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ABSTRACT 16 

Global volcanic and plutonic olivines record the compositional characteristics and 17 

physicochemical conditions of the parental magmas. Thus, they have significant 18 

potential for use as petrogenetic discriminators of the olivine formation environment 19 

and prospecting indicators  for potential host rocks of magmatic sulfide deposits. 20 

Several data visualization approaches have been proposed by researchers to determine 21 

olivine origins. However, they can only discriminate specific olivine populations and 22 

require the incorporation of trace elements for which data are lacking globally. In this 23 

study, a machine-learning method consisting of the random forest algorithm and the 24 

synthetic minority oversampling technique (SMOTE) is used to discriminate the 25 

crystallization environments of olivine and predict the sulfide potential of 26 

olivine-bearing mafic-ultramafic intrusions. We employ a global dataset of 24341 27 

olivine samples from twelve environments to determine the contents of MgO, FeO, Ni, 28 

Ca, Mn, and Cr and the Fo number (100×Mg/(Mg+Fe)). The results indicate that the 29 

proposed method can classify olivine into genetically distinct populations and 30 

distinguish olivine derived from mineralized intrusions from that derived from 31 

sulfide-barren intrusions with high accuracies (higher than 99% on average). We 32 

develop a dimensionality reduction algorithm to visualize the olivine classifications 33 

using low-dimensional vectors and an olivine classifier (accessible at 34 

http://cugb.online:8080/olivine_web/main.html). The model is used successfully to 35 

identify the contributions of distinct sources to regional magmatism using olivines 36 

from the late Permian picrite and basalt along the western margin of the Yangtze 37 
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block (SW China) and to predict the sulfide potential of the newly-discovered Qixin 38 

mafic-ultramafic complex in the southern Central Asian Orogenic Belt (NW China). 39 

The findings suggest that the proposed approach enables the accurate identification of 40 

olivine origins in different formation environments and is a reliable indicator suitable 41 

for global Ni-Cu- platinum group element (PGE) exploration. 42 

 43 

Keywords: Olivine chemistry, mineral formation environment, magmatic sulfide 44 

potential,  formation environment classification, ore deposit prediction, machine 45 

learning46 
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INTRODUCTION 47 

Olivine is an important and ubiquitous mineral in global volcanic and plutonic 48 

ultramafic rocks and occurs in a wide range of ages and geological environments (Fig. 1; 49 

Lehnert et al., 2000; Sobolev et al., 2007; Li et al., 2012; Barnes et al., 2022). It is crucial 50 

for understanding the Earth’s upper mantle and the genesis and evolution of mantle melts 51 

(Foley et al., 2013; Herzberg et al., 2016). The controlling factors of the olivine 52 

composition of mafic and ultramafic igneous rocks include the mantle melt composition, 53 

which is affected by different sources and potential temperatures (Herzberg, 2011), 54 

fractional crystallization with or without sulfide (Li and Naldrett, 1999; Li et al., 2007), 55 

magma replenishment and mixing, post-cumulus processes, including the reaction with 56 

interstitial silicate melts and/or sulfide liquids (Brenan, 2003; Barnes et al., 2013), and 57 

subsolidus re-equilibration (Cameron, 1976; Barnes, 1986; Mao et al., 2022). These 58 

controlling factors can be assessed by determining the percentage of magnesian 59 

end-member forsterite (Fo number, 100×Mg/(Mg+Fe)), which is the most important 60 

olivine parameter, and the contents of minor elements, such as Ni, Ca, Mn, and Cr, which 61 

are typically analyzed along with major elements. Therefore, the major-minor element 62 

compositions of olivine have been widely used as petrogenetic indicators to distinguish 63 

the sources of olivine populations (Green and Ringwood, 1967; Sobolev et al., 2005, 64 

