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 22 

ABSTRACT 23 

The mineral zircon has a robust crystal structure, preserving a wealth of 24 

geological information through deep time. Traditionally, trace elements in magmatic 25 

and hydrothermal zircon have been employed to distinguish between different 26 



primary igneous or metallogenic growth fluids. However, classical approaches based 27 

on mineral geochemistry are not only time-consuming, but often ambiguous due to 28 

apparent compositional overlap for different growth environments. Here, we report a 29 

compilation of 11004 zircon trace element measurements from 280 published 30 

articles, 7173 from crystals in igneous rocks and 3831 from ore deposits. 31 

Geochemical variables include Hf, Th, U, Y, Ti, Nb, Ta, and the REEs. Igneous rock 32 

types include kimberlite, carbonatite, gabbro, basalt, andesite, diorite, granodiorite, 33 

dacite, granite, rhyolite and pegmatite. Ore types include porphyry Cu-Au-Mo, 34 

skarn-type polymetallic, intrusion-related Au, skarn-type Fe-Cu, and Nb-Ta deposits. 35 

We develop Decision Tree, XGBoost and Random Forest algorithms with this zircon 36 

geochemical information to predict lithology or deposit type. The F1-score indicates 37 

that the Random Forest algorithm has the best predictive performance for 38 

classification of both lithology and deposit type. The eight most important zircon 39 

elements from the igneous rock (Hf, Nb, Ta, Th, U, Eu, Ti, Lu,) and ore deposit (Y, 40 

Eu, Hf, U, Ce, Ti, Th, Lu) classification models, yielded reliable F1-scores of 0.919 41 

and 0.891, respectively. We present a web page portal (http://60.205.170.161:8001/) 42 

for the classifier and employ it to a case study of Archean igneous rocks in Western 43 

Australia and ore deposits in Southwest China. The machine learning classifier 44 

successfully determines the known primary lithology of the samples, demonstrating 45 

significant promise as a classification tool, where host rock and ore deposit type is 46 

unknown. 47 
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 50 

INTRODUCTION 51 

Zircon (ZrSiO4) is common accessory mineral which grows in most silicate 52 

rocks and in many ore deposits. Zircon trace element chemistry reflects the 53 

partitioning of elements in the melt or fluid environment and the mineral during its 54 

crystallization (or later during recrystallization). Trace elements from a melt or other 55 

fluid can replace Zr, Si, or sit within interstitial spaces and become incorporated into 56 

the crystal during magmatic growth or during later metamorphism (Geisler et al. 57 

2007; Hanchar et al. 2001; Hoskin and Schaltegger, 2003). Different trace elements 58 

within the zircon crystal record different information, for example the radioactive 59 

elements Th, U, and Pb can be used to calculate ages (Lee et al. 1997) but also retain 60 

crude relationships with magma fractionation state and bulk rock chemistry (e.g. 61 

Kirkland et al. (2015) on Th/U), Ti content is temperature dependent (Watson et al. 62 

2006), Ce and Eu content is a key parameter related to magma oxygen fugacity 63 

(Trail et al. 2012), and Nb and Ta content reflects the degree of magmatic 64 

differentiation (Chen et al. 2021). Hf readily substitutes for Zr in the zircon structure 65 

meaning that the 176Hf/177Hf isotopic ratio, reflecting source Lu/Hf fractionation, is a 66 

powerful tool for crustal evolution studies (e.g. Belousova et al. 2010). A wide range 67 

of other geochemical parameters in zircon have been used to understand this mineral 68 



and hence a rocks crystallization and later alteration history (Bell et al. 2019; 69 

Claiborne et al. 2010; Olson et al. 2017; Zeng et al. 2017). 70 

Studies on the classification of igneous rocks based on zircon compositions are 71 

abundant (Belousova et al. 2002; Breiter et al. 2014; Gudelius et al. 2020; Nardi et al. 72 

2013). Utilizing a series of binary diagrams for zircon trace elements, Belousova et 73 

al. (2002) found that the content of specific elements varied between different 74 

igneous rock types. Belousova et al. (2002) used this information to construct a trace 75 

element Decision Tree to distinguish between potentially different igneous rocks 76 

precipitating zircon from their primary magma. Zircon composition has also been 77 

used as a pathfinder for mineralization (Lu et al. 2019), as there are differences in 78 

temperature, oxygen fugacity, water content, and magma fractionation state for 79 

barren and mineralized fluids which become encoded into zircons mineral chemistry. 80 

Porphyry-type Cu-Au-Mo deposits are commonly associated with intrusive bodies 81 

with high oxygen fugacity and water content (Lu et al. 2016). W-Sn deposits are 82 

associated with generally low oxygen fugacity (Yang et al. 2020). Nb-Ta deposits 83 

are often associated with highly evolved rocks (Yang et al. 2014). In the last 20 84 

years, LA-ICPMS (Laser Ablation – Inductively Coupled Plasma Mass 85 

Spectrometry) has become a popular tool for both geochronology and geochemical 86 

analysis of zircon, allowing large datasets to be rapidly collected from relatively 87 

small sample volumes within individual zircon crystals (Jackson et al. 1992). As 88 

more zircon data are published, there is the potential to search for patterns within 89 



this “big data” and use the resulting information to address geological problems that 90 

may have lacked clear resolution with smaller datasets. 91 

Machine learning is important in the context of “big data” and uses 92 

computational power to develop algorithms and statistical models to address a broad 93 

range of geological questions. With these algorithms and models, computer systems 94 

can process and analyze massive amounts of data in a short time, and make 95 

predictions or decisions on their own without explicit instructions (Mitchell 1997). 96 

Supervised learning is an important branch of machine learning, which predicts class 97 

labels by training a model. It requires input information to be labeled and divides it 98 

into a training dataset and a test dataset. The training dataset is used to teach the 99 

model and the test dataset serves to evaluate the performance of the constructed 100 

model (Hastie et al. 2009). Common supervised learning models include Decision 101 

