1 Revision 1

2	The new mineral cuprozheshengite, Pb ₄ CuZn ₂ (AsO ₄) ₂ (PO ₄) ₂ (OH) ₂ , from Yunnan
3	province, China, with site-selective As-P substitution
4	Ningyue Sun ¹ , Ian E. Grey ² , Guowu Li ¹ *, Christian Rewitzer ³ , Yuan Xue ¹ ,
5	William G. Mumme ² , Hongtao Shen ^{4,5} , Jinhua Hao ¹ , Colin M. MacRae ² , Alan
6	Riboldi-Tunnicliffe ⁶ , Stephanie Boer ⁶ , Tim Williams ⁷ , Anthony R. Kampf ⁸
7	¹ Science Research Institute, China University of Geosciences, 100083 Beijing, China
8	² CSIRO Mineral Resources, Private Bag 10, 3169 Clayton South, Victoria, Australia
9	³ Stadtplatz 17, 93437 Furth im Wald, Germany
10	⁴ School of Resources and Environmental Engineering, Wuhan University of
11	Technology, 430070 Wuhan, China
12	⁵ State Key Laboratory of Geological Processes and Mineral Resources, China
13	University of Geosciences, 430074 Wuhan, China
14	⁶ Australian Synchrotron, 800 Blackburn Road, 3168 Clayton, Victoria, Australia
15	⁷ Monash Centre for Electron Microscopy, Monash University, 3800 Clayton, Victoria,
16	Australia
17	⁸ Mineral Sciences Department, Natural History Museum of Los Angeles County, 900
18	Exposition Boulevard, 90007 Los Angeles, CA, USA
19	*Corresponding author: Prof. Guowu Li (liguowu@cugb.edu.cn)
20	Word count:7801 words
21	

22

ABSTRACT

23	Cuprozheshengite (IMA2021-095a), Pb ₄ CuZn ₂ (AsO ₄) ₂ (PO ₄) ₂ (OH) ₂ , is a new
24	mineral species from Sanguozhuang Village and Laochang of Yunnan Province, China.
25	It occurs as sub-mm greenish-blue hemispherical aggregates of microscopic
26	blade-like crystals on hemimorphite and is closely associated with veszelyite and
27	galena. Cuprozheshengite is brittle with irregular fracture, a Mohs hardness of 2½-3,
28	and perfect cleavage on $\{011\}$. The calculated density is 5.91 g/cm ³ . The empirical
29	chemical formula of the holotype is
30	$(Pb_{3.97}Na_{0.04}Ca_{0.01})_{\Sigma 4.02}Cu_{1.06}Zn_{2.09}(AsO_4)_2[(P_{0.84}As_{0.12}Si_{0.01})_{\Sigma 0.97}O_4]_2(OH)_2 \ \ based \ \ on$
31	18 O atoms per formula unit. Cuprozheshengite is triclinic, space group P -1(#2), with
32	unit-cell parameters $a = 4.7977(8)$, $b = 8.5789(8)$, $c = 10.3855(9)$ Å, $\alpha = 97.270(8)^{\circ}$, β
33	= 101.902(12)°, γ = 91.495(11)°, V = 414.30(9) Å ³ , and Z = 1. Cuprozheshengite is a
34	member of dongchuanite group, whose general formula is
35	$A_4^{\text{VI}}B^{\text{IV}}B_2(X1O_4)_2(X2O_4)_2(\text{OH})_2$, where A is an interlayer cation with Pb being
36	dominant; B are transition metals with two crystallographic positions, ^{IV} B has
37	tetrahedral coordination and fully occupied by Zn, while ${}^{VI}B$ has octahedral
38	coordination and dominated by Zn or Cu; X1 and X2 are cations with tetrahedral
39	coordination, occupied by As and P. Like other dongchuanite group minerals, the
40	structural framework of cuprozheshengite is composed of two heteropolyhedral
41	columns along [100]. Type 1 columns are composed of corner-linked $[^{IV}BO_4]$ and
42	[X2O ₄] tetrahedra. Each tetrahedron is 3-connected with other tetrahedra in the
43	columns. Type 2 columns have alternating [VIBO4(OH)2] octahedra with pairs of

44	corner-connected [X1O ₄] tetrahedra. These two columns are connected by
45	corner-sharing between $[^{IV}BO_4]$ and $[X1O_4]$ tetrahedra to form layers parallel to (011).
46	Pb atoms occupy two independent sites between the layers. Cuprozheshengite is
47	named as the copper analogue of zheshengite. Single-crystal X-ray study reveals that
48	As-P ordering separation in $X1$ and $X2$ sites and As tends to occupy the $X1$ site
49	preferentially. The structural geometric parameters and density functional theory
50	(DFT) calculation study of cuprozheshengite provide critical evidence for the
51	occupancy propensity of As benefiting structural stability, which provides a new idea
52	for studying other rare minerals with atoms ordering at different sites. Besides, the
53	structure and stability studies of cuprozheshengite may have implications for local
54	environmental governance. As a stable mineral in the water and elemental cycles after
55	weathering, cuprozheshengite still has the potential to continually crystallize in the
56	local area. By converting waste pollution into a crystalline form, humans can maintain
57	favorable environmental conditions comparable to geological periods on Earth.
58	
59	Keywords: cuprozheshengite, dongchuanite group, new mineral, crystal structure,
60	DFT calculation, As-P ordering
61	
62	INTRODUCTION
63	Cuprozheshengite (IMA2021-095a), Pb ₄ CuZn ₂ (AsO ₄) ₂ (PO ₄) ₂ (OH) ₂ , is a new

mineral species from Dongchuan and Laochang deposits in Yunnan Province, China.
Other three related isomorphous minerals, dongchuanite, cuprodongchuanite, and

66	zheshengite, have been approved by the Commission on New Minerals, Nomenclature
67	and Classification of the International Mineralogical Association (IMA-CNMNC),
68	and they constitute the dongchuanite group. Cuprozheshengite is the Cu analogue of
69	zheshengite, Pb ₄ ZnZn ₂ (AsO ₄) ₂ (PO ₄) ₂ (OH) ₂ (Li et al. 2022). Their general formula is
70	$A_4^{\text{VI}}B^{\text{IV}}B_2(X1O_4)_2(X2O_4)_2(\text{OH})_2$, where X1 and X2 are cations with tetrahedral
71	coordination, occupied by As and P. Our study shows that cuprozheshengite is a
72	typical example of a mineral with As-P atoms ordered distribution at $X1$ and $X2$ sites,
73	which has an essential enlightenment for mineral classification.

74 As and P, having comparable chemical properties and a tetrahedral geometry, usually form solid solution series minerals (Bajda et al. 2011; Biagioni et al. 2016). 75 To be noted, As and P are generally ordered when homophase substitutions occur at 76 different Specifically, philipsburgite, 77 structural sites. just as $Cu_5Zn[(AsO_4)(PO_4)](OH)_6 H_2O$, is an intermediate member with PO_4/AsO_4 ordering, 78 between kipushite, $Cu_5Zn[(PO_4)(PO_4)](OH)_6 \cdot H_2O$ goldhillite, 79 and 80 Cu₅Zn[(AsO₄)(AsO₄)](OH)₆·H₂O (Ismagilova et al. 2022; Krivovichev et al. 2018). But this ordered distribution lacks systematic research and it is not clear whether it is 81 a statistical coincidence caused by few samples (Ismagilova et al. 2022; Siidra et al. 82 2021; Yakovenchuk et al. 2017). This study's structural geometric parameters and 83 density functional theory (DFT) calculation for cuprozheshengite provide critical 84 85 evidence that this tendency benefits structural stability.

Moreover, the study of the structural stability of As-rich minerals is a key issue in arsenic pollution remediation, which is a global concerned ecological problem

(Rakovan and Pasteris 2015). Various natural (e.g., geothermal heating and mineral 88 weathering) and anthropogenic (e.g., agriculture and mining) processes can contribute 89 to elevated concentrations of As in freshwater (Kocourkova-Vikova et al. 2015; 90 Kunhikrishnan et al. 2017; Liang et al. 2021). Regarding public health, As in water 91 92 ranks among the most significant threats due to its biotoxicity and carcinogenic potential (Antelo et al. 2015). Accordingly, the World Health Organization (WHO) 93 recommends an arsenic limit of 10 μ g/L for drinking water (Xing et al. 2022). The 94 Dongchuan Cu ore field ranks by area as the world's third or fourth-largest 95 96 sediment-hosted strata-bound copper district (Hitzman et al. 2005; Zhao 2012). With intensive mining over the past decade, a large amount of ore has been artificially 97 exposed. Minerals, mainly As-bearing sulfides, undergo weathering, allowing arsenic 98 ions to dissociate and participate in the water cycle. The As content of surface water 99 in the Dongchuan area ranges from 14 to 48 μ g/L, which significantly increases the 100 health risks to the population (Zhao and Yang 2022). Zheshengite and 101 cuprozheshengite provide important insights into our understanding of As in the local 102 water and element cycle. The preference incorporation of As⁵⁺ into specific 103 crystallographic sites as $(AsO_4)^{3-}$ makes it possible to fix As into a stable crystalline 104 structure even when the As concentration is relatively low. The structure and stability 105 studies of cuprozheshengite may have implications for local environmental 106 107 governance.