2007; Li and Ripley, 2010; Herzberg, 2011; Howarth and Harris, 2017). However, these 65 

studies mostly relied on one or several geochemical indicators (e.g., Fo number, Ca, Ni, 66 

or Ti content, and Fe/Ni, Zn/Fe, Mn/Zn, or Ni/Co ratio) derived from traditional 67 
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clustering techniques by naked eye, resulting in difficulties in distinguishing the olivine 68 

origin for a wide range of ages and tectonic settings. 69 

More specially, olivine is an early-crystallized silicate phase of almost all 70 

mantle-derived mafic/ultramafic magmas that is parental to numerous important 71 

magmatic Ni-Cu-platinum group element (PGE) sulfide deposits worldwide (Li et al., 72 

2007; Naldrett, 2011). The compatible character of Ni leads to a strong tendency to 73 

partition into olivine (Simkin and Smith, 1970), while its chalcophile character results in 74 

much stronger  partitioning into sulfide liquid (Rajamani and Naldrett, 1978; Li and 75 

Ripley, 2010; Kiseeva and Wood, 2015; Yao et al., 2018). Hence, the olivine Ni content is 76 

often considered an indicator of magmatic sulfide deposits in potential host rocks (Li and 77 

Naldrett, 1999; Barnes et al., 2004, 2022; Le Vaillant et al., 2016). However, the use of 78 

Ni-olivine as a fertility tool requires significant a priori knowledge of the olivine 79 

formation  processes and the exploration regions; thus, this indicator is of low 80 

effectiveness. In addition, a recent empirical data-driven approach has shown that no 81 

universal, clear discrimination can be made between sulfide-bearing and sulfide-barren 82 

intrusions using the olivine Ni content at a given Fo content (Barnes et al., 2022). The 83 

same results were observed when trace elements were considered (Mao et al., 2022). 84 

Hence, it is unclear whether systematic geochemical differences exist and whether they 85 

enable the reliable discrimination of sulfide-mineralized intrusions. 86 

Decoding the hidden information of mineral chemistry in high-dimensional vectors 87 

is potentially an effective method and an alternative to traditional data visualization 88 
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techniques. Machine learning is a branch of computer science that analyzes large data sets 89 

using complex algorithms. This method has been used for classification, prediction, and 90 

clustering (Kuwatani et al., 2015; Petrelli and Perugini, 2016; Ueki et al., 2018; Petrelli et 91 

al., 2020; Lösing and Ebbing, 2021; Wang et al., 2021; Cheng et al., 2022). It has also 92 

been used recently in mineral chemistry in Earth science and was successfully applied to 93 

distinguish barren sedimentary and pyrite ore deposits (Gregory et al., 2019), predict 94 

quartz-forming environments (Wang et al., 2021), and characterize magma fertility of 95 

porphyry copper deposits via zircon chemistry (Zou et al., 2022).  96 

A wealth of data has been accumulated on major and minor elements in olivine, and 97 

some information has been collected systematically (Barnes et al., 2022; Cheng et al., 98 

2022). This information can be used for petrological and geochemical interpretation. We 99 

utilize a global data set of major-minor elements of olivine from global volcanic and 100 

intrusive rocks and establish a random forest model to investigate the chemical features 101 

of olivine from different ages and environments. The objective is the geochemical 102 

discrimination of magmatism in different tectonic settings. We also use machine learning 103 

algorithms to evaluate the magmatic sulfide potential of mafic-ultramafic intrusions.  104 

DATA AND CLASSIFICATION 105 

The major and minor element data of global volcanic and plutonic olivines, 106 

including magmatic Ni-Cu sulfide orebodies, were obtained from publications listed in 107 

Supplemental Table 1 (Table S1) and from the compilation of published data on olivine 108 

mineral chemistry available at https://zenodo.org/record/5787901 (Barnes et al., 2022). 109 
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The sample set used in this study comprises 24341 analyses of olivine grains from 54 110 

locations worldwide (Fig. 1), including the contents of (wt.%) SiO2, FeO, MgO, Cr2O3, 111 