Tree, Support Vector Machine (SVM), Random Forest, Extreme Gradient Boosting 102 

(XGBoost), and KNN. These models have already yielded some promising results 103 

for mineralogy. For example, models have been developed to predict the host rocks 104 

of quartz (Wang et al. 2021) and garnet (Schönig et al. 2021), tracing the possible 105 

provenance of detrital apatite in sedimentary rocks (O'Sullivan et al. 2020), and 106 

estimating the temperature and storage depth of clinopyroxene-bearing magma 107 

(Petrelli et al. 2020). For zircon grains, recently, Zou et al. (2022) successfully 108 

distinguished fertile and barren porphyries with the help of Random Forests and 109 

neural networks. 110 



Distinct from Zou et al. (2022)'s study, here we aim to discriminate different 111 

magmatic rocks and different mineralizing fluids with zircon trace elements. Such 112 

classification model would have important use in provenance analysis of detrital 113 

zircon and ore prospecting. Specifically, with lithological context removed from a 114 

detrital zircon this tool may help refine provenance interpretations including 115 

lithology of the source (Hoskin and Ireland 2000), its potential geodynamic setting 116 

(Grimes et al. 2015), and expand the exploration search space for mineral systems 117 

(Lu et al. 2016). In this study, we prepared separate databases of zircon chemical 118 

composition for igneous rocks and ore deposits. We show that a Random Forests 119 

algorithm yields the best prediction for both igneous rock and ore deposit type. We 120 

also filtered the most significant elements from the compilation and developed a 121 

model using fewer variables which is able to achieve a similar classification effect. 122 

Compared with conventional methods, machine learning is both more efficient and 123 

reliable in classifying igneous rocks and ore deposits. 124 

 125 

ZIRCON DATABASES AND CONVENTIONAL 126 

CLASSIFICATION METHODS 127 

Zircon databases 128 

We collected 11004 zircon trace element measurements from 280 published 129 

articles, with samples widely distributed over both space and time (Fig. 1). Part of 130 

the data is extracted from the online database 131 



https://data.goettingen-research-online.de. The elements in the database are Hf, U, 132 

Th, Y, Ti, Nb, Ta, and REE. Although zircon also contains P, Ca, Al, Fe, Sc, and Sr, 133 

the amount of data currently available for these elements is limited and thus is not 134 

yet suitable for inclusion in this form of analysis. 135 

The igneous rock or ore deposit classification and primary publication is given 136 

in Table 1, and detailed zircon information can be found at 137 

https://github.com/ZihaoWen123/geology_class, including sample location, trace 138 

element contents and references. The Igneous Rocks Database includes nine 139 

different igneous rock types, with rock names extracted from the lithological 140 

descriptions within in the source publications. However, some of these samples have 141 

similar mineral assemblages. To improve classification efficiency, closely 142 

comparable mineral assemblages were integrated (Table 1). Ultimately, the Igneous 143 

Rock Database contains six discrete rock types: kimberlite, carbonatite, basic rocks 144 

(BR), intermediate rocks (IR), acid rocks (AR), and pegmatite. The Ore Deposit 145 

Database covers five discrete deposit types (Table 1): porphyry Cu-Au-Mo deposit, 146 

skarn-type polymetallic deposit, intrusion-related Au deposit, skarn-type Fe-Cu 147 

deposit and Nb-Ta deposit. Skarn-type polymetallic deposits in the database are 148 

mainly found in southern China and Southeast Asia, and are dominated by W, Sn, 149 

with minor Pb, Zn and Sb. Notably the above classification of igneous rocks and ore 150 

deposits is based on the description of field lithology and deposits in the published 151 

source articles. 152 



 153 

Conventional classification methods 154 

Before developing a machine learning method, we analyzed the zircon data 155 

from the igneous rocks (Belousova et al. 2002; Claiborne et al. 2010; Gagnevin et al. 156 

2010; Gudelius et al. 2020) and ore deposits (Large et al. 2018; Lee et al. 2017; Lu 157 

et al. 2016) using more traditional two-dimensional classification methods (Fig. 2). 158 

REE depletion is regarded as an important feature of kimberlites (Hoskin and 159 

Ireland 2000). We found that not only REE (med. 299 ppm), but also Th (med. 33.5 160 

ppm), U (med. 66.9 ppm) and Y (med. 248 ppm) are depleted in zircon crystals from 161 

kimberlites. In pegmatites Nb (med. 19.4 ppm), Ta (med. 8.32 ppm), REE (med. 162 

1789ppm), U (med. 2123 ppm), Y (med. 2256 ppm) are all enriched (Fig. 2a-c). 163 

Niobium, Ta, and REE deposits are often associated with pegmatites (Van 164 

Lichtervelde et al. 2009; Seidler et al. 2005; Zhang et al. 2004), and some U deposits 165 

are found in areas which have significant pegmatite shows (Chen et al. 2019). Some 166 

Nb deposits are also spatially correlated with carbonatites (Melgarejo et al. 2012; 167 

Wu et al. 2021), as Nb (med. 52.5 ppm) is also enriched in carbonatites, while Ti 168 

(med. 3.03), REE (med. 519 ppm), U (med. 31.5 ppm), Y (med. 554 ppm) are 169 

generally deficient. Figure 4d shows the method proposed by (Grimes et al. 2007) 170 

for tracing zircon source area, which can constrain kimberlites but places few limits 171 

on the source of zircon from other rock types. The elemental contents of AR (Acid 172 

rock), IR (Intermediate rock), and BR (Basic rock) are not significantly enriched or 173 



depleted and all significantly overlap and cannot be uniquely identified via bivariate 174 

plots (Fig. 2). 175 

Relevant to deposit formation, oxygen fugacity and water content are known to 176 

be related to the transport and deposition of metals (Wyborn et al., 1994). Some 177 

studies have found that Eu and Ce anomalies in zircon are controlled by magma 178 

temperature and also the crystallization of other minerals such as titanite, plagioclase, 179 

and hornblende, in addition to oxygen fugacity (Nathwani et al. 2021; Loader et al. 180 

2022). Nonetheless, exploration approaches using Eu/Eu* (Dilles et al. 2015) and 181 

Ce* (Loader et al. 2017) have proved useful in distinguishing fertile from barren 182 

porphyry systems (Shen et al. 2015; Shu et al. 2019; Pizarro et al. 2020) (Fig. 2e). 183 

Recent studies have found that the water content of zircon crystals can be measured 184 

directly to estimate the amount of water within the primary magma (Xia et al. 2019). 185 

