1			
2	REVISION 1		
3			
4		The composition of mackinawite	
5 6			
7		David Rickard	
8		School of Earth and Environmental Sciences	
9		Cardiff University	
10		Cardiff CF10 3YE	
11		UK.	
12		rickard@cardiff.ac.uk	
13 14			
15			
16			
17			
18			
19			
20 21			
21			

22

ABSTRACT

23	The composition of a mineral is a defining characteristic. The various compositions listed for
24	mackinawite in current mineralogical databases and reference books, such as Fe(Ni)S and
25	$Fe_{1+x}S$, are both wrong and misleading. Statistical analyses of over 100 mackinawite analyses
26	reported over the last 50 years show a mean composition of $Me_{1.0}S$ where $Me = Fe + Co + Ni + Co + Ni$
27	Cu. Mackinawite is stoichiometric FeS. As with many sulfide minerals, Ni-, Co- and, possibly,
28	Cu – rich varieties occur in addition to the simple iron monosulfide. These varieties are best
29	referred to as nickelian mackinawite, cobaltian mackinawite and cupriferous mackinawite. The
30	results confirm that these metals substitute for Fe in the mackinawite structure rather than being
31	contained in the interstices between the Fe-S layers. Most compositional data on mackinawites
32	derives from electron probe microanalyses of small grains in magmatic/hydrothermal
33	associations. The result means that there is no dichotomy between the composition of ambient
34	temperature synthetic mackinawite (which is supposed to be equivalent to sedimentary
35	mackinawite) and mackinawites from higher temperature associations. The correct representation
36	of the composition of mackinawite has implications for a wide swathe of fundamental science,
37	including the origin of life, the genesis of magmatic ore deposits, the provenance of meteorites as
38	well as industrial applications such as water treatment and steel corrosion. The stoichiometric
39	formulation permits the mackinawite formula to be balanced electronically using conventional
40	Fe and S ionic species. It also enables simple balanced chemical equations involving
41	mackinawite.
42	

Keywords: mackinawite, iron sulfide, composition, formula, mineralogy
 44

45 46	INTRODUCTION
47	
48	A cogent argument can be made that mackinawite, the tetragonal iron monosulfide, was the
49	last widespread simple mineral to be discovered on Earth. It has been identified as a major
50	component of the global sulfur cycle (e.g. Rickard, 2012) and intimately associated with
51	microorganisms (e.g. Posfai et al., 1998), and has been widely implicated as a necessary mineral
52	for the origin of life (Russell and Ponce, 2020). The mineral has been discovered in soils (e.g.
53	Burton et al., 2006), sediments (Berner, 1962), magmatic (Evans et al., 1964) and hydrothermal
54	(e.g. Krupp, 1994) ore deposits, serpentinised ultrabasic rocks (e.g. Ashley, 1975), meteorites
55	(Ramdohr, 1973) and even diamonds (Agrosì et al., 2017). Synthetic analogs have proven to be
56	important corrosion products in the petroleum industry (e.g. Meyer et al., 1958), wastewater
57	treatment (e.g. Yang et al., 2017), and the Girdler-sulfide process for making heavy water in the
58	nuclear industry (Shoesmith et al., 1980). It is widely believed to play a key role in the
59	environment, controlling deleterious minor and trace elements concentrations in natural waters
60	(e.g. Rickard and Morse, 2005).
61	Its composition is, however, often presented as (Fe,Ni)S or $Fe_{1+x}S$ or some variant of these
62	formulations, which is wrong. These formulations may derive from the fact that the type
63	mackinawite from the Mackinaw Mine WA was a nickelian mackinawite with an apparent
64	composition $Fe_{0.96}Ni_{0.04}S$ (Evans et al., 1964). The uncertainties in the analyses were
65	considerable: ± 8 relative wt% for Fe, ± 16 relative wt% for Ni and ± 12 relative wt% for S,
66	resulting in a total analytic uncertainty of 9.5 wt%. It is apparent that the totals were corrected to
67	produce a stoichiometric MeS composition (where $Me = Fe + Ni + Co + Cu$). By contrast, the
68	co-discoverers of the mineral in Outokumpu, Finland, (Kuovo et al., 1963) tried to separate

3

69	sufficient quantities mechanically for wet chemical analyses. Unfortunately, this was not entirely
70	successful and the result was subject to errors due to inclusions of silicates and other metal
71	sulfides in the separates. Even so, it appeared that the Outokumpu mackinawites were also
72	nickelian with trace Co giving compositions like $Fe_{0.92}Ni_{0.13}Co_{0.01}S$ resulting in a non-
73	stoichiometric formula Me _{1.06} S. In both cases, these early workers assumed that the S
74	concentration was equivalent to 1.00 apfu (atoms per formula unit).
75	Although definitions of what constitutes a mineral are legion, most would agree that a
76	mineral is naturally occurring material with a defined crystal structure and a particular chemical
77	composition. The problem with current definitions of mackinawite is that although the crystal
78	structure is defined, its particular chemical composition is not. This means that, at least in detail,
79	it is uncertain what is meant – at least chemically- when someone refers to mackinawite. The
80	present report aims to rectify this lacuna and define the composition of mackinawite.
81	[Table 1 here]
82	Table 1 gives examples of mackinawite compositions as defined by some current widespread
83	- and otherwise authoritative - mineralogical databases. The only one which gives some clue to
84	the actual compositions in the listing in the Handbook of Mineralogy published by the American
85	Mineralogical Society, which at least gives examples of Ni-, Co- and Cu- bearing mackinawites
86	even though the title gives a composition $(Fe,Ni)_{1+x}S(x = 0 \text{ to } 0.11)$, which seems odd. $Fe_{1+x}S(x = 0 \text{ to } 0.11)$.
87	may have been a nod to the other popular and equally misleading formula for mackinawite.
88	Kuovo et al. (1963) and Clark (1966) recommended that the composition of mackinawite
89	should be presented as $Me_{1+x}S$. However, Babkine and Conquéré (1968 p.270) concluded that:
90	L'établissement d'une formule telle que $M_{1+x} S$ (x=0,05 à 0,07) paraît prématuré compte
91	tenu du peu de précision des données analytiques. Il serait alors préférable de conserver pour la

92 mackinawite la formule stoïchiométrique MS.¹

93	Unfortunately, this caveat was generally missed by later workers. $Fe_{1+x}S$ became popular
94	since it appeared to distinguish mackinawite chemically from other iron monosulfide minerals
95	such as the pyrrhotites ($Fe_{1-x}S$) and troilite (FeS).
96	Berner (1962) originally described a tetragonal FeS from an iron trash dump in the Mystic
97	River, MA. This was not accepted as a mineral since the IMAA did not deem it a natural
98	occurrence. Berner reported that analyses of this material gave an average composition of
99	Fe _{1.05} S. However, he concluded – and this might have been again subsequently missed by later
100	researchers – that the composition of the phase "was essentially FeS". Berner noted that the
101	phase was identical to the synthetic FeS commonly produced in the laboratory through the
102	reaction between aqueous sulfide and iron salts at ambient temperatures. Subsequent wet
103	chemical analyses of bulk synthetic mackinawites also gave varying results (Table 2).
104	[Table 2 here]
105	Ward (1970), reviewing the literature up until that date, reported that mackinawite analyses
106	varied between $Me_{0.994}S$ and $Me_{1.023}S$ and concluded that mackinawite was a pure iron
107	monosulfide with composition of Fe _{1.06} S, although this appears to be outwith the range of Me:S
108	ratios he reported. The problem was solved by Rickard et al. (2006) who showed that errors in
109	the analytic protocols led to the apparent non-stoichiometry of synthetic mackinawite. Pure
110	synthetic mackinawite is stoichiometric $Fe_{1.00}S$. This is consistent with the results from a detailed
111	Rietveld investigation of the structure of synthetic crystalline mackinawite by Lennie et al.
112	(1995) which showed that any vacancy occupancy or surplus Fe occupancy was below the
113	detection limit of the method and concluded that the Fe/S ratio of mackinawite closely

¹ The establishment of a formula such as $M_{l+x}S$ (x=0.05 to 0.07) seems premature given the low precision of the analytical data. It would be preferable to keep the MS stoichiometric formula for mackinawite.

