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Abstract 10 

 Currently there are two related but distinct approaches to the classification of 11 

minerals. The traditional time-independent classification uses rules specified by the 12 

IMA-CNMNC that can carefully split mineral species, but may elide valuable information 13 

about their formation. In contrast, an emerging time-dependent classification appears to 14 

be able to add to our knowledge about planetary evolution, yet may lump minerals into 15 

broadly defined kinds even if important distinctions should be made. An examination of 16 

the tetrahedrite group provides valuable insights on both approaches. As newly 17 

redefined by Biagioni, et al. (2020), the generalized tetrahedrite formula 18 

(A6(B4C2)D4X12Z1) has six sites that can accommodate substitutions and a systematic 19 

splitting of all possibilities could lead to more than 200 unique species. In contrast, 20 

applying guidelines for lumping largely as suggested by Hazen, et al. (2022) could lead 21 
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to a single kind. Deciding how much to lump and how far to split may ultimately depend 22 

on the intentions of the observer. 23 
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Introduction 28 

 The name tetrahedrite is well known in mineralogy, it being the most common 29 

sulfosalt mineral. But an abundance of additional names have been used and/or 30 

proposed as a result of its complicated chemistry and history as a source of copper and 31 

silver. From the argentum rude album of Agricola (1546) through the grey ores (fahlerz 32 

and cuivre gris) of the 18th century, numerous variants in the 19th century (Palache, et 33 

al., 1944), to modern work, perhaps never in the field of mineralogy has a single mineral 34 

been split so often by so many. But despite the complexity of its nomenclature, the 35 

structure of tetrahedrite is straightforward. It can be considered as a sulfide analogue to 36 

the framework aluminosilicate sodalite (Barth, 1932), with transition metal - sulfur 37 

tetrahedra in place of the (Al, Si)O4 tetrahedra. The ‘cage’ generated by this framework 38 

is generally collapsed down onto a transition metal - sulfur octahedron (rather than 39 

hosting a large anion or polyanion), and alternating rings of the framework are spanned 40 

by four semimetal - sulfur trigonal pyramids (Biagioni, et al., 2020). 41 

 Two factors have complicated mineralogical and material science research on 42 

tetrahedrite. First, the variety of possible chemical substitutions emphasized the 43 

inadequacy of the historical nomenclature and made a redefinition sorely needed. 44 

Formal work on this was initiated by the IMA-COM (Möelo, et al., 2008) and culminated 45 

with the application of current IMA-CNMNC guidelines to the tetrahedrite group 46 

(Biagioni, et al., 2020). The second factor lies in the promise tetrahedrite has shown as 47 

a thermoelectric material. As a semiconductor, tetrahedrite has a relatively high 48 

electrical conductivity, but vibrations of metal atoms within the cage and the lone 49 
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electron pairs of the semi-metals result in a poor thermal conductivity. This produces the 50 

‘phonon glass, electron crystal’ (PGEC) phenomenon (Beekman, et al., 2015) that 51 

generates electricity. Over the last two decades this research has curiously left many of 52 

the known tetrahedrite compositions poorly investigated. The focus has largely been on 53 

the Sb-dominant compositions (tetrahedrites sensu stricto) synthesized with 54 

substitutions for the framework cations, including some unlikely to occur naturally, such 55 

as Al (Tippireddy, et al., 2020), or Mg (Levinsky, et al., 2018). Part of this focus is due to 56 

the lower toxicity of Sb-bearing phases compared with other thermoelectric materials 57 

like Bi2Te3 or PbTe (Suekuni, et al., 2013; Makin, et al., 2022). But it is also likely due in 58 

part to unfamiliarity with the nomenclature, owing (for non-mineralogists) to the 59 

bewildering assortment of names. 60 

 The recent re-examination of the structure and chemistry of tetrahedrite (sensu lato) 61 

by Biagioni, et al. (2020) resulted in a formal redefinition and a number of named series 62 

and species, and their Table 2 included all extant and a number of probable, but not yet 63 

formally recognized, species. With its complicated chemistry and tangled history of 64 

names, such a review and redefinition was long overdue and Biagioni, et al. (2020) 65 

accomplished this in a manner both thorough and thoughtful. It should come as no 66 

surprise, however, that even such a detailed review might leave some aspects of the 67 

mineral group unaddressed or incompletely considered: 68 

 •The nature of the classification requires very careful chemical analyses and, in 69 