Another geochemical signature in zircon, with relevance for ores, is that water-rich 186 

magmas promote hornblende crystallization that suppresses plagioclase 187 

crystallization, resulting in Eu enrichment and Y deficiency in zircon. Lu et al. (2016) 188 

proposed that Eu/Eu*/Y×10000 and Ce/Nd/Y of zircon is positively correlated with 189 

magma water content (Fig. 2f). We find that skarn-type polymetallic deposits are 190 

associated with low oxygen fugacity and water content environments, while 191 

porphyry-type deposits, intrusion-related Au deposits, and skarn-type Fe-Cu deposits 192 

are associated with high oxygen fugacity and water content (Fig. e, f). Garnet is 193 

widespread in skarn rocks, which have a greater preference for HREE (Lee et al. 194 



2017; Rubatto 2002). This chemical affinity may be responsible for the HREE 195 

deficit and low Yb/Gd ratios in zircons from skarn-type polymetallic deposits and 196 

skarn-type Fe-Cu deposits (Fig. 2g). In addition, zircons in Nb-Ta deposits 197 

unsurprisingly have high Nb and Ta contents (Fig. 2h). 198 

 199 

DATA PRE-PROCESSING FOR MACHINE LEANING 200 

METHODS 201 

Data pre-processing and model building was completed in Python on the 202 

scikit-learn platform (Pedregosa et al. 2011). 203 

Addressing missing values – Imputation 204 

In data analysis, data integrity is very important to obtain accurate and reliable 205 

results. Therefore, filling in missing values with appropriate estimates (imputation) 206 

is an essential step in data pre-processing. There are some missing compositional 207 

values in the data set, either because the elemental content was below the detection 208 

limit of the LA-ICPMS, because the analyst simply did not collect that element, or 209 

there was some other analytical limitation imposed on the acquisition. 210 

For the first missing data case, we elected to remove elements with very low 211 

contents, such as La and Pr. Lanthanum and Pr contents are often below the 212 

detection limit and measurement of these elements are susceptible to reflecting the 213 

content of mineral inclusions within the zircon grains, rather than the zircon itself. 214 

These two elements were also avoided by other researchers, for example when 215 

calculating Ce3+ content from rare earth elements of zircon and estimating oxygen 216 



fugacity (Zhong et al. 2019). In addition, we do not consider elements with >20% 217 

missing values in the dataset. This is because estimating a large number of missing 218 

values brings a heightened degree of uncertainty and could cause the model to 219 

poorly reflect the true data distribution. Niobium and Ta in the ore deposits database 220 

suffers from a large number of missing measurements. 221 

For the second and third case of missing data (elements not measured for 222 

whatever reason), we are able to use the "knn-classification" and "iterative" vacancy 223 

filling methods as there is sufficient information to estimate the missing parameter 224 

in the dataset (Emmanuel et al. 2021). The term "knn-classification" uses the known 225 

characteristics of the data points to determine the nearest K samples to the missing 226 

data according to Euclidean distance (Eqs. 1,2), and then fills the missing values by 227 

averaging the results of these K samples (Emmanuel et al. 2021). 228 

dxy = √(weight × squared distance from present coordinates)     1 229 

weight = (Total number of coordinates)/(Number of present coordinates)       2 230 

The alternative "iterative" method involves defining a model that predicts each 231 

missing element as a function of all other elements and repeating this process of 232 

estimating feature values multiple times (Emmanuel et al. 2021). Initially the 233 

procedure assumes that the missing data has a mean value. The concentration is then 234 

re-estimated based on the pattern within the entire dataset. The imputated values are 235 

used to update the missing values in the original data set. This repetition allows 236 

refined estimates for other features and can be used as the input in subsequent 237 



iterations of predicting missing values. 238 

 239 

Data standardization 240 

Data standardization unifies the units of measure and magnitudes of different 241 

features (in our case, elements), eliminating the effects of order-of-magnitude 242 

differences and making the data more comparable. We compared different data 243 

standardization strategies, including "Min-Max", "Log" and "Z-score". 244 

“Min-Max” scales the original data in the range [0,1], i.e., to map the data to 245 

the specified interval by linear transformation of the original data (Eq 3). 246 

x = (xi-min(xi))/(max(xi)-min(xi))    3 247 

"Log" (log transformation) standardizes the data by taking the logarithm of the 248 

data (Eq 4). 249 

x = log(xi+1)          4 250 

The "Z-score" transforms the data into a data structure with mean of 0 and 251 

standard deviation equal to 1 (Eq 5). Where μ is the mean of the original data and σ 252 

is the standard deviation of the original data. 253 

x = (xi-μ)/σ         5 254 

 255 

Class imbalance 256 

In the igneous rock database, the AR lithology has the most data with 2594 257 

samples. The pegmatite lithology has the least data in the database with 218 samples 258 

(Table 1). In the case of the ore deposits database, the porphyry type Cu-Mo-Au 259 

deposit is the most numerous with 2122 samples and the Nb-Ta deposit is the least 260 



numerous with 81 samples (Table 1). This imbalance in the number of samples in 261 

different classes (lithology or deposit types) could cause the model to be more 262 

inclined to predict specific classes with more data and thus perform worse on classes 263 

with less data, resulting in biased model output (Japkowicz and Stephen 2002).  264 

To address the apparent class imbalance a synthetic minority over-sampling 265 

technique (SMOTE) can be used (Chawla et al. 2002). This method first calculates 266 

the distance of each data point, in a minority class, from the adjacent K data. Then a 267 

number of data points are randomly selected from the K nearest neighbors to 268 

generate a new synthetic data point. This new synthetic data point is added to the 269 

original minority class dataset, increasing its number. 270 

 271 

MACHINE LEARNING METHODS 272 

Data is divided into training and testing sets with the training set : testing set 273 

ratio set at 9:1. The training set was used to develop the model and for parameter 274 

tuning. The test set was used to evaluate the performance of the model (Hastie et al. 275 

2009). We developed Decision Tree (Myles et al. 2004), XGBoost (Chen and 276 

Guestrin 2016) and Random Forest (Tin Kam Ho 1995; Breiman 2001) to fit the 277 

compiled data. These methods are all tree-based algorithms, which are 278 

non-parametric and work regardless of the distribution/collinearity of the input data. 279 

Other methods, such as SVM, Artificial Neural Network, and Logistic Regression, 280 

can be limited compared to tree-based algorithms on geochemical data due to a 281 



constant sum effect (Rollinson 1992). 282 

 283 

Decision Tree 284 

A Decision Tree model is often regarded as "weak classifier" and the basis for 285 

building integrated algorithms such as XGBoost and Random Forest. A Decision 286 

Tree is built by constructing a tree model that outputs the possible outcomes and 287 

probabilities under different conditions. Specifically, it selects the best feature from 288 

all the features as the root node and repeats this process for the selected features 289 

until a Decision Tree is generated (Myles et al. 2004). In the tree model, the Gini 290 

coefficient (Eq 6) is used for feature selection (Breiman 2001). 291 

Gini(t) = 1-∑c-1 
i=0 p(i|t)2          6 292 

 293 

XGBoost 294 

In the XGBoost algorithm the basic principle is to iteratively add Decision 295 

Trees to a model, with each tree attempting to correct the errors of the previous tree. 296 