114 approaches unity.

115	However, the problem of the reported compositions of natural mackinawites remain. These
116	compositions are almost exclusively for mackinawites occurring in higher temperature sulfide
117	mineral associations. The mackinawites in these occurrences are fine grained and the
118	mackinawites occur mainly as apparent exsolution or hydrothermal alteration products in
119	chalcopyrite, pyrrhotite and pentlandite. Because of their microscopic nature, their compositions
120	are almost entirely determined by Electron Probe Microanalysis (EPMA). Indeed, the
121	identification of mackinawite and its distinction from valleriite (a complex mineral consisting of
122	alternating $Mg(OH)_2$ - and (Cu,Fe,)S- dominated layers) was one of the great triumphs of the
123	early deployment of EPMA in mineralogy (Evans et al., 1964).
124	I refer to these mackinawites as magmatic/hydrothermal mackinawites since they occur in
125	high temperature ores associated, either directly or indirectly, with magmatism. These
126	mackinawites include the type minerals and are the main source of the present misleading
127	compositional information in the literature.
128	Mindat (Anonymous, 2022b) lists over 500 localities worldwide where mackinawite has
129	been recorded including 48 stony meteorites listed by Ramdohr (1973) or about a third of the
130	chondrites he examined. However, the Ramdohr's volume was submitted to the publishers in
131	some years before 1973 and the content was essentially pre-EPMA but post-Evans et al. (1964),
132	which is cited and originally distinguished mackinawite from valleriite. Ramdohr stated that it
133	was virtually impossible to distinguish mackinawite form valleriite by optical properties alone
134	and, mainly on the basis of Evans et al's report, appears to have renamed all of his earlier
135	meteoritic valleriites, mackinawite.
136	The purpose of this paper is to present a statistical re-evaluation of published chemical

137	analyses of natural mackinawites worldwide with a view to establishing the chemical
138	composition of this mineral.
139	
140 141	METHODS
142	The analytic method used for mackinawite analysis is Electron Probe Microanalysis
143	(EPMA). Since the early years of mackinawite analyses, EPMA has undergone major
144	developments, including the introduction of field emission electron guns with sub-micron beams.
145	However, the methods used for the analyses of the magmatic/hydrothermal mackinawites appear
146	to have been carried out universally on older EPMA systems (Table 3). These had tungsten
147	filaments with spot diameters of 2 μ m – 10 μ m depending on the material being analysed. The
148	electron beam also excited a sub-surface volume which may be $\sim 5 \mu m$ in depth and similar in
149	width depending on the element atomic mass. Even a more modern Cameca SX-100 from 2008
150	as used by Baidya et al. (2018) samples volumes typically of 10-30 μ m ³ . Mackinawite
151	commonly occurs as inclusion in other sulfides and the EPMA analyses may therefore be
152	affected by the composition of the enclosing mineral (Adams and Bishop, 1986). Mücke (2017)
153	acknowledged this and noted that corrections were made to the analyses to account for this error.
154	Vavtar (1995) and Baidya et al. (2018) noted that mackinawite inclusions in chalcopyrite showed
155	apparent high Cu contents as a result of this effect and these analyses have been excluded from
156	this analysis. The uncertainties in Cu concentrations in these samples are further increased by
157	the secondary fluorescence effects due to the relatively high energy and low attenuation of
158	CuK α . Jennings et al. (2019), for example, showed that high Cu concentrations (0.5-1.2 wt%
159	Cu) could be generated in Cu-free materials by secondary fluorescence from the Cu- sample
160	holder.

161 [Table 3 here]

162	Stoichiometric FeS contains 63.525 wt% Fe and 36.475 wt% S, assuming an average S
163	isotope ratio. An Fe-deficient mackinawite with a composition Fe _{0.9} S contains 61.05 wt% Fe and
164	38.95 wt% S. Each 0.1apfu of Fe deficiency involves an S increase of 2.475 wt%. Estimates of
165	the analytic uncertainties are usually around 0.1 on the S/Fe ratio even after multiple
166	measurements on relatively pure synthetic sulfide crystals (e.g. Voigt et al., 2019). The result is
167	that the reported non-stoichiometry of magmatic/hydrothermal mackinawites is at or beyond the
168	limits of accuracy of the EPMA.
169	The situation is complicated because the result is usually presented by the ratio of the total of
170	divalent metals including Fe, Cu, Co, and Ni versus S. This is generally an apparent composition
171	since the actual analyses are often presented as ratios in the form of MeS, where Me includes Fe,
172	Cu, Co, Cr and Ni; the totals are not always accessible. In Table 1, the American Mineralogical
173	Society notes that the metal: sulfur (Me:S) ratios in the three examples they list vary between
174	1.11 and 1.02. This suggests that the Me:S ratios of these mackinawites cannot be confidently
175	distinguished from unity. It may well be that increased precision in mass discrimination in
176	inductively coupled plasma mass spectrometry may lead to better probes of
177	magmatic/hydrothermal mackinawite.
178	The parameters for including analyses in this study were that analytic totals should be
179	available and some reports were therefore not included. (e.g. Clark and Clark, 1968). Some
180	examples were omitted because S analyses were not reported (e.g. Vaughan, 1969). Many of the
181	reports were published in the last century before computerized manuscript preparation, electronic
182	submission and publication were universally available. Reported analyses in which transcription
183	errors occurred (e.g. errors in analytical totals, transposition of numbers) were not included in

184 this study. There is no *a priori* reason that separate mackinawite grains from the same deposit 185 should show similar compositions and the analyses are for individual grains, with no averaging 186 of the composition of a group of analyses. An exception might be the cohesive group of 187 mackinawite analyses reported by Spiridinov et al. (2008) from late veins in the Noril'sk ore 188 field. The 8 analyses, which are included in the listing in Table A1, show an average 189 composition (\bar{x}) and standard deviation (σ) of Fe_{1.05(0.01)}Ni_{0.07(0.01)}S, but these are treated as 190 separate analyses in this report. 191 There are very few repeat analyses on the same mackinawite grain because of their small 192 sizes although analytic scans across grains were reported by Zôka et al. (1973). The intra-grain 193 variations in compositional analyses they reported were mainly due to local variations in grain 194 thicknesses and near-edge effects: there is no evidence for intra-grain variations in mackinawite 195 compositions. Likewise, Clark (1970) reported occasional compositional zonation in larger 196 mackinawite crystals from Kilembe, Uganda (as preliminary observations with no listed 197 analyses) although most of the mackinawites he analyzed were homogeneous. Clark (1969) also 198 reported zonation in Cr- mackinawites he described from the Abessedo deposit in Portugal but, 199 as noted below, this was a preliminary report which has not been confirmed. There are, 200 however, sufficient indications to suggest that zoned mackinawite crystals occur. Certainly, 201 mackinawite analyses with field emission electron guns or atom probe tomography providing 202 nanometer spot diameters would provide more accurate information about the composition – and 203 the variations in composition - in these tiny mackinawite grains. 204 205 206 **RESULTS** 207 208 **Mackinawite compositions**