108

109

OCCURRENCE AND MINERAL DESCRIPTION

110 Occurrence

111	Cuprozheshengite from two localities was investigated: The Dongchuan sample
112	(DC sample) (Fig. 2a) provided by one of the authors (S.N.) was found at the
113	Sanguozhuang Village, Tangdan Town, Dongchuan District, Kunming City, Yunnan
114	Province, China (26° 8' 14" N, 102° 59' 36" E). Another Laochang sample (LC
115	sample) (Fig. 2b) found by the author (C.R.) was from the Laochang mine (23 $^{\circ}$ N,
116	103° E) in the Gejiu base metal sulfide ore field, Gejiu City, Yunnan Province, China.
117	Sanguozhuang Village is located east of the Dongchuan Cu ore field, where
118	sedimentary rock-hosted strata-bound copper deposits are widespread (Zhao et al.
119	2010; Ma et al. 2014). The deposits of this type contain disseminated and veinlet
120	copper sulfides along a regional redox boundary above weakly metamorphosed
121	hematitic sandstones and siltstones within a weakly metamorphosed (Zhao et al.
122	2012). The DC specimens were collected from an abandoned mine about 1.7
123	kilometers northwest of Sanguzhuang Village, where the altitude is over 3000 meters
124	(Fig. 1a, 1b). The primary sulfide minerals forming veins are chalcopyrite, sphalerite,
125	bornite, chalcocite, and tetrahedrite group minerals with minor pyrite, digenite, galena,
126	and covellite (Fig. 1c). In sandstone fractures around Cu-sulphide ore veins (Fig. 1d),
127	plentiful supergene minerals are found including theisite, veszelyite, hemimorphite,
128	kipushite, bayldonite, arsendescloizite, duftite, arsenoveszelyite, dongchuantie,
129	cuprodongchuanite, zheshengite, cuprozheshengite, etc. The type specimen of DC
130	(Fig. 2a) shows that cuprozheshengite is closely associated with veszelyite and
131	hemimorphite.

132	Samples from Laochang were found in a mineral collection sample present as
133	light greenish-blue hemispheres on a hemimorphite matrix (Fig. 2b). Other associated
134	minerals are veszelyite, theisite, and galena. The Laochang deposit is an important
135	part of Gejiu the super-large Sn-Cu polymetallic ore district. The main ore-hosting
136	rocks are the carbonate rocks of the Middle Triassic Gejiu Formation and are
137	characterized by the enrichment of Sn, Cu, Pb, Zn, Au and Ag (Zhao et al. 2022).

138 General appearance, crystal morphology, physical properties, and optical data

139 Cuprozheshengite occurs mainly as radial hemisphere aggregates with blade-like

140 crystals. The hemispheres are typically 0.3 to 1 mm in diameter, and the individual

141 blades have lengths up to 0.1–0.2 mm but widths of only 10 to 50 μ m (Fig. 3). The

triclinic crystals are flattened on (011) and elongated along [100].

143 Cuprozheshengite is transparent with a vitreous luster. The color is apple green 144 to greenish blue, with a white streak. This mineral is brittle, with Mohs hardness $2\frac{1}{2}$ -145 3 and average Vickers hardness (VHN_{10g}) 129.2 ranging from 122.7–136.2 (in 146 kg/mm², load in 10 g). Cuprozheshengite has {011} perfect cleavage and irregular 147 fracture. The calculated density is 5.91 g/cm³.

The indices of refraction could not be measured because they are greater than 149 1.80 and crystals of cuprozheshengite react in RI liquids greater than 1.80. The 150 average index of refraction calculated using the Gladstone-Dale relationship 151 Mandarino (1981) is 1.88. The 2V determined from extinction data using 152 EXCALIBRW (Gunter et al. 2004) is 90.0(5)°.

154 MATERIALS AND ANALYTICAL METHODS

155 Materials

DC samples are deposited in the mineralogical collections of the Geological 156 Museum of China, Yangrou hutong no. 15, Xisi, Xicheng District, Beijing, People's 157 Republic of China, catalog no. M16127 (holotype) and the Crystal Structure 158 Laboratory, China University of Geosciences, Beijing 100083, People's Republic of 159 China, catalog no. DC4 (cotype); LC samples are deposited in the Natural History 160 Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, 161 162 USA, catalog numbers 76191 and 76192 (cotype). The general appearance, crystal 163 morphology, physical properties, and optical data, chemical composition and, crystal structure data of the LC sample are basically the same as those from the DC sample. 164

165 Chemical composition analysis

Backscattered electron (BSE) images and energy dispersive spectroscopy (EDS) line scanning of DC samples were obtained using a scanning electron microscope (SEM) (Mira XMU, TESCAN) at the School of Earth Sciences and Resources, China University of Geosciences.

The quantitative chemical composition data of the DC sample were determined
at the electron probe micro-analysis laboratory, the China University of Geosciences,
by an EPMA-1720 electron microprobe equipped with a wavelength dispersive
spectrometer (WDS) at 15 kV, an electron beam current of 10 nA, and a beam
diameter of 5 µm. The standards used are given in Table 1.

175 Raman spectrum analysis

176	The	Raman	spectrum	of	cuprozheshengite	e was	obtained	by
177	HORIBA L	abRAM H	R Evolution	Rama	n spectrometer	in Via-R	eflex, refle	ction
178	mode with	a laser exc	citation wave	length	of 532 nm and 60)0 gr/mm.	Spectrum i	n the
179	4000-200 0	cm ⁻¹ region	n was obtaine	ed by t	he collection time	of 20 s ar	nd 2 scans w	vith a
180	resolution of	of 4 cm ^{-1} .						

181 Crystal structure analysis

182 A Rigaku XtaLAB PRO-007HF diffractometer was used for powder diffraction 183 measurements using the rotating crystal method. The X-ray source was a rotating 184 anode microfocus Mo $K\alpha$ at 50 kV and 24 mA, and the sensor was a hybrid pixel array 185 detector. Cell parameters of powder diffraction data were refined by Chekcell 186 software (Laugier and Bochu 2000). The calculated pattern was performed by the 187 Powder cell software (Kraus and Nolze 1996).

The single-crystal X-ray analysis of the DC sample was done on the same 188 diffractometer. Exposure time was 100 s per frame. An excellent quality 0.005 \times 189 190 0.010×0.020 mm single-crystal fragment (This fragment was obtained from the zone 191 close to the grain edge, where chemical composition data were determined and used to calculate the empirical formula. The crystal data mentioned in the main text were 192 193 for this crystal and correspond to No. 11 in Table 8.) was selected to collect a full hemisphere of data (-6 < h < 6, -11 < k < 10, -13 < l < 11) with $R_{int} = 0.0520$. The 194 195 intensity data were subjected to Lorentz-polarization and multi-scan absorption corrections. The crystal structure determination and refinement were performed using 196 OLEX2-1.3 (Dolomanov et al. 2010) with SHELXT (Sheldrick 2015). The crystal 197

structure was solved using the intrinsic phasing method. The structure was refined to R = 0.039 based on 1588 independent reflections with $I > 2\sigma(I)$. The structure refinements confirmed the centrosymmetric space group P-1(#2). The crystal structure data of the DC sample is available in Online Materials CIF file.

202 Density functional theory (DFT) calculation

This work was done using the CASTEP code (Clark et al. 2005), and a plane 203 wave basis was set up within the DFT scheme (Kohn and Sham 1965a, 1965b). 204 Convergence testing showed a plane-wave basis represented by a kinetic energy 205 cut-off of 400 eV; Total energy convergence tolerance is 10^{-6} eV; Eigen energy 206 convergence tolerance is 2.205×10^{-7} eV. DFT calculations were performed to 207 optimize the structure using energy minimization. We used the generalized gradient 208 approximation (GGA) density functional, specifically Perdew, Burke, and Ernzerhof 209 (PBE) (Perdew et al. 1996). The geometric optimization is performed by 210 Broyden-Fletcher-Goldfarb-Shanno (BFGS). The details of BFGS are energy change 211 per ion: dE/ion 10^{-5} eV; maximum force: $|F|_{max}$ 0.03 eV/Å; change in the distance: 212 |dR| 0.001 Å. Spin-polarized parameters were considered. The modeling does not 213 consider the H atom because it cannot be located at the appropriate position using 214 energy minimization. 215

216

217

RESULTS AND DISCUSSION

218 Chemical composition

The BSE image (Fig. 4a) of the polished slice of the DC sample shows

220	concentric composition zones. EDS line scanning confirms that the nonuniform
221	composition is mainly caused by variables P and As, and these two elements show a
222	strong negative correlation (Fig. 4b). Twenty-five EPMA quantitative chemical data
223	are obtained for the whole particle (marked in Fig. 4a) and the results of P and As
224	content are shown in Figure 5. Most of the data are located in the cuprozheshengite
225	region where the ratio of As: P ranges from 1: 3 to 3: 1; Two data are distributed in the
226	left lower corner and identified as cuprodongchuanite; Another two data are scattered
227	at the upper right corner, which could be an unnamed mineral with both X sites
228	dominated by As. Limited by sample size, this unnamed mineral has not been confirmed
229	by structure.