During training, the model starts with a single Decision Tree and calculates the error 297 

(or loss) of the predictions on the training data. The algorithm then adds another 298 

Decision Tree to the model, but this time aims to correct the errors within the first 299 

Decision Tree. The combined output of both Decision Trees are then used to 300 

calculate a new error estimate, and the process repeats with additional Decision 301 

Trees added until the error is minimized. The predictions from each tree are 302 



combined by adding them together to produce the final output (Chen and He 2015; 303 

Chen and Guestrin 2016). 304 

 305 

Random Forest 306 

In a Random Forest model the algorithm builds a forest of Decision Trees, 307 

where each tree is constructed using a random subset of the data and features (Fig. 308 

3). The trees are trained independently and are not correlated with each other. When 309 

making predictions, each Decision Tree in the forest is used to classify a given input, 310 

and the final prediction is made by averaging or taking the majority vote of the 311 

predictions from all the trees (Eq. 7) (Breiman, 2001). The algorithm can provide 312 

insight into the importance of each feature in the data during training by tracking the 313 

reduction in misclassification caused by each feature in each tree. 314 

Equation 7 is the majority voting expression (Breiman 2001), H(x) denotes the 315 

combined classification model, hi is the individual Decision Tree classification 316 

model Y denotes the output variable and I( ∙) is the indicative function. 317 

H(x) = arg max∑k 
i=1I(hi(x)=Y)        7 318 

 319 

Parameter tuning and cross validation 320 

We adopt a Bayesian optimization algorithm to automatically adjust the 321 

parameters of the model (Snoek et al. 2012). 322 

Five-fold cross-validation was employed to verify the reliability of the 323 



classification model (Hastie et al. 2009) (Fig. 3). This computational operation 324 

divides the data into five equal parts and takes one part at a time for validation with 325 

the remainder of the data set used for training the model. This calculation was 326 

repeated five times and the average computed. 327 

 328 

RESULTS AND DISCUSSION 329 

Traditional classification methods and its limitation 330 

Despite our efforts to use our knowledge of geology to distinguish between the 331 

different rocks and deposits, there are still many overlapping areas in Figure 2. We 332 

take the Y-U plot for igneous rocks and the Eu/Eu*-Ce/Nd plot for ore deposits as 333 

examples, to calculate the accuracy of a conventional classification approach (Fig. 334 

4). To avoid altered samples and select the most representative chemistry of a rock, 335 

the highest and lowest 5% of elemental concentration data were not considered. 336 

Figures 4b and 4d show examples of BR and porphyry-type Cu-Au-Mo deposits, 337 

respectively. First, we count the number of data points within overlapping intervals 338 

and also calculate the overlap rate on the X- and Y-axes. We then subtract the 339 

product of the two overlap rates from 1, which is the accuracy of identifying an 340 

igneous rock or ore deposit. BR reveals a complete overlap with an identification 341 

rate of 0 (Fig. 4b). The porphyry type Cu-Au-Mo deposit has 151 data 342 

distinguishable on a Ce/Nd plot, giving an identification rate of only 9% (Fig. 4d). 343 

In Figure 4a even the most accurate classification rate, that for pegmatite, is 344 



only 64%, followed by carbonatite and kimberlite that are very similar with rates of 345 

19% and 13% prediction, respectively. AR, IR, and BR are completely 346 

undistinguished. A similar result is evident in Figure 4c, which completely fails to 347 

discriminate between Nb-Ta deposits and skarn-type Fe-Cu deposits. The highest 348 

classification accuracy is for intrusion-related Au deposits, at 52%. Skarn-type 349 

polymetallic deposits and porphyry-type Cu-Au-Mo deposits are similar with only 350 

11% and 9% prediction, respectively. In summary, traditional methods have 351 

generally poor performance in identifying different igneous rocks or ore deposits. It 352 

may be feasible to improve the identification of some rocks and deposits by making 353 

additional two-dimensional geochemical plots. However, such strategy will be both 354 

time consuming and may still be unable to uniquely distinguish between overlapping 355 

fields on discrimination plots and thus may lead to erroneous classifications. 356 

 357 

Machine learning model construction 358 

Before the selection of a machine learning algorithm, a lot of data 359 

pre-processing work is required, including treatment of missing values, data 360 

standardization, and addressing class imbalance. These steps aim to improve the 361 

accuracy, stability, and computational efficiency of the model. We ran the model on 362 

the compositional database with Decision Tree, XGBoost, and Random Forest 363 

algorithms and list the results in Table 2. Precision, recall, and F1-scores provide 364 

evaluation criteria for the classification models (see detailed description in Nathwani 365 



et al. (2022)). The F1-score is the summed average of precision and recall, and is 366 

thus a useful summary of the function of the model. We observe that for igneous 367 

rocks and ore deposits, the best results are obtained by using the "knn-classification" 368 

method of filling in missing values, the "z-score" method for data standardization, 369 

and with "SMOTE" for class balance.  370 

Improperly filling in the missing values would introduce new noisy data, 371 

increasing the uncertainty of the model, leading to biased results (Pearson 2006). In 372 

our models, "knn-classification" performs better than the "iterative" imputation 373 

method (Table 2). A possible reason for this observation is that the KNN algorithm 374 

is a similarity-based algorithm, and as the same sample group of data has a high 375 

similarity, so the "knn-classification" works better. A disadvantage of the "iterative" 376 

method is that it is computationally intensive. For data standardization, both 377 

classification models perform best with the "z-score". This may be because the 378 