209	

209 210	The results are detailed in the Tables A1 - A3 and Figure A1 in the supplementary files
211	attached to this paper. The compositions of 103 mackinawites reported in the literature are listed
212	in Table A1. The occurrences listed in Table A1 refer almost exclusively to mackinawites
213	associated with magmatic or hydrothermal ore assemblages. There are very few published
214	analyses of mackinawites in sediments. Bonev et al. (1989) listed two microprobe analyses of
215	mackinawite from concretions from Black Sea sediments. Unfortunately, no totals were listed
216	but a small S-deficit in the element ratios was reported (0.05 apfu). Morin et al. (2016) reported
217	that mackinawite nodules from the river Seine, France, have compositions approaching FeS as
218	measured by energy dispersive methods. Berner (1962) originally noted that it proved impossible
219	to separate mackinawite from sediments and this has remained the situation to date. Indeed, it
220	appears that the assumption that mackinawite is widely present in sediments may be mistaken
221	(cf. Rickard and Morse, 2005).
222	It is possible – and indeed probable- that the mackinawites associated with the high
222 223	It is possible – and indeed probable- that the mackinawites associated with the high temperature monosulfide solid solution or intermediate solid solution, which appear as
223	temperature monosulfide solid solution or intermediate solid solution, which appear as
223 224	temperature monosulfide solid solution or intermediate solid solution, which appear as anomalous pseudo-exsolution features in chalcopyrite, pentlandite and pyrrhotite are the result of
223 224 225	temperature monosulfide solid solution or intermediate solid solution, which appear as anomalous pseudo-exsolution features in chalcopyrite, pentlandite and pyrrhotite are the result of lower temperature reactions of late stage convecting sulfidic solutions with the original
223224225226	temperature monosulfide solid solution or intermediate solid solution, which appear as anomalous pseudo-exsolution features in chalcopyrite, pentlandite and pyrrhotite are the result of lower temperature reactions of late stage convecting sulfidic solutions with the original exsolution products. There is, therefore, a continuum between the magmatic mackinawites and
 223 224 225 226 227 	temperature monosulfide solid solution or intermediate solid solution, which appear as anomalous pseudo-exsolution features in chalcopyrite, pentlandite and pyrrhotite are the result of lower temperature reactions of late stage convecting sulfidic solutions with the original exsolution products. There is, therefore, a continuum between the magmatic mackinawites and the hydrothermal mackinawites, typically exemplified by the association widely observed in the
 223 224 225 226 227 228 	temperature monosulfide solid solution or intermediate solid solution, which appear as anomalous pseudo-exsolution features in chalcopyrite, pentlandite and pyrrhotite are the result of lower temperature reactions of late stage convecting sulfidic solutions with the original exsolution products. There is, therefore, a continuum between the magmatic mackinawites and the hydrothermal mackinawites, typically exemplified by the association widely observed in the Kuroko ores of Japan. At the extreme lower end of this continuum are the mackinawites in the
 223 224 225 226 227 228 229 	temperature monosulfide solid solution or intermediate solid solution, which appear as anomalous pseudo-exsolution features in chalcopyrite, pentlandite and pyrrhotite are the result of lower temperature reactions of late stage convecting sulfidic solutions with the original exsolution products. There is, therefore, a continuum between the magmatic mackinawites and the hydrothermal mackinawites, typically exemplified by the association widely observed in the Kuroko ores of Japan. At the extreme lower end of this continuum are the mackinawites in the remarkable vein ores of the Moschellandsberg Hg deposits described by Krupp (1994). The
 223 224 225 226 227 228 229 230 	temperature monosulfide solid solution or intermediate solid solution, which appear as anomalous pseudo-exsolution features in chalcopyrite, pentlandite and pyrrhotite are the result of lower temperature reactions of late stage convecting sulfidic solutions with the original exsolution products. There is, therefore, a continuum between the magmatic mackinawites and the hydrothermal mackinawites, typically exemplified by the association widely observed in the Kuroko ores of Japan. At the extreme lower end of this continuum are the mackinawites in the remarkable vein ores of the Moschellandsberg Hg deposits described by Krupp (1994). The mackinawites occurring in this association occur as distinct euhedral crystals up to 100 µm in

233 $\sigma = 0.01$ apfu. Two samples had trace Ni (<0.03 apfu) but the Me:S ratio is still unity.

234

235 Statistical analysis of the results.

236

237 Table A1 lists 103 published mackinawite analyses which meet the analytic criteria 238 mentioned above. As pointed out by Limpert et al. (2001) and Rickard (2019) most natural 239 distributions follow log-normal distributions. This results from the multiplicative hypothesis of 240 elementary errors which states that if a random variation is the product of several random effects, 241 a log-normal distribution must result (Heath, 1967). The average of a log-normal distribution is 242 the geometric mean (\bar{x}^*) . The geometric mean composition of the 103 mackinawite analyses 243 listed in Table A1 is Me_{1.0}S. This is similar to the arithmetic mean (\bar{x}) and the total data can 244 conveniently be treated with the more familiar additive rather than multiplicative statistics. 245 The approximation to the normal distribution also suggests that the variables are random and 246 not systematic. One area of potential systematic errors in these EPMA analyses is the 247 uncertainties in the analyses of the lightest constituent, sulfur. The problem here, especially with 248 early EPMA analyses, is that S is a relatively light element and that the standard often used was 249 pyrite, which has both considerable variation from mackinawite and also uncertainties in its 250 composition (cf. Rickard, 2021). In order to test this hypothesis, all total analytic errors are 251 loaded on to the S analyses in Table A2 and the statistical parameters for the corrected data are 252 compared with the original data in Table 4.

253 [Table 4 here]

The results show that the variation in the individual metal concentrations and therefore mackinawite formulae, is small but that the Me:S ratio condenses to 1.00 for both the arithmetic

256	and geometric means. The 1σ error increases from 0.05 apfu to 0.06 apfu. This suggests that
257	there is a systematic error in the data but that its effect is small. Dispensing the total error across
258	all the analyses, and not just S, does not, of course, change the results measurably.
259	The uncertainties in the EPMA analyses are not presented in the papers which reported the
260	mackinawite analyses listed in Table A1. The errors in the analytic totals are ±2 wt% for 2σ and
261	this is taken as a minimum measure of the uncertainties in the analytic data. Uncertainties
262	commonly used in EPMA analyses are \pm 5 wt% and this appears to derive from Heinrich and
263	Yakowitz (1975). Applying this error to the minor element analyses gives an uncertainty of
264	about ± 0.1 apfu for each element.
265	[Table 5 here]
266	The areas where the use of geometric means and standard deviations becomes important is in
267	the minor element analyses. Statistical parameters for the metal analyses in the data listed in
268	Table A1 are summarized in Table 5. The arithmetic average of the reported Cu analyses is 1.00
269	wt% and 1σ is 1.27. However, a large number of samples (59 of the listed 103) have no reported
270	Cu concentrations. This does not equate to zero wt% literally but merely means that the Cu
271	contents of the samples were below the EPMA detection limits. The arithmetic average value (\bar{x})
272	for all the listed mackinawites, including those with Cu concentrations below the detection limit,
273	is 0.45 wt % Cu and the arithmetic standard deviation (σ) is 0.98. This means that the range of
274	<i>ca</i> .70% of the Cu values ($\pm 1\sigma$) is -0.53 wt% to 1.43 wt%. The negative value is obviously
275	impossible so the arithmetic average – which assumes a normal distribution - is invalid. The
276	distribution is thus highly skewed and the mean Cu value is better described by the multiplicative
277	or geometric mean. The weakness of the geometric mean is that analytic totals of 0 cannot be

278 included in the analysis. However, there is a work-around that avoids guessing the actual

279	concentration which relates the geometric means and standard deviations to their arithmetic
280	counterparts (Rickard, 2019). This suggests that the geometric mean value (\bar{x}^*) of the Cu
281	analyses is 0.18 wt% and the geometric standard deviation (σ^*) is 3.78. The range of Cu analyses
282	then described by the 95% confidence interval $(\bar{x}^*/(\sigma^*)^2)$ is 0.01-2.64 wt%. The statistical
283	parameters for the Cu distribution diverge considerably from those for Co and Ni. (Table 5).
284	
285 286	DISCUSSION
287	The results show that mackinawite is $Fe_{1.0}S$ and that apparent deviations from this
288	stoichiometry are well within the range of analytic errors of the methods used. Where additional
289	exotic metals, such as Ni, Co and Cu occur, the metal:sulfur ratio (MeS) remains at unity.
290	The mackinawites can be conveniently classified as mackinawite, cobaltian mackinawite,
291	nickelian mackinawite and cupriferous mackinawite dependent on their dominant minor element,
292	which is consistent with other sulfide minerals. In this I use a conventional lower concentration
293	of 0.1wt% (which converts to ~ 0.01 apfu) to distinguish minor from trace elements but insist on
294	no upper limit. All the mackinawites show average stoichiometric Me _{1.0} S compositions.
295	Cobaltian mackinawite
296	Cobaltian mackinawite is defined as mackinawite where Co is the dominant minor metal and
297	where its concentration is greater than 0.1wt%. Clark (1970) reported 18.5 wt% Co in large
298	mackinawite crystals (\leq 500µm) from the Kilembe Cu-Co deposit, Uganda but no further details
299	have been presented. Otherwise the maximum amount of Co in these data is 12.68 wt% (0.19
300	apfu) in a mackinawite from the Shimokama deposit, Japan (Mariko, 1988). This is a Kuroko -
301	style volcanogenic massive sulfide deposit in Hokkaido and is a 13Ma old equivalent of current
302	deep ocean hydrothermal vent deposits. The mackinawite occurs as a herringbone replacement