Considering the non-uniform composition of the sample, we selected ten analytic 230 points to calculate the empirical formula (marked in the red circle in Fig.4) from one 231 zone close to the grain edge where the single crystal XRD studied sample was 232 performed with. The analytical results are given in Table 1. On the basis of $O_{apfu} = 18$, 233 234 the empirical formula for the DC sample is $(Pb_{3.97}Na_{0.04}Ca_{0.01})_{\Sigma 4.02}Cu_{1.06}Zn_{2.09}(AsO_4)_2[(P_{0.84}As_{0.12}Si_{0.01})_{\Sigma 0.97}O_4]_2(OH)_2.$ 235 The simplified formula is Pb₄CuZn₂[(As,P)O₄]₂[(P,As)O₄]₂(OH)₂, and the ideal formula is 236 Pb₄CuZn₂(AsO₄)₂(PO₄)₂(OH)₂, which requires PbO 58.55, ZnO 10.67, CuO 5.22, 237 P₂O₅ 9.31, As₂O₅ 15.07, H₂O 1.18, total 100 wt.%. 238

H₂O was not determined directly. The Raman spectra of cuprozheshengite indicate the existence of only one kind of OH^- . Based on crystal-structure refinement and bond-valence sum (BVS), O9 is the only oxygen in the form of OH^- . Then we

calculate the total H_2O amount when the O9 site is fully occupied by OH⁻.

- 243 The suggested Dana classification is 42.9 (Hydrated phosphates, etc., containing
- hydroxyl or halogen: $(AB)_7(XO_4)_4Z_q \cdot xH_2O)$.

245 Raman spectroscopy

246	The Raman spectrum of cuprozheshengite is shown in Figure 6. The bands in the
247	range from 600 to 450 cm ⁻¹ are assigned to the v_4 (and v_2) vibrations of the PO ₄ (AsO ₄)
248	tetrahedrons, including 565, 541, 485, and 439 cm ⁻¹ (Frost et al. 2002; Ciesielczuk et
249	al. 2016; Ismagilova et al. 2022); The band at 439 cm ⁻¹ probably corresponds to the
250	symmetric stretching mode of the ZnO ₄ tetrahedron (Hawthorne et al. 2012). Bands
251	below 400 cm ^{-1} at 386, 333 and 236 cm ^{-1} can be assigned to lattice vibrations.

Bands in the range of 1100–600 cm⁻¹ are ascribed to the mode vibrations of (PO₄)³⁻ and (AsO₄)³⁻ (Farmer 1974). Two groups of splitting peaks related to (PO₄)³⁻ are confirmed to be v_3 (1062 and 1013 cm⁻¹) and v_1 (986, 967 and 947 cm⁻¹) mode, respectively. The peak at 833 cm⁻¹ is assigned to the v_3 mode of (AsO₄)³⁻ with a small shoulder at 795 cm⁻¹.

The only one sharp band at 3423 cm⁻¹ is seen in the O–H stretching region, consistent with a single OH^- in the structure. The characteristic bending-mode vibration for H₂O at ~1600 cm⁻¹ is absent (Grey et al. 2017).

260 Diffraction data and crystal structure

The observed and calculated X-ray powder diffraction data are provided in Table 262 2. The strongest eight X-ray powder-diffraction lines are bold. The refined unit-cell 263 parameters from the powder-diffraction data are a = 4.7971(2), b = 8.5774(3), c =264 10.3843(3) Å, $\alpha = 97.250(1)^{\circ}$, $\beta = 101.890(1)^{\circ}$, $\gamma = 91.500(1)^{\circ}$, and V = 414.1(5) Å³.

265	The unit-cell parameters obtained for the DC sample from single-crystal XRD
266	data are: $a = 4.7977(8)$, $b = 8.5789(8)$, $c = 10.3855(9)$ Å, $\alpha = 97.270(8)^{\circ}$, $\beta =$
267	$101.902(12)^{\circ}$, $\gamma = 91.495(11)^{\circ}$, and $V = 414.30(9)$ Å ³ . The crystal structure description
268	of the DC sample is reported here for the model in space group $P-1(#2)$. Detailed
269	information of the data collection and refinement are given in Table 3. The refined
270	coordinates, refined occupancy and equivalent isotropic displacement parameters are
271	listed in Table 4 and the anisotropic displacement parameters are listed in Table 5.
272	Selected interatomic distances are reported in Table 6. Bond valence sums are
273	reported in Table 7.

Dongchuanite group minerals form an isomorphous series, and cuprozheshengite 274 is no exception. A projection of the structure along [100] is given in Figure 7. The 275 structural framework is composed of two types of heteropolyhedral columns along 276 [100], shown in Figure 7. The two types of columns are connected by corner-sharing 277 between $[^{IV}BO_4]$ and $[X1O_4]$ tetrahedra to form layers parallel to (011). Type 1 278 columns are composed of corner-linked $[^{IV}BO_4]$ and $[X2O_4]$ tetrahedra. Each 279 tetrahedron is 3-connected with other tetrahedra in the columns. Type 2 columns have 280 alternating $[^{VI}BO_4(OH)_2]$ octahedra with pairs of corner-connected $[X1O_4]$ tetrahedra. 281 The same type of column is present in many of the gadolinite supergroup minerals; 282 for example, in drugmanite, $[(Fe,Al)O_6]$ octahedra share corners with $[PO_4]$ tetrahedra 283 284 (King and Sengier-Roberts 1988). Pb atoms occupy two independent sites between the layers. 285

286

For the studied DC sample, chemical composition and structure refinement show

287	Cu and Zn fully occupy the ${}^{VI}B$ and ${}^{IV}B$ sites, respectively. The interatomic distances
288	for the ^{VI} B site show four of ~2.0 Å and two much longer than 2.4 Å, characteristic of
289	Jahn-Teller-distorted Cu ²⁺ (Danisi et al. 2013). Site occupancy refinements and
290	bond-valence sums indicate that one of the two independent X sites (X1) contains
291	predominantly As. In contrast, the other X site (X 2) is predominantly occupied by P. In
292	the structure refinements, P and As were included at the two sites, and their
293	occupancies were refined. The refined occupancy of X1 site is $0.764(11)$ As +
294	0.236(19) P and X2 site is $0.620(19)$ P + $0.382(11)$ As. Both Pb sites have lopsided
295	coordinations typical of Pb^{2+} with stereo active $6s^2$ lone-pair electrons. Pb1 has four
296	bonds to anions in the range 2.32 to 2.59 Å and three longer bonds in the range 2.94
297	to 3.09 Å, while Pb2 has four bonds in the range 2.35 to 2.55 Å and two longer bonds
298	at 2.88 and 3.03 Å (Fig. 8). Similar bonding has been reported for Pb in drugmanite
299	(King and Sengier-Roberts 1988). Raman spectrum (Fig. 6) and BVS (Table 7)
300	confirm that H is attached to O9 as OH^{-} .

301 The geometric parameters of *X* sites and relationship with As and P

Two independent *X* sites (*X*1 and *X*2) are 4-coordinated and can be occupied by P and As. The ratio of P and As at each site can be studied by single-crystal XRD and quantified by structure refinement. Meanwhile, geometric parameters can also be obtained. Arsenic atoms tend to occupy the *X*1 site preferentially. This is not an isolated case, but a general phenomenon for dongchuanite group minerals. The results of single-crystal refinements of thirteen dongchuanite group mineral samples show that: If *apfu* of As is less than 0.8, it seems that no As atom is observed at the *X*2 site,

309	and nearly all As atoms occupy the $X1$ site. If <i>apfu</i> of As is beyond 1.0, a small
310	amount of As occupies the X^2 site, but the total As at the X^2 site is always less than
311	X1. The thirteen crystal structure results are presented in Table 8 and Figure 9, and the
312	data show a linear correlation between the occupancy of As and the average bond
313	length at each site (with an excellence-of-fit, R^2 , 0.966 for X1 and 0.931 for X2 site,
314	and the color bands are 90%, confidence bands). The fitting formulas are $y = 0.179 x$
315	+ 1.516 (X1 site) and $y = 0.146 x + 1.544$ (X2 site) (Fig. 10). When the occupancy of
316	As is relatively low, the average bond length of the $X1$ site is shorter than that of the
317	X^2 site. In general, when the central ions are the same, the shorter the bond, the higher
318	the bond energy, and the more energy it takes to break the bond, which means the
319	more stable the substance is. In this case, arsenic atoms preferentially occupy the $X1$
320	site, which will undoubtedly get a more stable structure. But with the increasing
321	occupancy of As, the slope of the $X1$ site fitting formula is steeper, and the average
322	bond-length gap between the two sites is narrower. At this stage, the preference of As
323	to occupy site $X1$ weakens, and As begins to occupy the $X2$ site.