some cases, structural analyses to determine Z-site occupancies, which precludes any 70 

use in the field or routine petrographic study. This contrasts with the approach taken for 71 
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the eudialyte group wherein the contents of the X-sites are ignored in assigning an 72 

appropriate mineral name owing to difficulties in determining Cl, F, OH, O, CO3, H2O 73 

and vacancies during routine analyses. (Johnsen, et al., 2003). 74 

 •It defines a freibergite series while eliminating the eponymous mineral itself and 75 

combines within this series minerals with both occupied and vacant Z-sites, inconsistent 76 

with previous IMA recommendations for the classification of alkali-group, calcic-group 77 

and X-vacant group tourmalines (Henry, et al., 2011). 78 

 •It discusses Z-site vacancies solely in the context of kenoargentotetrahedrite-(Fe), 79 

despite long standing questions about the presence or absence of a 13th sulfur atom in 80 

tetrahedrite (effectively an occupied or unoccupied Z-site, Johnson, et al. 1986, Sack, et 81 

al. 2022). The subsequent discoveries of  kenorozhdestvenskayaite-(Zn) (Qu, K., et al., 82 

in press a), and kenorozhdestvenskayaite-(Fe) (Qu, K., et al., in press b) suggests that 83 

this may be a topic requiring further consideration. 84 

 •It does not address similarities between the tetrahedrite group and the galkhaite 85 

group (Chen and Szymanski, 1981; Kasatkin, et al., 2018), which are also made up of a 86 

sodalite-like framework of transition metal - sulfur tetrahedra (in the case of galkhaite, 87 

HgS4), but with each cage occupied by an atom of Cs or Tl instead of a transition metal 88 

- sulfur octahedron. The subsequent discovery of posepnyite (Skacha, et al., 2020), 89 

where the dominant cation in the B site is Hg instead of Cu suggests a connection 90 

between the two groups which may also require additional consideration. 91 

 •It speculates on the possibility of new tellurian species arsenogoldfieldite and 92 

stibiogoldfieldite, both of which have now been reported (Sejkora, et al., 2022; Biagioni, 93 
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et al., 2022), but only briefly mentioned the possibility of cations other than copper in the 94 

framework. This likely due to Makovicky and Karup-Moller (2017) who found 95 

substitution, omission and exchange calculations on natural tellurian tetrahedrites 96 

(sensu lato) to be hindered by poor or incomplete data. 97 

 The redefinition has also predictably rekindled a debate, since it can be argued that 98 

it is a template for excessive splitting (Nikischer, 2020) or that it presents opportunities 99 

to more precisely characterize new species (such as the 15 new Sb-dominant minerals 100 

since the publication of Biagioni, et al. 2020). But regardless of any weaknesses or 101 

perspective, their Table 2 only lists minerals by formula rather than indicating which 102 

sites accommodate which substitutions in which series or species. A more 103 

comprehensive table could both clarify areas for future research and uniquely illuminate 104 

the lumping vs. splitting question, thereby impacting a current philosophical discussion 105 

in mineralogy. 106 

 Hazen (2019) proposed a new type of mineralogical classification, one very different 107 

than that which currently exists and driven by the need to interpret data collected during 108 

planetary exploration missions. This was termed an evolutionary (i.e. time-dependent) 109 

system to contrast it with the current time-independent IMA guidelines. He 110 

demonstrated that a time-independent classification may elide important contextual 111 

information on mineral formation, illustrating this with a discussion of different diamond 112 

morphologies and properties that arise from different parageneses. Hazen & Morrison 113 

(2022) surveyed mineral formation environments and identified a series of 57 unique 114 

paragenetic modes which could be used to classify minerals in this evolutionary 115 



 

 
Page 7 

scheme. Following this, Hazen, et al. (2022) explored the lumping and splitting of 116 

minerals in this context, providing criteria for determining when to lump or split. They 117 

suggest lumping minerals only if part of a continuous solid solution, if they are 118 

isostructural or part of a homologous series, and form in the same paragenetic mode. 119 