“z-score” method can better preserve the information between features, avoid the 379 

influence of outliers, and does not change the shape of the original data. For class 380 

imbalance, “SMOTE” effectively increased the number of minority samples and 381 

improved their identification. 382 

For machine learning algorithms, Random Forest performs the best for both 383 

databases no matter what data preprocessing method was used (Table 2). It is 384 

conceivable that the Decision Tree algorithm does not perform well because 385 

Random Forest and XGBoost are integrated algorithms and they are better at 386 



handling data with a high level of dimensions (i.e. a large number of attributes 387 

within the dataset). The lower F1-score of XGBoost than Random Forest may be 388 

due to its tendency to overfit the data. Random Forest randomly selects some 389 

features in the training of each Decision Tree, avoiding possible overfitting caused 390 

by too many features. 391 

Bayesian optimization is employed to parameterize the best igneous rocks and 392 

ore deposits models. It improves the predictive performance and accuracy of the 393 

model, reduces the risk of overfitting or underfitting, and improves the 394 

generalization ability of the model (Snoek et al. 2012). In Table 3, we list the 395 

parameter combinations (Detailed parameter tunning results in GitHub). The 396 

F1-scores of both igneous rocks and ore deposits classification models are 397 

significantly improved with the optimization, with scores of 0.963 and 0.961, 398 

respectively. The results of the five-fold cross-validation show that for Random 399 

Forest (Table 4) the precision of the classification models for igneous rocks and ore 400 

deposits has mean values of 0.947 and 0.897 respectively, suggesting that the 401 

classification models are both stable and reliable. 402 

A confusion matrix was used to measure the performance of the classification 403 

model. We can see from Figure 5a that kimberlite has the highest value (0.959), 404 

followed by AR (0.938), IR (0.891), BR (0.882), carbonatite (0.87) and pegmatite 405 

(0.75). Some pegmatites are mistaken for AR (0.125), which may be due to the fact 406 

that they underwent a longer chemical evolution sharing ultimate compositional 407 



affinity to AR. For the Ore Deposits Database (Fig. 5b), porphyry-type Cu-Au-Mo 408 

deposits (0.945) and intrusion-related Au deposits (0.95) have a better precision, 409 

followed by Nb-Ta deposits (0.909) and skarn-type polymetallic deposits (0.841), 410 

with skarn-type Fe-Cu deposits being the lowest (0.712). Skarn-type Fe-Cu deposits 411 

can be mistaken for porphyry-type Cu-Au-Mo deposits (0.076) and intrusion-related 412 

Au deposits (0.076) and polymetallic silica deposits (0.136). The lower scores may 413 

be because both skarn-type Fe-Cu deposits and skarn-type polymetallic deposits are 414 

spatially associated with the same geological environment. However, skarn-type 415 

Fe-Cu deposits prefer an oxidized and H2O-rich environment, as does porphyry-type 416 

Cu-Au-Mo deposits, and intrusion-related Au deposits (Sun et al. 2019). 417 

 418 

Feature importance and model simplification 419 

Feature importance highlights how relevant a feature (e.g. trace elements in a 420 

zircon) is to the classification (e.g. the type of igneous rock or ore deposit). 421 

Permutation Feature Importance (PFI) is a method for assessing the importance of 422 

features (Altmann et al. 2010). It evaluates the influence of the feature on the model 423 

by randomly replacing the value of a feature (Altmann et al. 2010). 424 

For the igneous rocks and ore deposits classification models, 19 and 17 (Nb, Ta 425 

missing values >20% were not included in the model) elements were taken into 426 

account, respectively. In Figures 6 we present the importance scores of the features 427 

for the Igneous Rocks and Ore Deposits Databases, respectively. In the igneous 428 



classification model Hf (0.123) is considered to be the most important, followed by 429 

Nb (0.120), Ta (0.089), Th (0.086) etc. and Sm (0) is considered to be the least 430 

important. In the deposit classification model, Y (0.119) is the most important, 431 

followed by Eu (0.097)，Hf (0.067), U (0.067) etc. There are also some elements that 432 

are negative values, and they are usually considered to have a negative impact on the 433 

model, with Gd (-0.006) having the biggest negative impact. 434 

To explore the relationship between the number of elements and the model 435 

scores, we first selected the top two most important elements and then added 436 

elements in descending order (Figure 7). The F1-score of the rock classification 437 

model increases from 0.612 to 0.902, while the deposit classification model 438 

increased from 0.478 to 0.851 until the 8th element was added. This is very close to 439 

the scores obtained with all elements in the Igneous Rock Database (0.914) and Ore 440 

Deposit Database (0.868). Therefore, we consider it acceptable to use the most 441 

important eight elements for the igneous rock and ore deposit classification models, 442 

respectively. Such approach aids in the decision of what trace elements to analyze in 443 

zircon when the goal is classifying the igneous rock source or ore deposits host, 444 

saving analytical time and costs, but arguably most importantly allowing element 445 

count times to be optimized to those most powerful elements for classification. From 446 

an algorithmic standpoint, using fewer elements in the final model will reduce its 447 

susceptibility to overfitting the training set (i.e. increases the signal to noise ratio). 448 

We additionally performed Bayesian optimal tuning for the simplified model (Table 449 



3), which yielded F1-scores for igneous rock and deposit classification models of 450 

0.919 and 0.891, respectively. 451 

Both the simplified igneous rock and ore deposit classification models contain 452 

Hf, Th, U, Eu, Ti, and Lu. The igneous rock model also contains Nb and Ta, whereas 453 

the ore deposit model also contains Y and Ce. From a geological perspective, the 454 

contents of Hf, Y, U, Th, Nb, Ta, and Lu are known to correlate with degree of 455 

magmatic evolution. Fluorine is typically abundant in evolved magmas and zircon 456 

crystals generated in such fluids (Breiter et al. 2006). Zr/Hf (Claiborne et al. 2006), 457 

Hf/Y (Gagnevin et al. 2010), Th/U (Claiborne et al. 2006; Gagnevin et al. 2010; 458 

Kirkland et al. 2015) and Nb/Ta (Gudelius et al. 2020) ratios also evaluate the 459 

degree of magma fractionation. Cerium and Eu have variable valences and thus 460 

estimate magma oxygen fugacity (Ballard et al. 2002; Loader et al. 2017; Zhong et 461 

al. 2019). Europium and Y in zircon may also reflect water content in the magma 462 

(Triantafyllou et al., 2022). Oxygen fugacity and water content track the migration 463 

and potential enrichment of metals in the crust (Dilles et al. 2015; Lu et al. 2016). 464 