MnO, CaO, and (ppm) Ni components and the Fo number (the mole percentage MgO/ 112 

(MgO+FeO)) of olivine. These element concentrations were obtained from electron 113 

microprobe analyses with detection limits of minor elements, such as Ni, Mn, Ca, and Cr, 114 

of ~102 ppm or lower. The locations, ages, tectonic settings, rock types, and data sources 115 

of these olivine samples are provided in Table S1.  116 

Volcanic and plutonic olivines were classified based on the tectonic environments 117 

and ages, including greenstone belts from the Archean (A-GB) to the Proterozoic (P-GB), 118 

continental blocks (continental large igneous provinces (LIP) and rifts) from the 119 

Proterozoic (P-CB) to the Phanerozoic (Ph-CB), convergent margins/orogenic belts from 120 

the Proterozoic (P-OB) to the Phanerozoic (Ph-OB), Phanerozoic (Ph-MORB) mid-ocean 121 

ridge basalts, and Phanerozoic (Ph-OLIP) oceanic large igneous provinces. We also 122 

included the status of the host rocks in the classification: volcanics (V), small intrusions 123 

(SI), and large layered mafic intrusions (LMI). Olivines from komatiite and other mafic 124 

volcanics in oceanic LIPs were divided into two types (OLIP-VK and OLIP-V) because 125 

high-Ni olivines (up to 5,000 ppm) tend to be crystallized from komatiitic magmas, 126 

whereas the Ni content is lower in olivine crystallized from more fractionated magmas 127 

(Crocket, 2002; Arndt et al., 2005; Barnes and Lightfoot, 2005). Some extreme examples 128 

of Ni enrichment, such as the ultra-nickeliferous olivine of the Kevitsa Ni-Cu-PGE 129 

mineralized intrusion in northern Finland (Yang et al., 2013), were not included in the 130 
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data. As a result, we classified the olivines into twelve genetic types corresponding to 131 

distinct formation environments: A-GB, P-GB, P-CB-LMI, P-CB-SI, P-OB-LMI, 132 

P-OB-SI, Ph-CB-SI, Ph-CB-V, Ph-MORB, Ph-OB-SI, Ph-OLIP-V, and Ph-OLIP-VK 133 

(Table S1). These genetic types were divided into two subgroups based on the 134 

mineralization level of the host mafic-ultramafic intrusion: mineralized (M) containing 135 

economic Ni-Cu-(PGE) sulfide and sub-economic disseminated Ni-Cu-(PGE) sulfide 136 

mineralization, and barren (B) containing minor or no sulfide mineralization. Figure 2 137 

shows the correlations between the Fo values and the contents or ratios of critical 138 

elements for the twelve types. The different types of olivine cannot be distinguished when 139 

the Fo content exceeds 65 mol.%. The only distinction can be observed in fayalite-rich 140 

olivines (Fo < 60 mol.%) of PCB-LMI and Ph-CB-V types (Table S1).  141 

METHODS 142 

Random forest algorithm 143 

The random forest algorithm (Breiman, 2001; Cutler, 2012) is an ensemble learning 144 

method that utilizes multiple decision trees. Features are randomly selected to train the 145 

decision trees. It does not use the same training set to train the base classifier but utilizes 146 

bootstrap resampling (Efron, 1992), a random sampling method with replacement. 147 

Therefore, some samples may be selected multiple times, whereas other samples (~ 37%) 148 

may never be sampled even if an infinite number of samples are selected. These samples 149 

are referred to as out-of-bag data and are often used in the validation set to evaluate the 150 
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model’s generalization performance (out-of-bag estimate) (Wolpert and Macready, 1999). 151 