324 DFT calculation

Our single-crystal XRD results suggest that when the As content is relatively low, As preferentially occupying the X1 site will contribute to structural stability. Therefore, we constructed three super-cell ($a = 2*a_0$, $c = 2*c_0$) models to compare the energy difference of As doping at X1 and X2 sites (Fig. 11). There are sixteen X sites in a supercell, among which X1 and X2 sites are 50% each. In the initial model (Model 0), the sixteen X sites are fully occupied by P. In Model 1, one X1 site is

331	replaced by As. In Model 2, one X2 site is replaced by As. After modeling, the energy
332	minimization is performed to optimize the structure using DFT calculations, as shown
333	in Table 9. The DFT-calculated geometric parameters are displayed in Table 10.
334	Compared with the initial model, both Model 1 and Model 2 increase the system's
335	energy. E_1 is 0.05 eV lower than E_2 , which indicates that As atoms occupancy X1 site
336	is thermodynamically favorable. This energy difference is relatively small, but only
337	one-sixteenth As substitution is considered. Most natural minerals are stable, even if
338	they are disordered when formed, but can diffuse to form thermally stable structures
339	over time (Xian et al. 2022). DFT calculation reveals that As preferentially occupying
340	the $X1$ site involves a thermodynamically favorable self-purification process. The
341	DFT calculated average bond length is close to the linear fit predicted value,
342	indicating the above linear fit is credible. Moreover, the cell volume of Model 1 is
343	smaller than Model 2, implying that Model 1 is more stable.

Relationship to other mineral species

345	Structurally, cuprozheshengite is related to gadolinite supergroup minerals with
346	similar type of heteropolyhedral columns (type 2) (Bacik et al. 2017). These minerals
347	conform to the general formula $A_2MQ_2X_2O_8\varphi_2$, where $A = Ca$, REE, Pb, Bi; $M = Fe$,
348	Mg, Zn, Cu, Al; $Q = B$, Be, Li; $X = Si$, P, As, B, Be and $\varphi = O$, OH, F. The minerals
349	generally have monoclinic symmetry, $P2_1/c$, but triclinic examples have also been
350	reported (Cooper et al. 2019). The unit-cell parameters of the gadolinite supergroup
351	minerals are $a = 4.6$ to 4.8, $b = 7.5$ to 8.0, and $c = 9.6$ to 11.1 Å. Cuprozheshengite
352	differs significantly from all gadolinite supergroup members in ordering different

atoms (P and As) in the two independent X sites in P-1.

354	Three other cuprozheshengite isomorphous minerals have been approved by
355	IMA-CNMNC; dongchuanite, cuprodongchuanite, and zheshengite. There are enough
356	members to establish a group. The general crystal chemistry formula of dongchuanite
357	group minerals should be $A_4^{\text{VI}}B^{\text{IV}}B_2(X1O_4)_2(X2O_4)_2(\text{OH})_2$ (Table 11). The EPMA data
358	have confirmed that the exceptionally As-rich zone can make both X1 and X2 sites As
359	dominant. However, structural evidence needs to be included. The minerals of the
360	isomorphous series can be distinguished from each other using the As: P ratio
361	determined from quantitative chemical analyses with P: As $> 3:1$ identified as the
362	dongchaunite (cuprodongchuanite), those with P: As < 1:3 identified as the unnamed
363	As-rich phase, and others between these two ranges qualified as zheshengite
364	(cuprozheshengite) (Fig. 5).

- 365
- 366

IMPLICATIONS

367 Cuprozheshengite is a typical example of As-P ordering separation into different structural positions. It is classified based on the statistical rule of As occupying the X1368 site preferentially. But we cannot prove that the As and P in dongchuanite group 369 minerals are always ordered based on the structural data of a small number of samples. 370 371 Strictly speaking, meaningful distributions of traits must be obtained from many 372 individual specimens to distinguish distinct natural kinds. However, their type 373 localities are often unitary for recently found new minerals, so there is no possibility of a sufficient amount of data for extensive study. The good sign is that the structural 374

375 geometric parameters and DFT calculation study of cuprozheshengite prove that the occupancy propensity of As is not an accidental phenomenon but a result of 376 maintaining structural stability. So this study provides a new idea for studying other 377 rare minerals with P-As atoms ordering at different sites based on limited data. 378 Based on the crystal structure study of natural minerals, effective methods will 379 be found for disposing of high-level waste pollution, mainly by immobilizing them 380 within natural crystalline matrixes (Khomyakov 2008). The preferential occupation of 381 the X1 position by As in cuprozheshengite may indicate a more efficient structural 382 383 unit (type 2 column) to accommodate As. The type 2 column is also present in many 384 gadolinite supergroup minerals (Bacik et al. 2017), suggesting their utility for As fixation. Meanwhile, the cuprozheshengite has a unique combination of elements. In 385 addition to As, it contains heavy metals like Pb, Zn, and Cu, and can be a candidate 386 material for comprehensive environmental governance. It is the only known inorganic 387 crystal (ICSD and Mindat database) with independent crystallographic sites of Pb, Zn, 388 Cu, As and P. As a stable mineral in the water and elemental cycles after weathering, 389 390 cuprozheshengite still has the potential to continually crystallize in the local area. By converting waste pollution into a crystalline form, humans can maintain favorable 391 environmental conditions comparable to geological periods on Earth. 392

393

394

ACKNOWLEDGMENTS

We are grateful to Prof. Ritsuro Miyawaki and his colleagues for their valuable suggestions regarding cuprozheshengite. Additionally, we would like to thank Xiang

- 397 Wu and Zhaochu Hu for their help with the Raman analysis of cuprozheshengite. The
- National Natural Science Foundation of China (41672043) supported this research.
- 399
- 400 **REFERENCES CITED**
- 401 Allmann, R. (1975) Beziehungen zwischen Bindungslängen und Bindungsstärken in
- 402 Oxidstrukturen. Monatshefte für Chemie, 106, 779–793.
- ⁴⁰³ Antelo, J., Arce, F., and Fiol, S. (2015) Arsenate and phosphate adsorption on
- 404 ferrihydrite nanoparticles. Synergetic interaction with calcium ions. Chemical
- 405 Geology, 410, 53–62.
- ⁴⁰⁶ Bacik, P., Miyawaki, R., Atencio, D., Camara, F. and Fridrichova, J. (2017)
- 407 Nomenclature of the gadolinite supergroup. European Journal of Mineralogy, 29,
 408 1–16.
- Bajda, T., Mozgawa, W., Manecki, M., and Topolska, J. (2011) Vibrational
 spectroscopic study of mimetite-pyromorphite solid solutions. Polyhedron, 30,
 2479–2485.
- ⁴¹² Biagioni, C., Bosi, F., Hålenius, U., and Pasero, M. (2016) The crystal structure of
- 413 svabite, Ca₅(AsO₄)₃F, an arsenate member of the apatite supergroup. American
 414 Mineralogist, 101, 1750–1755.
- Brown, I.D. (1977) Predicting bond lengths in inorganic crystals. Acta
 Crystallographica Section B-Structural Science Crystal Engineering and
 Materials, 33, 1305–1310.
- ⁴¹⁸ Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a

419	systematic	analysis	of	the	inorganic	crystal	structure	database.	Acta
420	Crystallogra	aphica So	ection	B-	Structural	Science	Crystal	Engineering	and
421	Materials, 4	1, 244–24	7.						

