., Gui, W., and Liu, J. (2020) Phase stability and vibrational properties of
514	iron-bearing carbonates at high pressure. Minerals, 10, 1142.
515	

517 Figure Captions

518

520 **Figure 1.** Representative back-scattered electron image and energy dispersive x-ray 521 spectroscopy (EDS) elemental maps (Ca, Mn, C and O) of manganese dolomite at ambient 522 conditions.

523

544

Figure 4. The V/V_0 values of carbonate minerals with increasing pressure at room temperature. Error bars smaller than symbols are not shown for clarity. We note that the open dimond symbols represent the values after diffraction splits of Ca_{1.11}Mn_{0.89}(CO₃)₂., which shall be used with caution (see Table 1 for more details).

Figure 5. The axial ratios of carbonate minerals with increasing pressure at room temperature. Solid and open symbols represent a/a_0 and c/c_0 , respectively. Error bars smaller than symbols are not shown for clarity. We note that the half-filled dimond symbols represent the values after diffraction splits of Ca_{1.11}Mn_{0.89}(CO₃)₂., which shall be used with caution (see Table 1 for more details).

Figure 6. The c/a ratio values of carbonate minerals with increasing pressure at room temperature. Error bars smaller than symbols are not shown for clarity. We note that the open dimond symbols represent the values after diffraction splits of Ca_{1.11}Mn_{0.89}(CO₃)₂., which shall be used with caution (see Table 1 for more details).

566

$Ca_{1.11}Mn_{0.89}(CO_3)_2$			Pt		
a (Å)	<i>c</i> (Å)	$V(\text{\AA}^3)$	<i>a</i> (Å)	$V(\text{\AA}^3)$	<i>P</i> (GPa)*
4.8644(10)	16.294(3)	333.90(15)	3.9231(3)	60.379(14)	0.0001
4.8517(10)	16.121(7)	328.63(20)	3.9143(5)	59.974(23)	1.9(1)
4.8149(11)	15.735(9)	315.92(23)	3.8967(8)	59.169(36)	6.0(2)
4.8058(9)	15.613(7)	312.28(18)	3.8892(8)	58.828(36)	7.7(2)
4.7973(10)	15.547(7)	309.85(19)	3.8843(12)	58.605(54)	8.9(3)
4.7877(9)	15.443(7)	306.56(18)	3.8779(21)	58.316(95)	10.5(5)
4.7763(11)	15.355(8)	303.36(21)	3.8717(20)	58.037(90)	12.1(5)
4.7677(10)	15.286(8)	300.92(20)	3.8671(15)	57.830(67)	13.3(4)
4.7569(11) #	15.161(8)#	297.11(21)#	3.8618(11)	57.593(49)	14.7(3)
4.7523(11)#	15.101(8)#	295.36(21)#	3.8589(14)	57.463(63)	15.5(4)
4.7409(13)#	15.015(9)#	292.27(24)#	3.8564(18)	57.352(80)	16.2(5)
_	_	_	3.8517(12)	57.142(53)	17.5(3)

Table 1. Lattice parameters of $Ca_{1.11}Mn_{0.89}(CO_3)_2$ and the pressure calibrant (platinum) at high pressure and room temperature with the use of neon as a pressure-transmitting medium.

These values shall be used with caution because of diffraction splits.

* The pressure was determined according to platinum's equation of state reported by Fei et al. (2007).The digits in parentheses are the uncertainty, to the precision of the same number of least significant digits.

572 573

569

570

571

567

568

Carbonates	Bulk modulus (GPa)	
Ca _{1.11} Mn _{0.89} (CO ₃) ₂	101.4(15)	This study
$Ca_{0.76}Mn_{1.24}(CO_3)_2$	85(6)	Palaich et al., 2015
$CaMgCO_3$	90.7(7)	Martinez et al., 1996
$CaMg_{0.918}Fe_{0.078}Mn_{0.016}$	94.1(4)	Mao et al., 2011
CaCO ₃	73.46(27)	Redfern and Angel, 1999
MnCO ₃	122(3)	Liu et al., 2016
MgCO ₃	115(1)	Fiquet and Reynard, 1996
FeCO ₃	117(1)	Zhang et al., 1998

|--|

575 The digits in parentheses are the uncertainty, to the precision of the same number of least significant 576 digits.