Splitting should occur only if they form via two or more paragenetic modes, and/or 120 

cluster analyses reveal multiple and distinct sets of attributes. To stress test these 121 

criteria, they examined eight mineral groups in detail (cancrinite, eudialyte, hornblende, 122 

jahnsite, labuntsovite, sartorite, tetradymite, tourmaline) in which 20 or more current 123 

species could be lumped together into natural kinds. Obviously, the present work also 124 

addresses this debate, albeit from a different perspective, and raises the question if the 125 

newly defined tetrahedrite group could provide additional insight. 126 

 127 

Lumping vs Splitting: Speculation ad Absurdum? 128 

 As shown above, a time-dependent classification might be considered more closely 129 

tied to mineral lumping whereas a time-independent one could be thought skewed 130 

towards mineral splitting. To apply this to the tetrahedrite group, let us first speculate as 131 

to how much lumping could occur. All of the tetrahedrite minerals are isostructural and 132 

to date, there is no evidence of anything but complete solid solution across all 133 

compositions. The lumping question then comes down to the number of observed 134 

paragenetic modes. An examination of the RRUFF database (https://rruff.info/ima; 135 

accessed 3 July 2023, Downs, 2006) finds (as of this writing) 28 extant tetrahedrites 136 

(sensu lato) with listed paragenetic modes . Of these, all have PM33 (hydrothermal 137 
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metal deposits) as a paragenetic mode and only three list any others (two with PM32 138 

(Ba-Mn-Pb-Zn metamorphics) and one with PM37 (layered igneous deposits)). Clearly, 139 

most tetrahedrites would meet all the criteria for lumping, and relaxing the paragenetic 140 

mode criterion only slightly could allow for complete lumping. This extreme case would 141 

then turn the tetrahedrite group into a single natural mineral kind - tetrahedrite. 142 

 But what of maximal splitting? Table 1 is a version of Table 2 of Biagioni, et al. 143 

(2020), focusing only on Sb-dominant compositions, but describing other substitutions 144 

more exhaustively. It includes the extant series and species (as of this writing), adds a 145 

number of speculative series and species (in italics), and specifies which of the six 146 

structural sites accommodates which substitutions following the conventions used by 147 

Biagioni, et al. (2020). It must be emphasized that these speculative series and species 148 

are just that, speculations for the purpose of exploring this debate and not a ‘back-door’ 149 

attempt to further redefine the tetrahedrite group without IMA-CNMNC sanction. For 150 

compactness sake, the tetrahedrite series is the only one completely filled out with eight 151 

unique species; the rest can be completed in an analogous fashion. The table also: 152 

 •Speculates about a Cu-rich series with the Z-site unoccupied. Following the 153 

convention  established by Biagioni, et al. (2020) this series is referred to as 154 

“kenotetrahedrite”. 155 

 •Abandons the freibergite series of Biagioni, et al. (2020), dividing it into separate 156 

speculative series “argentotetrahedrite” and “kenoargentotetrahedrite”. 157 
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 •Speculates about a “kenohakite” series, an “argentohakite” series, and a 158 

“kenoargentohakite” series in direct analogy with the matching series - extant and 159 

speculative - for tetrahedrite. 160 

 •Speculates about a “kenorozhdestvenskayaite” series to accommodate the newly 161 

discovered kenorozhdestvenskayaite-(Fe) (Qu, K., et al., in press b). 162 

 •Speculates about an  “unnamed series 1” and “kenounnamed series 1” as the 163 

Se-dominant analogs of the rozhdestvenskayaite and “kenorozhdestvenskayaite” 164 

series. 165 

 •Leaves out any discussion of posepnyite due to the ambiguity discussed above. 166 

 The result of this splitting speculation is twelve separate series, each with eight 167 

unique species, for a total of 96 possible tetrahedrites. Accommodating these 168 

characteristics as well as speculative Se - S ordering and the As-dominant and 169 

Te-significant (2 or more atoms per formula unit) minerals, could result in more than 200 170 

unique mineral species. 171 

 172 

Implications 173 

 With a potential range of one kind to more than 200 species, at what point are we 174 

lumping that which should be split or splitting that which should be lumped? As noted by 175 

Hazen, et al. (2022), Darwin originated the terminology but could offer no definitive 176 

guidance and Santana (2019) suggests the development of a hard-and-fast rule may be 177 

neither useful nor necessary. The contrast between splitting minerals into narrowly 178 

defined species or lumping them together into broader kinds resembles past 179 
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developments in both taxonomy and igneous petrology. Advances in DNA sequencing 180 

now allow for species splitting when morphological characteristics might suggest 181 

lumping (Bickford, et al., 2007) and the IUGS classifications of igneous rocks 182 