- 422 Ciesielczuk, J., Janeczek, J., Dulski, M., and Krzykawski, T. (2016) Pseudomalachite-
- 423 cornwallite and kipushite-philipsburgite solid solutions: chemical composition 424 and Raman spectroscopy. European Journal of Mineralogy, 28, 555–569.
- 425 Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.J., Refson, K., and
- 426 Payne, M.C. (2005) Castep v5.0. Zeitschrift für Kristallographie, 220, 567-570.
- 427 Cooper, M.A., Hawthorne, F.C., Miyawaki, R. and Kristiansen, R. (2019) Cation 428

order in the crystal structure of "Ca-hingganite-(Y)". The Canadian Mineralogist,

- 429 57, 371–382.
- 430 Danisi, R.M., Armbruster, T., Lazic, B., Vulic, P., Kaindl, R., Dimitrijevic, R. and 431 Volker, Κ. (2013) In situ dehydration behavior of veszelvite 432 $(Cu,Zn)_2Zn(PO_4)(OH)_3 \cdot 2H_2O:$ single-crystal American а X-ray study. 433 Mineralogist, 98, 1261-1269.
- 434 Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J., and Puschmann, H. (2010) 435 Olex2: a complete structure solution, refinement and analysis program. Journal 436 of Applied Crystallography, 42, 339-341.
- 437 Farmer, C.V. (1974) The Infrared Spectra of Minerals. Mineralogical Society of 438 Minerals Monograph 4, The Mineralogical Society, London, 539 p.
- 439 Frost, R.L., Martens, W.N., and Williams, P.A. (2002) Raman spectroscopy of the 440 phase-related basic copper arsenate minerals olivenite, cornwallite, cornubite and

- 441 clinoclase. Journal of Raman Spectroscopy, 33, 475–484.
- 442 Grey, I.E., Keck, E., Kampf, A.R., Macrae, C.M., Glenn, A.M., and Price, J.R. (2017).
- 443 Wilhelmgümbelite, $[ZnFe^{2+}Fe_3^{3+}(PO_4)_3(OH)_4(H_2O)_5] \cdot 2H_2O$, a new
- schoonerite-related mineral from the Hagendorf süd pegmatite, Bavaria.
- 445 Mineralogical Magazine, 81, 287–296.
- Gunter, M.E., Bandli, B.R., Bloss, F.D., Evans, S.H., Su, S.C. and Weaver, R. (2004)
- Results from a McCrone spindle stage short course, a new version of
 EXCALIBR, and how to build a spindle stage. The Microscope, 52, 23–39.
- Hawthorne, F.C., Cooper, M.A., Abdu, Y.A., Ball, N.A., Back, M.E., and Tait, K.T.
- 450 (2012) Davidloydite, ideally $Zn_3(AsO_4)_2(H_2O)_4$, a new arsenate mineral from
- the Tsumeb mine, Otjikoto (Oshikoto) region, Namibia: description and crystal
 structure. Mineralogical Magazine, 76, 45–57.
- Hitzman, M.W., Kirkham, R., Broughton, D., Thorson, J., and Selley, D. (2005) The
 sediment-hosted stratiform copper ore system: Economic Geology 100th
 Anniversary Volume, 609–642.
- ⁴⁵⁶ Ismagilova, R., Rieck, B., Kampf, A., Giester, G., Zhitova, E., Lengauer, C.,
- 457 Krivovichev, S.V., Zolotarev, A.A., Ciesielczuk, J., Mikhailova, J.A., Bocharov,
- 458 V.N., Shilovskikh, V.V., Vlasenko, N.S., Nash, B.P., and Adams, P. (2022)
- 459 Goldhillite, $Cu_5Zn(AsO_4)_2(OH)_6 \cdot H_2O$, a new mineral species, and redefinition of
- 460 philipsburgite, $Cu_5Zn[(AsO_4)(PO_4)](OH)_6 \cdot H_2O$, as an As-P ordered species.
- ⁴⁶¹ Mineralogical Magazine, 86, 436–446.
- 462 Khomyakov, A. (2008) The Largest Source of Minerals with Unique Structure and

463	Properties. Minerals as Advanced Materials. Doi: 10.1007/978-3-540-77123-4_9.
464	King, G.S.D. and Sengier-Roberts, L. (1988) Drugmanite,
465	Pb ₂ (Fe _{0.78} Al _{0.22})H(PO ₄) ₂ (OH) ₂ : Its crystal structure and place in the datolite
466	group. Bulletin de Mineralogie, 111, 431–437.
467	Kocourkova-Vikova, E., Loun, J., Sracek, O., Houzar, S., and Filip, J. (2015)
468	Secondary arsenic minerals and arsenic mobility in a historical waste rock pile at
469	Kank near Kutna Hora, Czech Republic. Mineralogy and Petrology, 109, 17–33.
470	Kohn, W. and Sham, L.J. (1965a) Self-consistent equations including exchange and
471	correlation effects. Physical Review, 140(4A), A1133-A1138.
472	Kohn, W. and Sham, L.J. (1965b) Quantum density oscillations in an inhomogeneous
473	electron gas. Physical Review, 137(6A), A1697–A1705.
474	Kraus, W. and Nolze, G. (1996) POWDER CELL-a program for the representation
475	and manipulation of crystal structures and calculation of the resulting X-ray
476	powder patterns. Journal of Applied Crystallography, 29, 301-303.
477	Krivovichev, S.V. (2012) Derivation of bond-valence parameters for some
478	cation-oxygen pairs on the basis of empirical relationships between r_0 and b .
479	Zeitschrift für Kristallographie - Crystalline Materials, 227, 575–579.
480	Krivovichev, S.V. and Brown, I.D. (2001) Are the compressive effects of
481	encapsulation an artifact of the bond valence parameters? Zeitschrift Fur
482	Kristallographie, 216, 245–247.
483	Krivovichev, S.V., Zhitova, E.S., Ismagilova, R.M., and Zolotarev, A.A. (2018)

484 Site-selective As–P substitution and hydrogen bonding in the crystal structure of

485	philipsburgite, Cu ₅ Zn((As,P)O ₄) ₂ (OH) ₆ ·H ₂ O. Physics and Chemistry of Minerals,
486	45, 917–923.

487	Kunhikrishnan, A., Choppala, G., Seshadri, B., Wijesekara, H., Bolan, N.S., Mbene,
488	K., and Kim, WI. (2017) Impact of wastewater derived dissolved organic
489	carbon on reduction, mobility, and bioavailability of As(V) and Cr(VI) in
490	contaminated soils. Journal of Environmental Management, 186(2), 183-191.
491	Laugier, J., and Bochu, B. (2000) CHECKCELL – A Software Performing Automatic
492	Cell/Space Group Determination, Collaborative Computational Project Number
493	14 (CCP14), Laboratoiredes Matériaux et du Génie Physique de l'Ecole
494	Superieure de Physique de Grenoble (INPG), France.
495	Legrand, P. (2017) XDSME: XDS Made Easier, GitHub repository,
496	https://github.com/legrandp/xdsme. Doi: 10.5281/zenodo.837885.
497	Li, G., Sun, N., Shen, H., Xue, Y. and Hao, J. (2022) Zheshengite, IMA 2022-011, in:
498	CNMNC Newsletter 67. European Journal of Mineralogy, 34.
499	Ma, Z., Li, G., Chukanov, N.V., Poirier, G., and Shi, N. (2014) Tangdanite, a new
500	mineral species from the Yunnan province, china and the discreditation of
501	'clinotyrolite'. Mineralogical Magazine, 78, 559–570.
502	Mandarino, J.A. (1981) The Gladstone-Dale relationship: Part IV. The compatibility
503	concept and its application. The Canadian Mineralogist, 19, 441–450.
504	Perdew, J.P., Burke, K., and Ernzerhof, M. (1996) Generalized gradient
505	approximation made simple. Physical Review Letters 77, 3865–3868

23

approximation made simple. Physical Review Letters, 77, 3865-3868.

- ⁵⁰⁶ Rakovan, J.F., and Pasteris, G.D. (2015) A technological gem: Materials, medical, and
- ⁵⁰⁷ environmental mineralogy of apatite. Elements, 11, 195–200.
- Sheldrick, G.M. (2015) Crystal structure refinement with shelxl. Acta
 Crystallographica Section C-Structural Chemistry, 71, 3–8.
- ⁵¹⁰ Siidra, O.I., Nazarchuk, E.V., Pautov, L.A., Borisov, A.S., and Kozin, M.S. (2021)
- 511 Milkovoite, IMA 2021-005. CNMNC Newsletter 61. Mineralogical Magazine,
 512 85, 299–304.
- ⁵¹³ Xian, H., He, H., Qiu, K., Li, Y., Yang, Y., Xie, J., Tan, W., Tsuchiyama, A., Yastake,
- M., Enju, S., Miyake, A., and Zhu, R. (2022) Hyperenrichment of gold in pyrite
 induced by solid-state transportation. Communications Earth & Environment, 3,
 308.
- Xing, S., Guo, H., Zhang, L., Wang, Z., Sun, X. (2022) Silicate weathering
 contributed to arsenic enrichment in geotherm-affected groundwater in Pliocene
 aquifers of the Guide basin, China. Journal of Hydrology, 606.
- ⁵²⁰ Yakovenchuk, V.N., Pakhomovsky, Y.A., Konoplyova, N.G., Panikorovskii, T.L.,
- Mikhailova, Y.A, Bocharov, V.N, Krivovichev, S.V and Ivanyuk, G.Y. (2017)
 Epifanovite NaCaCu₅(PO₄)₄[AsO₂(OH)₂]·7H₂O, a new mineral from the Kester
 deposit (Sakha-Yakutia, Russia). Zapiski Rossiiskogo Mineralogicheskogo
 Obshchetstva, 146, 30–39 [in Russian].
- Liang, X., Lin, X., Wei, G., Ma, L., He, H., Carballal, D.S., Zhu, J., Zhu, R., and
- Leeuw, N.D. (2021) Competitive adsorption geometries for the arsenate As(V)
- ⁵²⁷ and phosphate P(V) oxyanions on magnetite surfaces: Experiments and theory.