Hence, the most important elements selected by the PFI algorithm appear 465 

geologically significant with established relationships to both magmatic evolution 466 

and ore deposit formation. 467 

The classification models for igneous rocks and ore deposits, discussed above, 468 

based on the eight most important elements, is provided via a web page front end 469 

http://60.205.170.161:8001/. Users can select the most appropriate model for 470 



classification and upload their zircon compositional data. The model outputs the 471 

counts per classification (also expressed as a percentage of the total number of 472 

samples). A detailed results spreadsheet can be downloaded which appends the 473 

classification onto the input file. 474 

 475 

Case study of igneous rocks and ore deposits classification model 476 

Igneous rocks in Yilgarn Craton, western Australia 477 

In order to explore the performance of the machine learning model we apply it 478 

to a case study on magmatic zircon crystals from the Archean Yilgarn Craton of 479 

Western Australia. The Yilgarn Craton has an exposed area of about 65×104 km2 and 480 

is well endowed with a range of different mineral systems (Cassidy et al. 2006) 481 

(Figure 8a). We consider a compilation of zircon geochemical data collected by 482 

LA-ICPMS which is paired with whole rock geochemistry (Lu et al., 2019). This 483 

dataset has been used to evaluate the zircon trace element content of barren granitic 484 

rocks to that paragenetically associated with mineralization. Zircon grains were 485 

filtered for U-Pb isotopic discordance as a means to exclude those that would have 486 

seen secondary alteration effects. The whole rock dataset has been filtered to include 487 

only samples with loss on ignition values <63 wt% and Al2O3 <20 wt%. This 488 

filtering aims to exclude samples that are strongly altered or are plagioclase 489 

cumulates. Some samples were also excluded due to the effects of metamorphism. 490 

Whole-rock geochemical and zircon trace element data for 30 rocks in the Yilgarn 491 



Craton (https://github.com/ZihaoWen123/geology_class) reflects primary 492 

compositions and is available to test the classification methods (see Lu et al. 2019). 493 

First, we classified these rocks using traditional methods based on whole-rock 494 

geochemistry, 12 are "granodiorite" and 18 are "granite" fields according to the TAS 495 

diagram (Le Maitre et al 2002), indicating that they are mainly intermediate-acid to 496 

acid rocks. We used the zircon trace elements from these 30 samples in the 497 

classification model and list the results with the whole-rock geochemical 498 

classification results in Table 5 for comparison. The classification model indicates 499 

the rock type predicted by each zircon trace element analysis and can be expressed 500 

as the proportion of each rock type classified within any sample, as shown in the pie 501 

chart in Figure 8b. It is clear that the zircon based IR classification is dominant in 502 

the whole rock defined "granodiorite" field, and the AR classification is elevated in 503 

those defined by whole rock as "granite" (Fig. 8b). As with the classification results 504 

of the whole-rock geochemical measurements, the lithology classification model 505 

based on zircon trace elements correctly predicts that these igneous rocks are mainly 506 

intermediate-acid in composition. An obvious application of this approach would be 507 

to detrital zircon grains that are not in association with their primary magmatic 508 

source rock. The zircon classification model would enable a prediction on the most 509 

likely source lithology. 510 

Ore deposits in Sanjiang region, southwest China 511 

The Sanjiang metallogenic belt, located in southwestern China (Fig. 9a), is one 512 



of the most important polymetallic belts in China which includes several porphyry 513 

copper-gold and polymetallic skarn deposits (Hou et al. 2007; Xu et al. 2021). We 514 

compiled zircon compositional data (find data on 515 

https://github.com/ZihaoWen123/geology_class) from the Yangla skarn-type 516 

polymetallic deposit, the Pulang, and the Beiya porphyry-type Cu-Au deposits (Fig. 517 

9b). Zircon compositions were used to determine the deposit type following the 518 

deposit classification model discussed above. The Yangla polymetallic skarn deposit, 519 

formed in the Triassic-Early Jurassic (Wang et al. 2022). It was traditionally 520 

considered as a copper deposit, but a high-grade tungsten ore in this deposit was 521 

recently identified (Yang et al. 2023). Wang et al. (2022) studied a quartz diorite 522 

from this deposit. In Figure 9c, the deposit classification model gives predictions for 523 

three zircon populations from this quartz diorite. Skarn-type polymetallic deposits 524 

are the dominant classification, consistent with the known situation. In the same area, 525 

Pulang and Beiya are two super large porphyry-type Cu and Au deposits formed in 526 

the Early Jurassic and Eocene, respectively (Fig. 9b) (Meng et al. 2018). Zircon 527 

compositional data from Meng et al. (2018) was used in classification. Three zircon 528 

populations of the Pulang deposit and five of the Beiya deposit yielded 529 

classifications dominated by porphyry-type Cu-Au-Mo deposits (Fig. 9c). It is 530 

notable that porphyry Cu-Au-Mo deposits and skarn-type polymetallic deposits 531 

always ranked within the top two for number of classifications. In summary, the 532 

zircon composition based ore deposit classification model seems to offer a useful 533 



indication of the potential mineralization type within an area. 534 

 535 

CONCLUSIONS 536 

Here we show that traditional methods of classifying magmatic rocks and 537 

deposits using zircon trace elements is inefficient at best and at worst can lead to 538 

misclassification. Random Forest models are an efficient multi-dimensional 539 

computation algorithm, although such classification results are difficult to show in 540 

the form of a flow chart. Many Decision Trees are computed independently, which 541 

can save computation time. Even if we use only the most important eight elements 542 

to predict igneous rock and ore deposit types, this limited compositional information 543 

still enables good classification. A case study of igneous rocks in the Yilgarn Craton 544 

and ore deposits in the Sanjiang region demonstrates that the zircon classifier has its 545 

own unique advantages in terms of ease of use and accuracy. It offers significant 546 

potential for tracing the origin of detrital zircon grains and enhancing exploration 547 

search space by indicating metallogenic fluids. 548 

 549 

IMPLICATIONS 550 

Zircon is a stable mineral that can preserve primary geological information and 551 

previous studies have confirmed that trace elements in this mineral are effective for 552 

tracing the origin of both igneous rocks and ore deposits. With large compilations of 553 

trace element data in zircon machine learning offers an attractive proposition to 554 



classifying igneous rocks and ore deposits source based on grain chemistry. Here we 555 

collect 7173 zircon chemical data from 11 different igneous rock types and 3831 556 

analyses of 5 deposit types, worldwide. Based on this computational approach we 557 

identify the 8 most important zircon trace elements that influence zircon 558 

classification in igneous rocks and ore deposits. We then build classification models 559 

for both igneous rocks and ore deposits and validate their reliability. In addition, a 560 

web page portal (http://60.205.170.161:8001/) has been developed for the two 561 

(igneous / deposit) classification models. The approach is applied to a case study of 562 

zircon from known rock types in 30 igneous plutons from Western Australia. 563 

Classification models of igneous rocks and ore deposits using zircon chemical data 564 

will be clearly useful in tracing the provenance of detrital zircon grains and in 565 

reducing exploration risk by increasing the deposit halo in detrital zircon sampling 566 

surveys. 567 
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FIGURE CAPTIONS 821 