303	of chalcopyrite with cubanite and pyrrhotite (Bamba and Motoyoshi, 1985). Bamba and
304	Motoyoshi (1985) also listed two EPMA analyses of Co-rich mackinawites from the Shimokama
305	mine but these seem to have been contaminated with Cu from the enclosing chalcopyrite,
306	although one large grain which appears to be about 100 μ m long and up to 20 μ m wide may be
307	the source of the virtually Cu-free analysis listed in Table A1.
308	Nickelian mackinawite.
309	Nickelian mackinawite is defined as mackinawite where Ni is the dominant minor metal and
310	where its concentration is greater than 0.1wt%. As long ago as 1969, Ni-rich mackinawites were
311	reported. For example, Vaughan (1969) reported 18.7 wt% Ni in a mackinawite from
312	Vlakfontein, RSA. Unfortunately, there are no S analyses listed and the totals are also missing.
313	Papunen (1970) reported that mackinawite was locally the main Ni-bearing mineral in the Hitura
314	Ni deposit, Finland. These early reports may have helped establish the mistaken view that
315	mackinawite was an iron nickel sulfide. The maximum amount of Ni in nickelian mackinawite in
316	Table A1 is 22.7 wt% (Lorand, 1989).
317	Cupriferous mackinawite
318	Cupriferous mackinawite is defined as mackinawite where Cu is the dominant minor metal
319	and where its concentration is greater than 0.1wt%. The problem here is that cupriferous
320	mackinawites are often reported from mackinawite inclusions within chalcopyrite. As noted
321	above, with the older EPMAs a relatively large volume of the section may have been
322	interrogated by the beam and the analyses may include Cu from the enclosing chalcopyrite. Zôka
323	et al. (1973) specifically addressed this problem and concluded that the EPMA analyses of 5 of
324	their mackinawite samples (including one from the Mackinaw type locality) were unsafe since
325	the reported Cu vales were undoubtedly due to excitation of the enclosing chalcopyrite. The

326 highest Cu contents reported for mackinawite are both from Zôka et al's analyses and refer to 327 mackinawites enclosed by chalcopyrite. These two analyses, from the Shimokama (8.80 wt%) 328 and Kawayama (6.80 wt%) mines from the Japanese Kuroko deposits are the only mackinawites 329 listed having $Cu \ge 0.1$ apfu. Analyses of mackinawites from these deposits by Takeno (1965) 330 and Mariko (1988) did not report similarly high Cu contents. It appears that Cu is not an 331 abundant minor element in mackinawite. 332 Other minor elements in mackinawite 333 A large number of other elements have been reported as being associated chemically with 334 mackinawite – or at least with the H₂S produced by acid treatment of sediments which may 335 evidence the presence of iron monosulfides. Widespread experimentation with various forms of 336 nanoparticulate FeS has evidenced that many elements, including deleterious compounds like As 337 for example, can be removed from solution by a variety of processes involving FeS including 338 surface redox reactions (Cr, Se, U), adsorption (Mn, As, U), and coprecipitation (Mn, Co, Ni, 339 Cu, Zn, As, Tc, Cd, Re, Hg, Pb) (see Rickard, 2012 for a review). However, there is little 340 evidence that these elements are significant in mackinawite minerals. 341 One of the most egregious minor elements reported in mackinawite is Cr (Clark, 1969). Here 342 up to 9 wt% Cr was reported in preliminary analyses of apparently compositionally zoned 343 mackinawite grains up to 1-5µm in diameter in serpentinites from Portugal. The mackinawite 344 grains were analyzed with an early Cameca Microsonde Mark 1 at University College, London 345 University. The analyses have not been confirmed. Small quantities of silver (0.02-0.07 wt %) were reported in 2 mackinawite samples for the 346 347 Noril'sk ores in parkerite (Ni₃Bi₂S₂)-bearing veins by Spiridinov et al. (2008). The mineral 348 association also includes native Ag but the mackinawite seems mostly associated with

349	chalcopyrite and magnetite. High concentrations of Ag (7.1 wt %) were also reported from EDS
350	(energy dispersive) analyses of mackinawite, associated with chalcopyrite and pyrrhotite from
351	the Zona Basal shear zone gold deposit, SE Brasil (Alves et al., 2022) but no other information
352	on the mackinawite composition was recorded.
353	Substitution versus addition
354	The electronic consequences of excess metal being included in the mackinawite structure as
355	suggested by the formulation $Fe_{1+x}S$ has been studied theoretically by Brgoch and Miller (2012).
356	However, their model of interstitial metal atoms contrasts with the data of Kwon et al. (2015)
357	which suggests that exotic metal atoms substitute for Fe rather than are added interstitially
358	between the Fe-S sheets. In fact, Brgoch and Miller (2012) only considered reports of
359	mackinawite compositions between $Fe_{1.00}S$ and $Fe_{1.15}S$ and appear to have ignored reported
360	compositions between $Fe_{0.9}S$ and $Fe_{1.0}S$. The difference between the two theories is that the idea
361	that exotic metal ions are included between the Fe-S sheets in the mackinawite structure will
362	produce non-stoichiometry so that mackinawite will have a $Me_{1+x}S$ composition. The hypothesis
363	that the exotic metals substitute for Fe in the structure will tend to produce a more stoichiometric
364	MeS composition. Kwon et al. (2015) neatly divided the two hypotheses into two mackinawite
365	formulae:
366	(1) $(Fe_{1-x}M_x)S$ where M = Cu +Co +Ni substitute for Fe
367	(2) FeM _x S where $M = Cu + Co + Ni$ are added to mackinawite intercalated between the Fe-
368	S sheets.
369	The data listed in Table A1 have been interrogated statistically and the results are
370	summarized in FIGURE 1 and in Figure A1.
371	[Figure 1 here]

372	Obviously, if Co +Ni (+Cu) substitute for Fe in the mackinawite formula there will be a				
373	negative correlation between the atoms per formula unit (apfu) for Fe and the apfu for Co +Ni				
374	(+Cu) and a plot of these variables will give a slope of -1 and an intersect at the Fe axis of 1.00 if				
375	the mackinawite formula is indeed Me _{1.00} S. FIGURE 1 shows that this is indeed the case – at				
376	least within the uncertainty of the EPMA data (\pm 5 wt% or \pm 0.1 apfu). The results show that the				
377	best fit to the data shows a slope of -0.81 and an intercept of 0.84 with a regression coefficient				
378	(R^2) of 0.71 which is quite surprising considering the probable uncertainties in the data. Indeed,				
379	forcing the regression line through $Fe_{1.00}S$ gives a slope of -0.99 although R^2 is just 0.68. The				
380	analysis supports Kwon et al's (2015) conclusion based on molecular modelling, that Co + Ni				
381	(+Cu) are substituted for Fe in mackinawite. It also suggests that mackinawite composition is				
382	stoichiometric and indistinguishable from Me _{1.0} S.				
383	The question of whether the Cu analyses presented in the mackinawite analyses are real or a				
384	function of contamination of the mackinawite analyses through the EPMA exciting Cu from				
385	enclosing chalcopyrite is also examined in FIGURE 1. The regression coefficients and the slopes				
386	of the lines forced through $Fe_{1.00}S$ are very similar whether (Co + Ni) or (Co + Ni +Cu) are				
387	considered. However, the plot of Cu afpu versus Fe afpu (Figure A1(a)) is a pure scattergram.				
388	This suggests that Cu can substitute for Fe in mackinawite but that there is substantial analytical				
389	uncertainty in the Cu data, as discussed above. There is, furthermore, no correlation between				
390	(Co + Ni) and Cu.				
391	The data in Table A3 also show that there is no significant correlation between the Co and				
392	Ni contents of mackinawite. However, the plot of Co versus Ni (Fig.A1(d)) suggests a				
393	correlation between Co and Ni in cobaltian mackinawites with Co > 0.01 apfu (>6.8 wt%) and				
394	Ni. Eighteen of the 103 reported mackinawites are Co-rich and they reveal a regression				