- 528 American Mineralogist, 106, 374–388.
- ⁵²⁹ Zhao, Y., Tian, H., Li, J., Chen, S., Zhao, J. (2022) Constraints on the genesis of the
- Laochang Pb–Zn ore, Gejiu district, Yunnan: Evidence from sulfide trace
 element and isotope geochemistry. Ore Geology Reviews, 150, 105162.
- ⁵³² Zhao M., and Yang Y. (2022) Health Risk Assessment of Heavy Metals in the Main
- River Basins of Dongchuan, Yunnan Province. Chinese Journal of Inorganic
 Analytical Chemistry, 12, 26–33 [in Chinese].
- ⁵³⁵ Zhao, X., Zhou, M., Li, J., Sun, M., Gao, J., Sun, W., and Yang, J. (2010) Late
- Paleoproterozoic to early Mesoproterozoic Dongchuan Group in Yunnan, SW
 China: Implications for tectonic evolution of the Yangtze block: Precambrian
 Research, 182, 57–69.
- ⁵³⁹ Zhao, X., Zhou, M., Hitzman, M.W., Li, J., Bennett, M., Meighan, C., and Anderson,
- E. (2012) Late Paleoproterozoic to Early Mesoproterozoic Tangdan Sedimentary
- 541Rock-Hosted Strata-bound Copper Deposit, Yunnan Province, Southwest China.
- 542 Economic Geology, 107, 357–375.
- 543
- 544 TABLE CAPTIONS
- 545 **Table 1.** Chemical data (in wt.%) for cuprozheshengite (DC).
- **Table 2.** X-ray powder diffraction data (*d* in Å) for cuprozheshengite (DC).
- 547 **Table 3.** Crystal data and structure refinement for cuprozheshengite (DC).
- **Table 4.** Atomic coordinates and site occupancies for cuprozheshengite (DC).
- **Table 5.** Anisotropic displacement parameters (in $Å^2$) for cuprozheshengite (DC).

- **Table 6.** Selected geometric parameters (Å) for cuprozheshengite (DC). 550
- Table 7. Bond-valence sum for cuprozheshengite (DC). 551
- 552 **Table 8.** The occupancy of X site and average bond length of X–O of
- 553 cuprozheshengite isomorphous minerals.
- Table 9. Total energy differences (eV) after geometry optimization of the three 554

models. 555

Table 10. The geometric parameters after geometry optimization of the three models. 556

Table 11. Members and potential members of cuprozheshengite isomorphous 557

- minerals $(A_4B^{VI}B^{IV}_2(X1O_4)_2(X2O_4)_2(OH)_2)$. 558
- 559
- 560 **FIGURE CAPTIONS**

- Figure 1. (a) A view of the dump. (b) The mine entrance. (c). A vein is rich in sulfide 561 minerals. (d) Plentiful supergene minerals form in a sandstone fracture around 562 Cu-sulphide ore veins. 563
- 564 Figure 2. (a) Apple-green spherical radial aggregates of cuprozheshengite (Czs)
- associated with hemimorphite (Hmp) and veszelyite (Vsz) from Dongchaun. (b) 565
- Greenish-blue hemispheres of cuprozheshengite (Czs) on white hemimorphite (Hmp) 566

Figure 3. Scanning electron microscope image of aggregate of cuprozheshengite 568 569 blades from Laochang.

- 570 Figure 4. Backscattered electron (BSE) image and energy dispersive spectroscopy
- (EDS) line scanning of cuprozheshengite aggregate (polished slice). (a) Obvious 571

572	zones are shown on the BSE image. Twenty-five white points are EPMA tested areas.
573	Ten red circles are the selected data for empirical formula calculation. (b) EDS line
574	scanning confirms that the nonuniform of the composition is mainly caused by P and
575	As. There is a strong negative correlation between these two elements. The
576	distributions of Cu, Zn, Pb and O are almost uniform.
577	Figure 5. Scatter diagram of <i>apfu</i> P and As calculated from the twenty-five EPMA
578	points respectively (Corresponding to the analysis points in Figure 4).
579	Figure 6. Raman spectrum of cuprozheshengite.
580	Figure 7. [100] projection of the crystal structure of cuprozheshengite with atom
581	labelling and two types of 4.7 Å columns in cuprozheshengite structure.
582	Figure 8. Schematic representation of [PbO _n] polyhedra. O9 is water oxygen-atoms
583	OH. Solid lines: short Pb–O bonds; dotted lines: long Pb–O bonds.
584	Figure 9. The distribution of As atoms at X1 and X2 sites based on thirteen X-ray
585	crystal structure refinement of cuprozheshengite isomorphous mineral (data in Table
586	8). The results show that As atoms tend to occupy $X1$ position preferentially.
587	Figure 10. Linear correlation between the occupancy of As and the average bond
588	length at each site and fitting formulas (the color bands are 90% confidence bands).
589 590	Figure 11. Three super-cell (a = 2^*a_0 , c = 2^*c_0) models.
591	
592	
593 504	
594	

Table 1. Chemical data (in wt.%) for cuprozheshengite (DC).

			1	0 ()
Constituent	Mean	Range	Stand. Dev. (σ)	Reference Material
Na ₂ O	0.08	0.07 - 0.09	0.01	Albite
V_2O_5	0.01	0.00 - 0.06	0.02	Vanadium
SiO_2	0.10	0.03-0.17	0.04	Sanidine
CuO	5.46	5.20-5.68	0.13	Chalcopyrite
As_2O_5	16.52	14.82-20.47	1.71	Cobaltite
FeO	0.02	0.00 - 0.08	0.03	Garnet
P_2O_5	7.73	5.38-8.85	1.08	Apatite
ZnO	10.95	10.54-11.47	0.28	Willemite
SO_3	0.00	0.00 - 0.00	0.00	Barite
PbO	57.16	56.09-58.16	0.65	Crocoite
CaO	0.03	0.01-0.06	0.02	Apatite
BaO	0.01	0.00-0.03	0.01	Barite
H_2O^*	1.16			
Total	99.24	98.77-99.74	0.34	

598 Note: The data in this table corresponded to ten red-circled analysis points in Figure

599 4.

600

Table 2. X-ray powder diffraction data (d in Å) for cuprozheshengite (DC).