FIGURE 1. World map with sample positions labelled. 822 

 823 

FIGURE 2. Zircon trace element scatter plot. (a-d) zircons collected from igneous 824 

rocks; (a) Y vs. U; (b) Th vs. U; (c) Nb vs. U; (d) U/Yb vs. Y; (e-h) zircons collected 825 

from ore deposits; (e) Eu/Eu* vs. Ce/Nd; (f) Eu/Eu* vs. Yb/Gd; (g) 826 

Eu/Eu*/Y×10000 vs. Ce/Nd/Y; (h) Nb vs. Ta. 827 

 828 

FIGURE 3. Cartoon of the workflow. For data pre-processing, we perform missing 829 

value processing, data normalization and data balancing for magmatic rocks and 830 

deposits database. The purple boxes denote the optimal method. For the machine 831 

learning model, Random Forest works best, and the cartoon image is put here for 832 

easy understanding. Parameter tuning and 5-fold cross-validation were also done for 833 

the model. 834 

 835 

FIGURE 4. Interval graphs for calculating the accuracy of conventional 836 

classification. (a) Y vs. U plot of igneous rocks; (b) The case of BR; (c) Eu/Eu* vs. 837 

Ce/Nd plot of ore deposits; (d) The case of porphyry-type Cu-Au-Mo deposit. 838 

Accuracy = 1-P(X)×P(Y)，P(X) and P(Y) means the ratio of overlapping data on the 839 

X- and Y-axis. 840 

 841 



FIGURE 5. Confusion matrix plot for the testing set using Random Forest. (a) Data 842 

from Igneous Rocks Database; (b) Data from Ore Deposit Database. The data in the 843 

table represents the precision of prediction (Eq. 7). Each column in the matrix 844 

represents the predicted category, while each row represents the true category of the 845 

data. The sum of the scores in each column is 1. 846 

 847 

FIGURE 6. Ranking of feature importance using Random Forest. (a) Based on 848 

Igneous Rocks Database; (b) Based on Ore Deposit Database. 849 

 850 

FIGURE 7. Trend curve of F1-score with increasing number of features using 851 

Random Forest. Element symbols are listed in descending order of feature 852 

importance in the table. Colored element symbols indicate that they are decisive for 853 

classification and can be used to simplify the model. 854 

 855 

FIGURE 8. Case study of igneous rocks in Yilgarn Craton, western Australia. (a) 856 

Geological map of Yilgarn Craton with sampling points; (b) The predicted results of 857 

zircon compositions on rock samples, the division of “granite” and “granodiorite” 858 

is based on the TAS rock classification proposed by Le Maitre (2002). 859 

 860 

Figure 9. Case study of ore deposits in Sanjiang region, southwest China. (a) 861 

Geological map showing the location of Sanjiang region (Zhu et al. 2015); (b) 862 



Tectonic framework of the Sanjiang region in southwest China showing the major 863 

terranes, suture zones, arc volcanic belts, and locations of the Yangla polymetallic 864 

skarn deposit, Pulang Cu porphyry deposit and Beiya Au-Cu porphyry deposit (Zhu 865 

et al. 2015); (c) Pie chart of the classification results of ore deposits based on zircon 866 

populations. Zircon samples 45-R1, 3250-41Lb1, 3250-41Lb1 were selected from 867 

quartz diorite at the Yangla deposit (Wang et al. 2022); sample PL01 and PL 02 were 868 

selected from a quartz diorite porphyry and sample PL03 was selected from a quartz 869 

monzonite porphyry at the Pulang deposit (Meng et al. 2018); sample BY01 and 870 

BY04 were selected from a quartz monzonite porphyry and BY02, BY03, and BY05 871 

were selected from quartz syenite porphyry at the Beiya deposit (Meng et al. 2018). 872 

 873 

APPENDIX AND WEB PORTAL 874 

To train models and validate the applicability of models in machine learning, this 875 

study collated a large amount of data. These data are peer-reviewed and published 876 

and the program code for the zircon classification model is made publicly available 877 

at (https://github.com/ZihaoWen123/geology_class). Furthermore, to aid users we 878 

have developed a website front end for the zircon classification model which should 879 

facilitate ease of use (http://60.205.170.161:8001/). 880 
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Table 1 Igneous rock and ore deposit type and data volume
Number of 

publications
Amount of 

data

10 549
8 240

Gabbro
Basalt
Andesite
Diorite
Granite
Rhyolite

8 218

24 2122
13 896
3 203
8 529
3 81

a. BR - basic rock, include gabbro and basalt;

c. AR – acid rock, include granite and rhyolite.
b. IR - intermediate rock, include andesite and diorite;

Porphyry-type Cu-Mo-Au deposit
Skarn-type Polymetallic deposit
Intrusion-related Au deposit
Skarn-type Fe-Cu deposit
Nb-Ta deposit

Deposits

bIR 72 2514

cAR 66 2594

Pegmatite

Database types

Igneous rocks
Kimberlite
Carbonatite

aBR 30 1058





Table 2 Comparison of different data pre-processing strategies and machine learning algorit

Missing values filling Data standardization Class imbalance Accuracy

knn-classification z-score smote 0.803
knn-classification log smote 0.798
knn-classification minmax smote 0.790

iterative z-score smote 0.654
iterative minmax smote 0.623
iterative log smote 0.613

knn-classification minmax smote 0.870
knn-classification z-score smote 0.868
knn-classification log smote 0.854

iterative minmax smote 0.682
iterative z-score smote 0.689
iterative log smote 0.742

knn-classification minmax smote 0.928
knn-classification log smote 0.934
knn-classification z-score smote 0.947

iterative z-score smote 0.805
iterative log smote 0.829
iterative minmax smote 0.828

knn-classification minmax smote 0.749
knn-classification z-score smote 0.742
knn-classification log smote 0.725

iterative minmax smote 0.533
iterative z-score smote 0.575
iterative log smote 0.591

knn-classification minmax smote 0.819
knn-classification log smote 0.807
knn-classification z-score smote 0.799

iterative minmax smote 0.611
iterative z-score smote 0.634
iterative log smote 0.654

knn-classification z-score smote 0.856
knn-classification log smote 0.838
knn-classification minmax smote 0.807

iterative minmax smote 0.722
iterative z-score smote 0.704
iterative log smote 0.733