395	coefficient for Co versus Ni of 0.87 with a negative slope of the trend line of 3.4. If Co replaced
396	Ni in the mackinawite structure on an atom for atom basis then we might expect a slope
397	approaching -1. The observed correlation between Co and Ni for these Co- rich mackinawites
398	most probably reflects the composition of the solutions in which the mackinawite crystals grew
399	combined with molecular effects of Co and Ni substituting for Fe the mackinawite structure. It
400	might be an interesting area of research. Overall, however, the data suggests that cobaltian and
401	nickelian mackinawites are essentially unrelated species: there are a similar number of nickelian
402	mackinawites with no detectable Co.
403	
404 405	IMPLICATIONS
406	The composition of a mineral is a fundamental property and, in the absence of a definitive
407	formulation, mineral identification is impossible. This means that both the reporter of the
408	mineral and the reader of the report will be uncertain about what is actually being described. In
409	the case of mackinawite, the formulation (Fe,Ni)S often seen in origin of life discussions, for
410	example, is not necessarily wrong – since nickelian mackinawites exist – but it does raise
411	questions why this particular variant is chosen and how it forms in competition with other
412	compositional variants. This is especially the case in the absence of any chemical analyses. The
413	processes involved in the formation of mackinawite in magmatic settings will remain unclear in
414	the absence of an appreciation of the intrinsic stoichiometry of the phase. That is that Ni and Co
415	– and possibly Cu – substitute for Fe in the mackinawite structure rather than being intercalated
416	between Fe-S layers.
417	Even simple balanced chemical equations involving mackinawite are likely to be wrong if
418	the composition of mackinawite is assumed to be non-stoichiometric. It is obvious, for

419	example, that the composition $Fe_{1+x}S$ cannot be balanced electronically with normally charged
420	Fe and S ions. By contrast, $Fe_{1-x}S$, the usual representation of pyrrhotite compositions, is
421	readily electronically balanced with oxidized Fe^{3+} and $\mathrm{S}_{\mathrm{n}}(\text{-II})$ ions. The finding that
422	mackinawite is stoichiometric has considerable implications in thermodynamic modelling of
423	geologic processes involving mackinawite as well as understanding the chemistry of a number
424	of key industrial processes. This has been long realized by the compilers of the thermodynamic
425	datasets used in popular geochemical modelling programs, such as Geochemist's Workbench
426	TM \square , where the composition of mackinawite is listed in their thermodynamic database as
427	stoichiometric FeS.
428	The result of this study that the composition of mackinawite in higher temperature
429	associations is the same as that reported for synthetic ambient temperature mackinawite - and
430	thus, by extension, to sedimentary mackinawite – resolves an uncomfortable anomaly in the
431	mineralogical and geochemical literature. It is obvious that, a priori, a mineral must have the
432	same composition at low temperatures as at high temperatures – otherwise they are distinct
433	phases. Chemical composition is the more fundamental characteristic of a mineral for, whereas
434	minerals with the same composition and different crystal structures are widespread, minerals
435	with different compositions and the same structure are defined as different species.
436	Mackinawites often contain substantial amounts of Ni and Co and these are better described
437	as nickelian and cobaltian mackinawites depending on their dominant minor element. The
438	amounts of Ni and Co range up to a little over 10 wt% except for one outlier Ni analysis of 22.7
439	wt % (Lorand 1989). The analytic data show that these mackinawites retain their metal: sulfur
440	stoichiometry confirming molecular modelling data which suggests that Ni and Co substitute for
441	Fe in mackinawite rather than being trapped in the interstices between the Fe-S sheets in the

442 mackinawite structure.

443	This result suggests that crystallization of mackinawite is accompanied by the permanent
444	removal of the large variety of exotic ions that have been reported to be absorbed onto
445	mackinawite experimentally and, by inductive reasoning, assumed to be sequestered by
446	mackinawite in natural waters. However, there are little data on the concentration of anions, such
447	as As and Se, in natural mackinawite. Even so, it would be expected that, if such variants were
448	widespread, they would have been detected by the microprobe analyses. The implication is that
449	sequestering of deleterious exotic ions by mackinawite in water treatment systems, for example,
450	does not result in their permanent removal.
451	The reported amounts of Cu in mackinawite during EPMA analyses are often affected by
452	excitation of Cu in enclosing Cu minerals such as chalcopyrite. The amounts of Cu reported
453	ranges up to around 3 wt% with occasional outliers such as the early analysis of 4.70 wt % Cu by
454	Chamberlain and Delabio (1965). Even so, this equates to < 0.1 apfu Cu in the mackinawite
455	formula and has little effect on the mineral's stoichiometry. The question of whether Cu
456	substitutes for Fe in mackinawite cannot be directly resolved by the analytic data collected in this
457	study: the data are subject to substantial potential analytic errors and the amounts of Cu are
458	relatively small and have little effect on the mineral stoichiometry.
459 460 461	ACKNOWLEDGEMENTS
462	James Murowchick reviewed an early draft of this paper. I thank Christian Schröder for his
463	valuable comments on the original submission. The excellent work of Jacqueline Roach and her
464	colleagues in the Cardiff University InterLibrary Loan Team in tracking down many of the more
465	esoteric citations is much appreciated.

466 467	REFERENCES CITED
468	Adams, G.E. and Bishop, F.C., 1986. The olivine — clinopyroxene geobarometer: experimental
469	results in the CaO-FeO-MgO-SiO2 system. Contributions to Mineralogy and Petrology, 94(2):
470	230-237.
471	Agrosì, G., Tempesta, G., Mele, D., Allegretta, I., Terzano, R., Shirey, S.B., Pearson, G.D., and
472	Nestola, F. (2017) Non-destructive, multi-method, internal analysis of multiple inclusions in a
473	single diamond: First occurrence of mackinawite (Fe,Ni)1+xS. American Mineralogist, 102(11),
474	2235-2243.
475	Alves, F.E.A., Corrêa Neto, A.V., Brando Soares, M., Neumann, R., da Silva, G.M., Silva, G.P.,
476	Varca, A.C., de Sampaio, P.A.B., and Silveira, V.D. (2022) Genetic implications from textures,
477	mineralogy, and geochemistry: the case of Zona Basal-a singular polymetallic occurrence in the
478	Quadrilátero Ferrífero, Brazil. Contributions to Mineralogy and Petrology, 177(4), 48.
479	Anonymous. (2022a) Mackinawite. Wikipedia, 2022. Wikipedia, The Free Encyclopedia.
480	(2022b) Mackinawite. Mindat.org, 2022. Hudson Institute of Mineralogy, Keswick, VA
481	22947, USA.
482	Anthony, J.W., Bideaux, R.A., Bladh, K.W., and Nichols, M.C. (2003) Mackinawite
483	(Fe,Ni)1+xS (x=0 to 0.11). In J.W. Anthony, R.A. Bideaux, K.W. Bladh, and M.C. Nichols, Eds.
484	Handbook of Mineralogy. Mineralogical Society of America.
485	Ashley, P.M. (1975) Opaque mineral assemblage formed duringserpentinization in the Coolac
486	ultramafic belt, New South Wales. Journal of the Geological Society of Australia, 22, 91-102.
487	Babkine, J., and Conquéré, F. (1968) Nouvelles données sur la composition de la mackinawite
488	dans les roches basiques et ultrabasiques. Comptes rendus de l'Académie des Sciences, Paris.
489	