$I_{\rm obs}$	I_{calc}	$d_{\rm obs}$	$d_{\rm calc}$	h	k	l	$I_{\rm obs}$	I_{calc}	$d_{\rm obs}$	$d_{\rm calc}$	h	k	l
5	1	8.7519	8.4966	0	-1	0	1	1	1.3500	1.3511	-1	6	1
7	2	6.9733	6.9723	0	-1	1	6	7	1.3283	1.3280	0	5	4
21	8	6.1102	6.1016	0	1	1	7	10	1.2905	1.2918	3	-2	3
9	2	5.0091	5.0345	0	0	2	4	4	1.2811	1.2806	-3	4	2
30	26	4.6413	4.6409	-1	0	1	1	4	1.2616	1.2616	-3	1	6
11	7	4.2427	4.2483	0	2	0	4	4	1.2432	1.2437	-1	6	3
19	13	4.0939	4.0963	0	1	2	3	10	1.2220	1.2221	-3	3	5
7	8	3.9230	3.9429	1	0	1	11	9	1.1871	1.1871	-4	0	3
7	4	3.7428	3.7382	0	2	1	8	11	1.1633	1.1632	-1	-7	3
100	100	3.4413	3.4398	-1	1	2	5	3	1.1365	1.1366	-1	5	6
34	24	3.2669	3.2758	0	-1	3	10	7	1.1073	1.1075	0	-7	5
89	65	3.0544	3.0508	-1	0	3	3	2	1.0802	1.0801	4	2	1
61	59	2.9479	2.9450	-1	-2	2	1	9	1.0707	1.0703	-4	3	4
44	46	2.8173	2.8205	1	1	2	4	1	1.0632	1.0628	-4	-3	0
14	14	2.6227	2.6238	0	-3	2	4	8	1.0499	1.0498	0	-4	9
12	11	2.5039	2.5072	0	-1	4	1	10	1.0437	1.0435	1	-2	9
15	44	2.3856	2.3820	-2	0	1	2	9	1.0283	1.0281	1	6	5
20	27	2.3216	2.3210	0	1	4	3	2	1.0078	1.0076	-1	1	10
6	12	2.2757	2.2806	1	-2	3	3	4	0.9936	0.9936	3	5	3
4	8	2.2189	2.2185	-1	-2	4	3	2	0.9842	0.9845	0	1	10
7	4	2.1646	2.1724	-1	-3	3	2	2	0.9772	0.9769	-1	8	3
1	3	2.0930	2.0991	-2	-1	3	1	1	0.9653	0.9654	2	2	8
8	10	2.0422	2.0441	-2	-2	2	7	7	0.9473	0.9474	0	6	7
12	23	2.0122	2.0106	-1	0	5	2	8	0.9331	0.9325	2	-5	8
6	13	1.9423	1.9445	-2	-2	3	4	6	0.9201	0.9197	-3	-3	10
12	18	1.9014	1.9010	-1	-2	5	1	2	0.9069	0.9067	-4	-6	3
6	22	1.8512	1.8508	-2	3	1	3	2	0.8954	0.8952	1	8	4
5	11	1.8104	1.8094	-2	-3	1	2	5	0.8841	0.8838	1	-8	7
15	14	1.7326	1.7330	-1	-3	5	2	6	0.8762	0.8761	-2	-9	3
8	9	1.6794	1.6800	0	-5	2	2	3	0.8697	0.8696	-3	3	10
15	18	1.6243	1.6258	1	-5	0	1	1	0.8641	0.8644	-5	-4	2
10	12	1.5712	1.5707	0	-4	5	4	1	0.8578	0.8580	-1	0	12
15	26	1.5103	1.5107	-3	2	1	5	1	0.8386	0.8386	0	3	11
8	3	1.4824	1.4826	-2	4	3	2	2	0.8324	0.8324	1	7	7
5	13	1.4656	1.4655	2	4	1	3	2	0.8264	0.8260	3	-3	9
3	9	1.4427	1.4415	-3	-2	0	4	3	0.8209	0.8209	-1	2	12
10	5	1.3955	1.3956	2	-5	1	4	2	0.7998	0.7997	-5	4	7
6	14	1.3697	1.3698	-1	-3	7							

Crystal data	
Chemical formula	$Pb_4CuZn_2[(As_{0.764(11)}P_{0.236(19)})O_4]_2$
	$[P_{0.620(19)}(As_{0.382(11)})O_4]_2(OH)_2$
Formula weight	1535.57
Crystal system, space group	Triclinic, P-1
Temperature (K)	293
<i>a</i> , <i>b</i> , <i>c</i> (Å)	4.7977 (8), 8.5789 (8), 10.3855 (9)
α, β, γ (°)	97.270 (8), 101.902 (12), 91.495 (11)
$V(\text{Å}^3)$	414.30 (9)
Ζ	1
Radiation type	ΜοΚα
$m (mm^{-1})$	49.39
Crystal size (mm)	$0.020\times0.010\times0.005$
Data collection	
Diffractometer	XtaLAB PRO-007HF
Absorption correction	Multi-scan
T_{\min}, T_{\max}	0.720, 1.000
No. of measured, independent and	2002 1005 1500
observed $[I > 2\sigma(I)]$ reflections	3983, 1883, 1388
R _{int}	0.052
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.682
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.039, 0.088, 1.07
No. of reflections	1885
No. of parameters	137
No. of restraints	2
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	2.51, -1.82

Table 3. Crystal data and structure refinement for cuprozheshengite (DC).

608		Table	4. Atomic	coordinat	es an	d site occu	pancies for cu	ıprozheshengi	te (DC).
_	Site	Aton	n <i>Wyck</i> .	. Occ. x/a			y/b	z/c	$U_{ m eq}$
	4	Pb1	2 <i>i</i>	1	-0.1	4793(10)	0.51824(5)	0.17173(4)	0.02126(14)
	А	Pb2	2 <i>i</i>	1	-0.1	1198(10)	0.10414(6)	0.33840(5)	0.02464(15)
	$^{\rm VI}B$	Cu	1c	1	0		0.5	0.5	0.0178(4)
	^{IV} B	Zn	2 <i>i</i>	1	0.6	5705(3)	0.13034(16)	0.88246(14)	0.0208(3)
	V1	As1	2 <i>i</i>	2 <i>i</i> 0.764(11)		869(3)	0.24782(16)	0.58750(13)	0.0160(5)
	ΛΙ	P1	2 <i>i</i> 0.236(19)		0.4	869(3)	0.24782(16)	0.58750(13)	0.0160(5)
	VD	P2	2 <i>i</i>	0.620(19)	0.2	2443(4)	0.2205(2)	1.06586(19)	0.0184(7)
	ΛL	As2	2 <i>i</i>	0.382(11)	0.2	2443(4)	0.2205(2)	1.06586(19)	0.0184(7)
		01	2 <i>i</i>	1	0.3	303(18)	0.0959(10)	1.1672(10)	0.028(2)
		02	2 <i>i</i>	1	-0.0)927(17)	0.2433(10)	1.0452(9)	0.024(2)
		03	2 <i>i</i>	1	0.3	900(16)	0.3891(10)	1.1249(9)	0.026(2)
		04	2 <i>i</i>	1	0.2	2959(17)	0.1602(11)	0.9220(8)	0.028(2)
		05	2 <i>i</i>	1	0.7	708(2)	0.2205(11)	0.7241(9)	0.031(2)
		06	2 <i>i</i>	1	0.6	6624(18)	0.2798(10)	0.4747(8)	0.0227(18)
		07	2 <i>i</i>	1	0.2	2460(16)	0.0987(10)	0.5298(9)	0.0235(19)
		08	2 <i>i</i>	1	0.3	8095(17)	0.4054(9)	0.6254(8)	0.0199(17)
		O9(O)	H) 2 <i>i</i>	1	0.0	0829(16)	0.3848(9)	0.3407(8)	0.0173(17)
609									
610									
611	T	Table 5.	Anisotroj	pic displac	emer	nt paramete	rs (in Å ²) for	cuprozheshen	gite (DC).
Site	e A	Atom	U^{11}	U^2	2	U^{33}	U^{23}	U^{13}	U^{12}
1		Pb1	0.0245(3)	0.0210	(3)	0.0175(2)	0.00500(1	19) 0.00132(1	8) 0.00095(18)
Л		Pb2	0.0254(3)	0.0228	(3)	0.0233(3)	0.0021(2)	0.0004(2)	-0.00146(19)
$^{\rm VI}B$		Cu	0.0197(10	0) 0.0191	(11)	0.0126(9)	-0.0002(8)	0.0002(8)	0.0028(8)
^{IV}B		Zn	0.0229(7)	0.0211	(8)	0.0167(7)	0.0024(6)	0.0008(5)	0.0002(6)
<i>X</i> 1		As1	0.0169(7)	0.0166	(8)	0.0137(7)	0.0040(5)	0.0005(5)	0.0010(5)
211		P1	0.0169(7)	0.0166	(8)	0.0137(7)	0.0040(5)	0.0005(5)	0.0010(5)
X7		P2	0.0184(11	1) 0.0188	(12)	0.0165(11)) 0.0020(8)	0.0006(7)	0.0016(7)
112		As2	0.0184(11	1) 0.0188	(12)	0.0165(11)) 0.0020(8)	0.0006(7)	0.0016(7)
		01	0.023(5)	0.022(5)	0.039(5)	0.008(4)	0.003(4)	0.001(4)
		02	0.020(4)	0.021(5)	0.029(5)	-0.004(4)	0.004(4)	-0.002(3)
		03	0.022(5)	0.021(5)	0.030(5)	-0.008(4)	0.002(4)	-0.008(4)
		04	0.022(5)	0.043(6)	0.016(4)	-0.003(4)	0.003(4)	0.006(4)
		05	0.039(5)	0.039(6)	0.015(4)	0.004(4)	0.006(4)	0.005(4)
		06	0.033(5)	0.022(5)	0.016(4)	0.006(4)	0.010(4)	0.008(4)
		07	0.015(4)	0.025(5)	0.031(5)	0.008(4)	0.003(4)	0.003(3)
		08	0.028(5)	0.014(4)	0.018(4)	0.001(3)	0.006(3)	0.010(3)
	09	O(OH)	0.023(4)	0.010(4)	0.017(4)	0.000(3)	0.002(3)	0.001(3)
612									

Table 4. Atomic coordinates and site occupancies for cuprozheshengite (DC).