Algorithm Data pre-processing strategies

Random 
Forest

XGBoost

Decision 
Tree

Decision 
Tree

XGBoost

Random 
Forest

Igneous rocks classification model (19 features/elements)

Ore deposits classification model (17 features/elements)



thms

F1-score Recall

0.833 0.872
0.825 0.861
0.821 0.861
0.661 0.671
0.655 0.718
0.643 0.693
0.892 0.917
0.889 0.914
0.880 0.913
0.713 0.774
0.725 0.781
0.770 0.808
0.902 0.879
0.902 0.876
0.931 0.917
0.810 0.819
0.834 0.842
0.836 0.847

0.762 0.780
0.759 0.783
0.728 0.749
0.567 0.639
0.594 0.642
0.595 0.601
0.827 0.839
0.813 0.824
0.809 0.827
0.662 0.773
0.685 0.792
0.698 0.785
0.872 0.894
0.855 0.878
0.830 0.866
0.737 0.790
0.734 0.799
0.730 0.758

Performance



Table 3 Optimal parameter tuning results for Random Forests

19 features 8 features 17 features 8 features
max_depth 100 44 100 13

max_features 0.444 0.572 0.551 0.649
min_samples_leaf 1 1 1 1
min_samples_split 2 2 2 2

n_estimators 300 300 300 163
F1-score 0.963 0.914 0.890 0.877

Ore deposits classification modelIgneous rocks classification modelParameters



Table 4 Results of Random Forest algorithm with five-fold cross validation
Database name Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold_avg
Igneous rocks 0.9369 0.9611 0.9501 0.9431 0.9427 0.9468
Ore deposits 0.9089 0.8988 0.9100 0.9187 0.8731 0.9019



Table 5 Case Study - Application of zircon classifier to igneous rocks in Yilgarn Craton

Pegmatite AR
1 -26.02°S, 120.32°E 73.7 granite 2% 16%
2 -27.86°S, 123.23°E 72.52 granite 28%
3 -27.76°S, 123.37°E 73.26 granite 4.3% 8.7%
4 -27.48°S, 121.02°E 68.46 granodiorite 8.3%
5 -27.89°S, 122.01°E 70.21 granodiorite 13%
6 -27.89°S, 121.88°E 72.43 granite 2% 10%
7 -27.35°S, 123.11°E 73.79 granite 5.9% 14.7%
8 -27.95°S, 121.37°E 69.18 granodiorite 16%
9 -28.77°S, 123.03°E 70.43 granodiorite 8% 22%

10 -27.53°S, 119.5°E 73.99 granite 2% 28%
11 -27.43°S, 119.6°E 73.74 granite 3.7% 29.6%
12 -26.75°S, 118.3°E 63.84 granodiorite 4%
13 -28.51°S, 123.02°E 73.8 granite 4% 48%
14 -27.41°S, 117.7°E 65.63 granodiorite 4%
15 -28.21°S, 119.86°E 67.87 granodiorite 14.1%
16 -28.44°S, 118.62°E 72.73 granite 2% 24%
17 -28.05°S, 117.73°E 71.6 granite 2% 56%
18 -29.02°S, 123.05°E 65.81 granodiorite 2%
19 -28.19°S, 123.67°E 66.54 granodiorite
20 -27.99°S, 123.43°E 73.06 granite 8%
21 -28.19°S, 123.64°E 69.15 granodiorite 28%
22 -28.61°S, 116.85°E 72.3 granite 60.0%
23 -29.38°S, 119.17°E 72.21 granite 13.3%
24 -27.26°S, 119.96°E 72.95 granite 34%
25 -26.91°S, 119.27°E 68.45 granodiorite 8%
26 -31.03°S, 116.62°E 74.47 granite 14.1%
27 -31.03°S, 116.63°E 72.38 granite 1.40% 41.7%
28 -30.92°S, 116.65°E 74.02 granite 60.0%
29 -32.76°S, 116.38°E 73.89 granite 1.10% 96.7%
30 -32.76°S, 116.36°E 64.04 granodiorite 5.9%

Abbreviations: AR - acid rocks; IR - intermediate rocks; BR - basic rocks

Rock 
number

Predictiresults of whole-rock 
geochemitry

Latitute and 
longitude

SiO2 (%) 
content of rocks



IR BR Carbonatite Kimberlite
58% 24% Nelson DR (1998)
56% 16% Wingate MTD, et al. (2011)

76.1% 10.9% Wingate MTD, et al. (2011)
81.2% 10.4% Nelson DR (1997)

73% 13.3% Nelson DR (1997)
78% 8% 2% Nelson DR (1997)

58.8% 17.6% 2.90% Wingate MTD, et al. (2010)
78% 6% Nelson DR (1997)
40% 26% 4% Wingate MTD, et al. (2010)
58% 12% Wingate MTD and Bodorkos S (2007)

40.7% 25.9% Wingate MTD and Bodorkos S (2007)
94% 2% Wingate MTD, et al. (2008)
38% 10% Wingate MTD, et al. (2011)
92% 2% 2% Wingate MTD, et al. (2011)

84.7% 1.20% Wingate MTD, et al. (2012)
42% 32% Wingate MTD, et al. (2015)
26% 16% Wingate MTD, et al. (2014)
98% Wingate MTD, et al. (2010)

100.0% Wingate MTD, et al. (2011)
76% 16% Wingate MTD, et al. (2009)
66% 6% Wingate MTD, et al. (2011)
37% 2.90% Wingate MTD, et al. (2015)

73.3% 13.30% Nelson DR (2001)
60% 6% Love GJ, et al. (2006)
88% 4% Wingate MTD and Bodorkos S (2007)

84.7% 1.2% Wingate MTD, et al. (2018)
55.6% 1.4% Wingate MTD, et al. (2018)
37.1% 2.90% Wingate MTD, et al. (2018)

1.1% 1.10% McNaughton N. unpublished cited in Lu et al., (2019)
90.6% 3.5% McNaughton N. unpublished cited in Lu et al., (2019)

ion results of zircon composition Data source
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