- 490 267(3), 267-270.
- 491 Baidya, A.S., Sen, A., and Pal, D.C. (2018) Textures and compositions of cobalt pentlandite and
- 492 cobaltian mackinawite from the Madan-Kudan copper deposit, Khetri Copper Belt, Rajasthan,
- 493 India. Journal of Earth System Science. 127, 56.
- 494 Bamba, T., and Motoyoshi, Y. (1985) Studies on massive sulfide ores from the Shimokawa
- 495 Mine, Hokkaido, Japan. Mining Geology, 35(3), 211-225.
- 496 Barthelmy, S.D. (2022) Mackinawite mineral data. Webmineral.com, 2022.
- 497 Berner, R.A. (1962) Tetragonal iron sulfide. Science, 137(3531), 669-670.
- 498 Bonev, I.K., Krischev, G., Neikov, H.N., and Georgiev, V.M. (1989) Mackinawite and greigite
- in iron sulphide concretions from Black Sea sediments. Comptes rendus de l'Academie bulgare
- 500 des Sciences, 42(2), 97-100.
- 501 Brgoch, J., and Miller, G.J. (2012) Validation of Interstitial Iron and Consequences of
- 502 Nonstoichiometry in Mackinawite (Fe1+xS). Journal of Physical Chemistry A, 116(9), 2234-
- 503 2243.
- 504 Burton, E.D., Bush, R.T., and Sullivan, L.A. (2006) Sedimentary iron geochemistry in acidic
- 505 waterways associated with coastal lowland acid sulfate soils. Geochimica et Cosmochimica
- 506 Acta, 70(22), 5455-5468.
- 507 Chamberlain, J.A., and Delabio, R.N. (1965) Mackinawite and valleriite in the Muskox intrusion.
- 508 American Mineralogist, 50(5-6), 682-695.
- 509 Clark, A.H. (1966) Some comments on the compositions and stability relations of mackinawite.
- 510 Neues Jahrbuch für Mineralogie, Monatshefte, 10, 300-304.
- 511 -. (1970) Nickelian mackinawite from Vlakfontein-Transvaal a discussion. American
- 512 Mineralogist, 55(9-10), 1802-1807.

- 513 Clark, A.H. (1969) Preliminary observations on chromian mackinawite an associated native iron,
- 514 Mina do Abessedo, Vinhais, Portugal. Neues Jahrbuch für Mineralogie. Abhandlungen, ., 6, 282515 288.
- 516 Clark, A.H., and Clark, A.M. (1968) Electron microprobe analysis of mackinawite from the
- 517 Ylojarvi deposit, Finland. Neues Jahrbuch für Mineralogie. Abhandlungen, 6, 259-268.
- 518 Clark, A.H., and Clark, A.M. (1968) Electron microprobe analysis of mackinawite from the
- 519 Ylojarvi deposit, Finland. Neues Jahrbuch für Mineralogie. Abhandlungen, 6, 259-268.
- 520 Evans, H.T., Milton, C., Chao, E.C.T., Adler, I., Mead, C., Ingram, B., and Berner, R.A. (1964)
- 521 Vallerite and the new iron sulfide, mackinawite. USGS Professional Paper 475-D, 475 D, 64-69.
- 522 Gaines, R.V., Skinner, H.C.W., Foord, E.E., Mason, B., and Rosenzweig, A. (1997) Dana's New
- 523 Mineralogy. John Wiley and Sons. Inc., New York.
- Heath, D.F. (1967) Normal or log-normal appropriate distributions. Nature, 213(5081), 11591160.
- 526 Heinrich, K.F.J., and Yakowitz, H. (1975) Absorption of primary x-rays in electron-probe
- 527 microanalysis. Analytical Chemistry, 47(14), 2408-2411.
- 528 Jennings, E.S., Wade, J., Laurenz, V. and Petitgirard, S., 2019. Diamond Anvil Cell Partitioning
- 529 Experiments for Accretion and Core Formation: Testing the Limitations of Electron Microprobe
- 530 Analysis. Microscopy and Microanalysis, 25(1): 1-10.
- 531 Krupp, R.E. (1994) Phase relations and phase transformations between the low- temperature iron
- sulfides mackinawite, greigite, and smythite. European Journal of Mineralogy, 6(2), 265-278.
- 533 Kuovo, O., Vuorelainen, Y., and Long, J.V.P. (1963) A tetragonal iron sulfide. American
- 534 Mineralogist, 48, 511-524.
- 535 Kwon, K.D., Refson, K., and Sposito, G. (2015) Transition metal incorporation into mackinawite

- 536 (tetragonal FeS). American Mineralogist, 100(7), 1509-1517.
- 537 Lennie, A.R., Redfern, S.A.T., Schofield, P.F., and Vaughan, D.J. (1995) Synthesis and Rietveld
- 538 crystal structure refinement of mackinawite, tetragonal FeS. Mineralogical Magazine, 59, 677-

539 <u>683</u>.

- 540 Limpert, E., Stahel, W.A., and Abbt, M. (2001) Log-normal distributions across the sciences:
- 541 Keys and clues. Bioscience, 51(5), 341-352.
- 542 Lorand, J.P. (1989) Mineralogy and chemistry of Cu-Fe-Ni sulfides in orogenic-type spinel
- 543 peridotite bodies from Ariege (Northeastern Pyrenees, France). Contributions to Mineralogy and
- 544 Petrology, 103, 333-345.
- 545 Mariko, T. (1988) Ores and ore minerals from the volcanogenic massive sulfide deposits of the
- 546 Shimokawa Mine, Hokkaido, Japan. Mining Geology, 38, 233-246.
- 547 Meyer, F.H., Riggs, O.L., McGlasson, R.L., and Sudbury, J.D. (1958) Corrosion products of
- 548 mild steel in hydrogen sulfide environments. Corrosion, 14(2), 109-115.
- 549 Morin, G., Martin, N., Gelabert, A., Viollier, E., Raimonet, M., and Brest, J. (2016) Minéralogie
- du phosphore dans les sédiments de la Seine. PIREN-Seine, 6, p. 10. Centre National de la
- 551 Recherche Scientifique, Paris.
- 552 Mücke, A. (2017) Review on mackinawite and valleriite: Formulae, localities, associations and
- 553 intergrowths of the minerals, mode of formation and optical features in reflected light. Journal of
- 554 Earth Science and Climatic Change, 8(11). DOI: 10.4172/2157-7617.1000419
- 555 Mukherjee, A.D. (1976) Compositional variation of naturally occurring mackinawite. Neues
- 556 Jahrbuch für Mineralogie. Monatshefte, 2, 69-79.
- 557 Mukherjee, A.D., and Sen, P.P. (1991) Compositional variations in mackinawites from the
- 558 Chandmari mine of Khetri Copper Beit, Rajasthan. Journal of the Geological Society of India,

- 559 38, 96-100.
- 560 Nilsen, O., and Mukherjee, A.D. (1972) Geology of the Kvickne mines with special reference to
- the sulphide mineralisation. Norsk Geologisk Tidsksrift, 52, 151-192.
- 562 Papunen, H. (1970) Sulphide mineralogy of the Kotalahti and Hitura nickel-copper ores, Finland.
- 563 109, Annales Academiæ Scientiarum Fennicæ, Ser A III, 82 pp.
- 564 Posfai, M., Buseck, P.R., Bazylinski, D.A., and Frankel, R.B. (1998) Iron sulfides from
- 565 magnetotactic bacteria: Structure, composition, and phase transitions. American Mineralogist,
- 566 83(11-12), 1469-1481
- 567 Ramdohr, P. (1973) The Opaque Minerals in Stony Meteorites. 245 p. Elsevier Publishing
- 568 Company, Amsterdam.
- 569 Rickard, D. (1969) The chemistry of iron sulphide formation at low temperatures. Stockholm
- 570 Contributions to Geology., 20(4), 67-95.
- 571 -. (2012) Sulfidic Sediments and Sedimentrary Rocks. 801p. Elsevier, Amsterdam.
- 572 -. (2012) Metal sequestration by sedimentary iron sulfides. Developments on Sedimentology, 65,
- 573 287-317.
- 574 -. (2019) Sedimentary pyrite framboid size-frequency distributions: A meta-analysis.
- 575 Palaeogeography Palaeoclimatology Palaeoecology, 522, 62-75.
- 576 -. (2021) Framboids. 234 p. Oxford University Press, New York, NY.
- 577 Rickard, D., and Morse, J.W. (2005) Acid volatile sulfide (AVS). Marine Chemistry, 97(3-4),
- 578 141-197.
- 579 Rickard, D., Griffith, A., Oldroyd, A., Butler, I.B., Lopez-Capel, E., Manning, D.A.C., and
- 580 Apperley, D.C. (2006) The composition of nanoparticulate mackinawite, tetragonal iron(II)
- 581 monosulfide. Chemical Geology, 235(3-4), 286-298.