6	1		0
Pb1—O2 ⁱ	2.599 (8)	Pb2—O1 ⁱⁱ	2.885 (9)
Pb1—O3 ⁱⁱ	2.381 (7)	Pb2—O1 ⁱ	3.034 (9)
Pb1—O3 ⁱ	2.942 (8)	Pb2—O6 ^v	2.494 (8)
Pb1—O4 ⁱⁱⁱ	3.091 (10)	Pb2—O6	2.350 (9)
Pb1—O5 ^{iv}	2.974 (10)	Pb2—O7 ^{vi}	2.371 (8)
Pb1—O8 ⁱⁱⁱ	2.413 (8)	Pb2—O9	2.555 (8)
Pb1—O9	2.322 (8)	<pb2–o></pb2–o>	2.615
<pb1-o></pb1-o>	2.675		
Cu—O7 ^{iv}	2.409 (9)	Zn—O1 ^{vii}	1.944 (9)
Cu—O7 ^{vi}	2.409 (9)	Zn—O2 ^{viii}	1.955 (9)
Cu—O8	2.023 (8)	Zn—O4	1.940 (8)
Cu—O8 ⁱⁱⁱ	2.023 (8)	Zn—O5	1.942 (9)
Cu—O9	1.936 (8)	<zn–o></zn–o>	1.945
Cu—O9 ⁱⁱⁱ	1.936 (8)		
<cu-o></cu-o>	2.123		
As1 P1–O5	1.634 (9)	P2 As2-O1	1.597 (9)
As1 P1–O6	1.665 (8)	P2 As2–O2	1.607 (8)
As1 P1–O7	1.623 (8)	P2 As2–O3	1.582 (8)
As1 P1–O8	1.664 (8)	P2 As2-O4	1.589 (9)
<as1 p1-o></as1 p1-o>	1.647	<p2 as2–o></p2 as2–o>	1.594

Table 6. Selected geometric parameters (Å) for cuprozheshengite (DC).

615 Symmetry codes: (i) x, y, z-1; (ii) x-1, y, z-1; (iii) -x, -y+1, -z+1; (iv) -x+1, -y+1, -z+1; (v)

616 -*x*, -*y*, -*z*+1; (vi) *x*-1, *y*, *z*; (vii) -*x*+1, -*y*, -*z*+2; (viii) *x*+1, *y*, *z*; (ix) *x*+1, *y*, *z*+1; (x) *x*, *y*,

617 *z*+1; (xi) -*x*+1, -*y*, -*z*+1.

		Table 7. Bor	nd-valence sum for cupr	ozheshengite (I	DC).		
	Pb1	Pb2	$Cu(^{VI}B)$	$Zn(^{IV}B)$	As1 P1(<i>X</i> 1)	P2 As2(X2)	O sum
01		0.153+0.113		0.503		1.251	2.020
O2	0.274			0.488		1.217	1.978
03	0.426+0.136					1.296	1.858
O4	0.100			0.507		1.277	1.883
05	0.127			0.504	1.366		1.960
O6		0.454+0.338			1.335		2.012
O7		0.435	$0.131 \times 2 \downarrow \rightarrow$		1.258		2.065
08	0.400		$0.388 \times 2 \downarrow \times 1 \rightarrow$		1.148		2.011
09	0.582	0.299	$0.496 \times 2 \downarrow \times 1 \rightarrow$				1.276
Sum	1.944	1.791	2.030	2.002	5.138	5.042	

Note: The occupancy of X1 site is 0.764(11) As + 0.236(19) P and X2 site is 0.764(11) P + 0.236(19). The bond-valence calculations were done using the equation and constants of Brown (1977), $S = \exp[R_0 - d_0)/b]$. Bond parameters: Pb²⁺–O²⁻ from Krivovichev and Brown (2001); Cu²⁺–O²⁻ Krivovichev (2012); Zn²⁺–O²⁻ from Allmann (1975); P⁵⁺–O²⁻ from Gagne and Hawthorne (2015) and As⁵⁺–O²⁻ Brown and Altermatt (1985).

622

618

$T_{-1} = 0$ $T_{-1} = 0$	f V .: 4 1	-1 -1 -1 -1 -1 -1 -1 -1	$r \cap f \dots \dots$		L
-1 able 8. The occubance	x of x site and avera	ge bond length of X	-O of cuprozneshe	engite isomorp	nous minerais.
inone of the stempthic			o or emprozineoin		

No.	Species	Occupancy of X1 site	Average bond length of $X1-O$ (Å)	Occupancy of X2 site	Average bond length of X2–O (Å)
1	Dongchuangite	0.64(2)P+0.364(19)As	1.584	1.00P	1.546
2	Cuprodongchuanite	0.85(2)P+0.15(2)As	1.547	1.00P	1.546
3	Cuprodongchuanite	0.86(2)P+0.142(17)As	1.548	1.00P	1.546
4	Cuprodongchuanite	0.63(3)P+0.37(2)As	1.569	1.00P	1.540
5	Zheshengite	0.31(2)P+0.686(12)As	1.642	0.86(2)P+0.144(12)As	1.570
6	Zheshengite	0.32(2)P+0.678(17)As	1.636	0.82(2)P+0.178(16)As	1.573
7	Zheshengite	0.29(2)P+0.713(17)As	1.657	0.81(2)P+0.187(16) As	1.570
8	Cuprozheshengite	0.29(2)P+0.705(19)As	1.642	0.66(2)P+0.340(19)As	1.584
9	Cuprozheshengite	0.40(2)P+0.604(16)As	1.616	0.78(2)P+0.224(16) As	1.575
10	Cuprozheshengite	0.19(2)P+0.810(18)As	1.673	0.55(2)P+0.451(18)As	1.624
11	Cuprozheshengite	0.236(19)P+0.764(11)As	1.647	0.620(19)P+0.382(11)As	1.594
12	Cuprozheshengite	0.28(2)P+0.719(15)As	1.644	0.80(2)P+0.197(15)As	1.566
13	Cuprozheshengite	0.36(2)P+0.64(2)As	1.625	0.91(1)P+0.09(1)As	1.558

Table 9. Total energy differences (eV) after geometry optimization of the three models.

$E_1 - E_0$	$E_2 - E_0$	$E_1 - E_2$
11.51	11.56	-0.05

631

Model 0 Model 1 Model 2 a (Å) 9.8537 9.8747 9.8629 *b* (Å) 8.7356 8.7337 8.7584 *c* (Å) 21.1501 21.1623 21.1662 α (°) 96.9004 96.868 96.911 β(°) 105.1499 105.0189 105.1132 γ (°) 89.7405 89.801 89.7882 $V(Å^3)$ 1744.1765 1748.2865 1752.3957 Average bond length of *X*1–O 1.539 (P-O) 1.539(P-O) 1.703 (As-O) 1.516 (P–O) Expected bond length of X1–O* 1.695 (As-O) Average bond length of X2–O 1.541 (P-O) 1.541 (P–O) 1.704 (As-O) 1.544 (P–O) Expected bond length of $X2-O^*$ 1.690 (As-O)

632 Table 10. The geometric parameters after geometry optimization of the three models.

*Calculated by fitting formulas

633

Table 11. Members and potential members of cuprozheshengite isomorphous minerals 634 $(A, B^{\text{VI}}B^{\text{IV}}, (Y10)), (Y20), (OH))$

635	
-----	--

	$(A_4B B_2(A_1O_4)_2(A_2O_4)_2(OH)_2).$					
vі В	X1 = X2 = P	X1 = As, X2 = P	X1 = X2 = As			
Z n	Dongchuanite (IMA2021-058) $Pb_4^{VI}Zn^{IV}Zn_2(PO_4)_2(PO_4)_2(OH)_2$	Zheshengite (IMA2022-011) $Pb_4^{VI}Zn^{IV}Zn_2(AsO_4)_2(PO_4)_2(OH)_2$	Full As analogue of dongchuanite (Potential) Pb ₄ ^{VI} Zn ^{IV} Zn ₂ (AsO ₄) ₂ (AsO ₄) ₂ (OH) ₂			
C u	Cuprodongchuanite (IMA2021-065) $Pb_4^{VI}Cu^{IV}Zn_2(PO_4)_2(PO_4)_2(OH)_2$	Cuprozheshengite (IMA2022-095a) $Pb_4^{VI}Cu^{IV}Zn_2(AsO_4)_2(PO_4)_2(OH)_2$	Full As analogue of cuprodongchuanite (Potential) Pb ₄ ^{VI} Cu ^{IV} Zn ₂ (AsO ₄) ₂ (AsO ₄) ₂ (OH) ₂			

AN AND A DISTORT

Raman shift (cm⁻¹)

Model 2 (E_2)

Pb [CuO₆] [AsO₄] [PO₄] [ZnO₄]