(Streckesien, 1976) allow for lumped field classifications and split laboratory 183 

classifications based on modal analyses (QAPF). 184 

 Consider whether the Fe, Mn, Ni, and Zn tetrahedrite variants should be lumped into 185 

a single kind or split into separate species as they currently are. From the perspective of 186 

a mining company, these are truly distinctions without a difference, since their interests 187 

are solely in the amounts of available Cu and Ag in the mineral. Contrast this with the 188 

utility of tetrahedrite as a thermoelectric material. Figure 1 is a plot of the dimensionless 189 

thermoelectric figure of merit (ZT) as a function of temperature for synthetic 190 

tetrahedrite-(Fe), tetrahedrite-(Mn), tetrahedrite-(Ni), and tetrahedrite-(Zn) (Heo, et al., 191 

2014; Wang, 2016; Weller, 2018). The significant differences between these ZT values 192 

make the trivial distinction of the mining industry into a serious research question for 193 

condensed matter physics. It would seem that sometimes lumping is the better choice, 194 

whereas in others splitting is preferable, and which path should be chosen is entirely 195 

dependent on the aim of the research. 196 
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Figure captions 321 

 322 

Figure 1. Plot of the dimensionless thermoelectric figure of merit (ZT) versus 323 

temperature for synthetic C-site substituted tetrahedrites. 324 

  325 
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Table 1. Listing of maximally split Sb-dominant tetrahedrite series and species 326 

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––327 

–––––––– 328 

   Dominant site occupant 329 

Series A site (6) B site (4) C site (2) D site (4) Y site (12) Z site (1) 330 

Tetrahedrite Cu Cu Variable Sb S S 331 
 Tetrahedrite-(Cd)* Cu Cu Cd Sb S S 332 
 Tetrahedrite-(Cu)* Cu Cu Cu Sb S S 333 
 Tetrahedrite-(Fe) Cu Cu Fe Sb S S 334 
 Tetrahedrite-(Hg)* Cu Cu Hg Sb S S 335 
 Tetrahedrite-(In)* Cu Cu In Sb S S 336 
 Tetrahedrite-(Mn)* Cu Cu Mn Sb S S 337 
 Tetrahedrite-(Ni)* Cu Cu Ni Sb S S 338 
 Tetrahedrite-(Zn) Cu Cu Zn Sb S S 339 
 340 

Kenotetrahedrite Cu Cu Variable Sb S Vacant 341 

 342 

Argentotetrahedrite Ag Cu Variable Sb S S 343 
 Argentoetrahedrite-(Cd)* Ag Cu Cd Sb S S 344 
 Argentoetrahedrite-(Fe) Ag Cu Fe Sb S S 345 
 Argentoetrahedrite-(Hg)* Ag Cu Hg Sb S S 346 
 Argentotetrahedrite-(Zn)* Ag Cu Zn Sb S S 347 
 348 

Kenoargentotetrahedrite Ag Cu Variable Sb S Vacant 349 
 Kenoargentoetrahedrite-(Fe)* Ag Cu Fe Sb S Vacant 350 
 Kenoargentoetrahedrite-(Zn)* Ag Cu Zn Sb S Vacant 351 
 352 

Hakite Cu Cu Variable Sb Se Se 353 
 Hakite-(Cd)* Cu Cu Cd Sb Se Se 354 
 Hakite-(Fe)* Cu Cu Fe Sb Se Se 355 
 Hakite-(Hg) Cu Cu Hg Sb Se Se 356 
 Hakite-(Zn)* Cu Cu Zn Sb Se Se 357 
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 358 

Kenohakite Cu Cu Variable Sb Se Vacant 359 

 360 

 361 

 362 

Argentohakite Ag Cu Variable Sb Se Se 363 

 364 

Kenoargentohakite Ag Cu Variable Sb Se Vacant 365 

 366 

Rozhdestvenskayaite Ag Ag Variable Sb S S 367 
 Rozhdestvenskayite-(Zn) Ag Ag Zn Sb S S 368 
 369 

Kenorozhdestvenskayaite Ag Ag Variable Sb S Vacant 370 
 Kenorozhdestvenskayite-(Fe)* Ag Ag Fe Sb S Vacant 371 
 372 

Unnamed Series 1 Ag Ag Variable Sb Se Se 373 

 374 

Kenounnamed Series 1 Ag Ag Variable Sb Se Vacant 375 

 376 

Extant series and species are in plain text. Speculative series and species are in italics. 377 

Species noted with an “*” are newly described - either in print or in press - since the 378 

redefinition by Biagioni, et al. (2020). 379 
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