- 582 Russell, M.J., and Ponce, A. (2020) Six 'must-have' minerals for life's emergence: olivine,
- 583 pyrrhotite, bridgmanite, serpentine, fougerite and mackinawite. Life (Basel), 10(11).
- 584 Sarkar, S.C. (1971) Mackinawite from the sulfide ores of the Singbaum copper belt, India.
- 585 American Mineralogist 56, 1312-1318.
- 586 Shoesmith, D.W., Taylor, P., Bailey, M.G., and Owen, D.G. (1980) The formation of ferrous
- 587 monosulfide polymorphs during the corrosion of iron by aqueous hydrogen-sulfide at 21°C.
- Journal of the Electrochemical Society, 127(5), 1007-1015.
- 589 Spiridinov, E.M., Gritsenko, Y.D., and Ponomarenko, A.I. (2008) Metamorphic-hydrothermal
- parkerite and associated Minerals in the Noril'sk ore field. Geology of Ore Deposits, 50, 755-
- 591 762.
- 592 Sweeney, R.E., and Kaplan, I.R. (1973) Pyrite framboid formation: Laboratory synthesis and
- 593 marine sediments. Economic Geology 68, 618-634.
- 594 Takeno, S. (1965) A note on mackinawite (so-called valleriite) from the Kawayama mine, Japan.
- 595 Geological Reports of Hiroshima Univ., 14.
- 596 Vaughan, D.J. (1969) Nickelian mackinawite from Vlakfontein, Transvaal. American
- 597 Mineralogist, 54(7-8), 1190-1193.
- 598 Vavtar, F. (1995) Erzmikroskopische Untersuchungen an Silberpentlanditen Der Cu-Fe-
- 599 Erzparagenese von Axams (Stubaikristallin, Tirol, Österreich). Geologisch-Paläontologische
- 600 Mitteilungen Innsbruck 20, 313-334.
- 601 Voigt, B., Moore, W., Manno, M., Walter, J., Jeremiason, J.D., Aydil, E.S., and Leighton, C.
- 602 (2019) Transport Evidence for Sulfur Vacancies as the Origin of Unintentional n-Type Doping in
- 603 Pyrite FeS₂. American Chemical Society Applied Materials and Interfaces, 11(17), 15552-15563.
- Ward, J.C. (1970) The structure and properties of some iron sulphides. Reviews of Pure and

- 605 Applied Chemistry, 20, 175-206.
- 406 Yang, Y., Chen, T.H., Sumona, M., Sen Gupta, B., Sun, Y.B., Hu, Z.H., and Zhan, X.M. (2017)
- 607 Utilization of iron sulfides for wastewater treatment: a critical review. Reviews in Environmental
- 608 Science and Bio-Technology, 16(2), 289-308.
- 609 Zôka, H., Taylor, L.A., and Takeno, S. (1973) Compositional variations in natural mackinawites
- 610 and the result of heating experiments. Journal of Science of the Hiroshima University. Series C,
- 611 Geology and Mineralogy, 7, 37-53.
- 612
- 613

614	Figure captions
615	

- 616
- 617 FIGURE 1.

618 Plots of (a) Co+Ni (afpu) versus Fe (apfu) and (b) Cu+Ni+Co (afpu) and versus Fe (apfu). The

- 619 solid lines and their equations and regression coefficients (\mathbb{R}^2) are the best fit for the data; the
- 620 dashed lines and their equations and regression coefficients (R^2) are for a best fit line forced
- 621 through $Fe_{1.00}S$. Error bars for the data are not shown.

622

```
FIGURE A1.
```

- 624 (a-c) Plots of Cu, Ni and Co apfu versus Fe afpu for mackinawites listed in Table A3 showing
- 625 scattergrams. (d) Plot of Co versus Ni afpu for mackinawites listed in Supplementary Data 3
- 626 showing lack of any correlation. (e) Scattergram of Cu versus (Co+Ni) afpu for mackinawites

627 listed in Table A3.

628

Tables

TABLE 1. Examples in common current mineralogical reference databases of definitions composition of mackinawite.

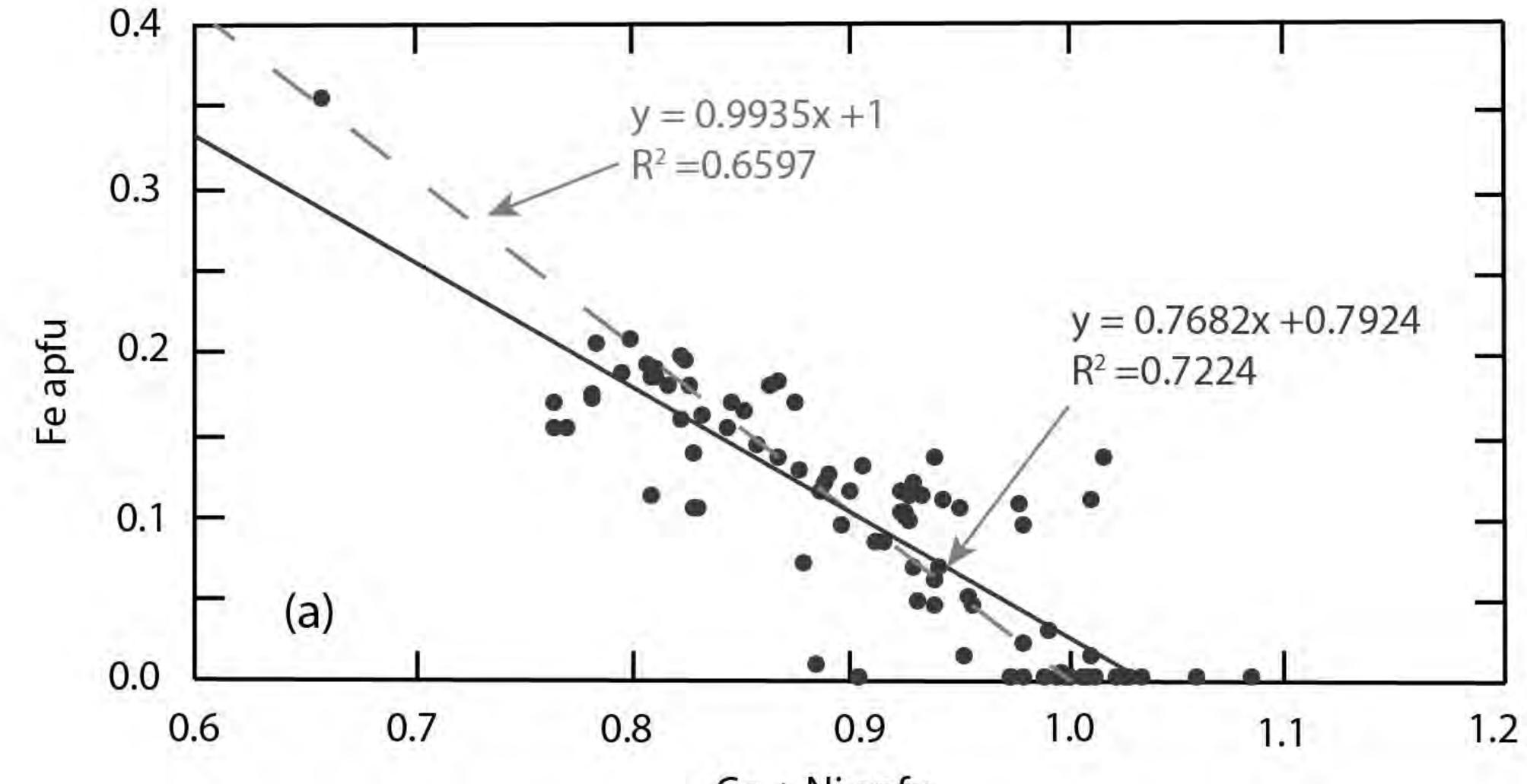
Mackinawite	Source		
composition			
(Fe,Ni) _{1+x} S	Wikipedia	Anonymous (2022a)	
(Fe,Ni) ₉ S ₈	Mindat.org	Anonymous (2022b)	
(Fe,Ni) S _{0.9}	Webmineral.com	Barthelmy (2022)	
(Fe,Ni) S _{0.9}	Dana's New Mineralogy	Gaines et al. (1997)	
$(Fe,Ni)_{1+x}S(x = 0 \text{ to } 0.11)$	Handbook of Mineralogy	Anthony et al. (2003)	

formulation	source
Fe _{0.91} S	Berner (1962)
Fe _{0.91} S	Rickard (1969)
$Fe_{1.09}S - Fe_{1.15}S$	Sweeney and Kaplan (1973)
$Fe_{0.995}S - Fe_{1.023}S$	Ward (1970)
Fe _{1.00} S	Rickard et al. (2006)

TABLE 2. Examples of wet chemical analyses of synthetic mackinawite

Citation	Model number	Manufacturer	Year introduced
Mukherjee and Sen (1991)	EMX-SM	ARL	1960
Mariko (1988)	JXA-50A	JEOL	1971
Mücke (2017)	SEMQ-II	ARL	1978
Krupp (1994)	CAMEBAX MICROBEAM	CAMECA	1982
Baidya et al. (2018)	SX-100	CAMECA	1994

TABLE 3. Electron probe microanalytic systems used by some cited investigations of mackinawite compositions.


TABLE 4. Evidence for systematic error in sulfur analyses. Weight percentage (wt %) and metal:S) in atoms per formula unit (apfu) sulfur analyses corrected for divergence from 100 wt% for total analyses (S*) compared with uncorrected, reported S analyses (S). Data extracted from Appendices 1 and 3. Arithmetic average (\bar{x}) and standard deviation (σ) compared with geometric mean (\bar{x}^*) and geometric standard deviations (σ^*) and ranges at the 95% confidence interval ($\bar{x}^* x/(\sigma^*)^2$ where x/ is the multiplicative equivalent of the arithmetic \pm).

	S wt %	S* wt %	Me:S apfu	Me:S* apfu
x	35.72	36.32	1.02	1.00
σ	1.17	1.39	0.05	0.06
\bar{x}^*	35.70	36.32	1.01	1.00
σ^*	1.03	1.04	1.05	1.06
95% range	33.44-38.11	33.65-39.21	0.92-1.12	0.89-1.13

TABLE 5. Summary statistical parameters for mackinawite compositions for data listed in Table A1 (n = 103). The range for a log normal distribution is $\bar{x}^* / (\sigma^*)^2$ and includes around 95% of the data.

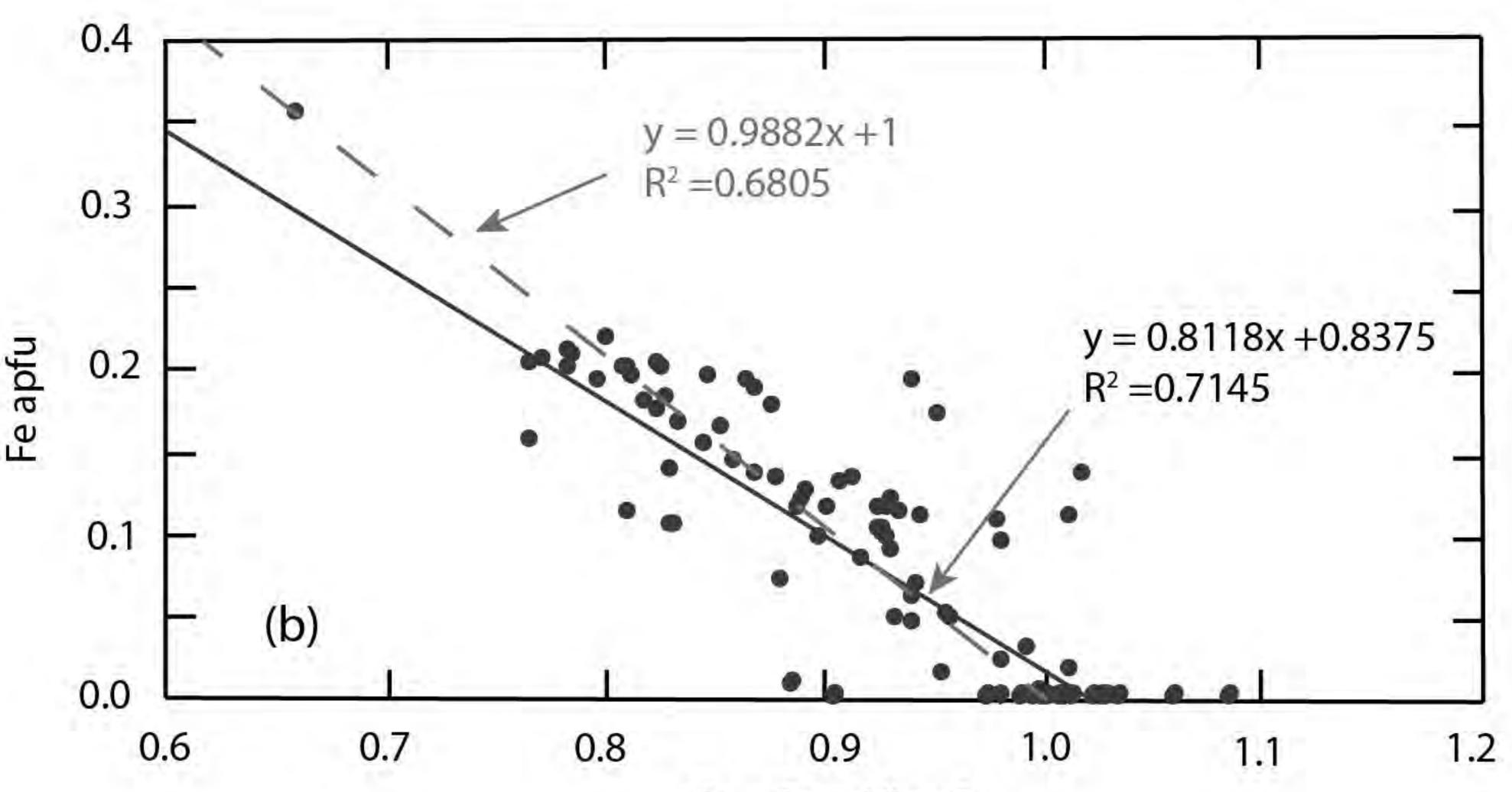

			wt% Cu	wt% Co	wt% Ni
arithmetic	average	\bar{x}	0.45	3.11	2.67
	standard deviation	σ	0.98	4.34	3.34
geometric	mean	\bar{x}^*	0.18	1.81	1.67
	standard deviation	σ^*	3.78	2.83	2.64
	95% range		0.01-2.64	0.23-14.50	0.24-11.62

Figure 1(a)

Co + Ni apfu

Figure 1(b)

Cu +Co + Ni apfu