In the Bootstrap sampling method, T sampling sets are selected as the training sets of T 152 

individual learners, which are trained separately. 153 

The classification prediction results of the individual learners are combined by 154 

voting, which calculates the number of votes obtained for each prediction result and 155 

selects the highest number of votes as the final decision. The final prediction result is 156 

defined in Eqs. (1) and (2): 157 

𝐻ሺ𝒙ሻ ൌ 𝑐୒                          (1) 158 

𝑁 ൌ argmax
௝

෍ ℎ௜
௝ሺ𝒙ሻ

்

௜ୀଵ
                          (2) 159 

where x denotes the training data, hi is the individual learner 𝑖. Each individual learner 160 

predicts a class label from the class label set ሼ𝑐ଵ, 𝑐ଶ, 𝑐ଷ, . . . , 𝑐ேሽ;  ℎ௜
௝ሺ𝒙ሻ is the output of 161 

class label 𝑐௝ by the individual learner. It is an n-dimensional vector.  The prediction 162 

results of all individual learners are combined, and the argmax function is used to obtain 163 

the maximum class index 𝑖𝑛𝑥 of the vector, which is the final predicted class 𝑐௜௡௫. 164 

Random forest is a type of classification and regression tree (CART) (Breiman, 2017) 165 

but it uses an ensemble of many trees and random feature selection for training. At each 166 

node of the tree, a random feature subset is selected containing n (n < d) features (with d 167 

features), and the optimal feature is chosen.  The value of n determines the degree of 168 

randomness, where 𝑛 ൌ 𝑙𝑜𝑔ଶd (Breiman, 2001).  The Gini index is used to select the 169 

optimal feature and the optimal binary segmentation point of the feature. The flowchart of 170 
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the random forest algorithm is shown in Figure 3. 171 

Model construction processes 172 

The olivine dataset was divided into a training set and a test set with a ratio of 9:1. 173 

The training set was used for model training, and the test set was to test the generalization 174 

ability of the model. The out-of-bag data were used for the validation. We standardized 175 

the data by subtracting the average value from each feature value and dividing it by the 176 

variance. Hence, the data were clustered around 0, and the variance was 1. The samples 177 

were unbalanced, i.e., there was a difference in the number of samples in different 178 

categories. Model training is sensitive to the number of samples, resulting in a low 179 

accuracy rate for categories with few samples. Therefore, we used the synthetic minority 180 

oversampling technique (SMOTE) to augment the data, which deals with unbalanced 181 

samples by interpolation. The labels of the sample data were one-hot encoded to facilitate 182 

model training. 183 

A grid search strategy and five-fold cross-validation (Kohavi, 1995) were used to 184 

tune the hyperparameters of the random forest model. After setting the candidate 185 

hyperparameter value range, the model was trained, and the optimum hyperparameter 186 

combination was selected based on the predicted score of the model on the olivine data 187 

set. Five-fold cross-validation divides the training data set into five subsets with the same 188 

sample size: four training subsets and one validation subset. The training subset was used 189 

to train the model, and the validation subset was used for the evaluation. Each subset was 190 

used as a training set so that the model was trained and evaluated five times. The 191 
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predicted score of the model is the average of the five predicted scores. The grid search 192 

strategy enables the model to select the optimal hyperparameters to obtain the optimal 193 

model. The model was then trained using the olivine data training data set and validated 194 

with the out-of-bag data. 195 

We used four evaluation metrics: accuracy, precision, recall, and F1 score (Dice, 196 

1945; Sorensen, 1948). Accuracy is the proportion of correctly predicted olivine samples 197 

to the total number of samples. Precision is the proportion of correctly predicted positive 198 

samples to all predicted positive samples, and recall is the proportion of correctly 199 

predicted positive samples to the number of true positive and false negative samples. The 200 

F1 score is the harmonic mean of precision and recall. 201 

RESULTS AND DISCUSSION 202 

Feature importance 203 

The olivine dataset contains eight features, each of which has a different degree of 204 

influence on the classification results. Therefore, feature importance analysis is 205 

performed on the olivine data to measure the contribution of the input features to the 206 

model prediction result and determine the degree of correlation between the feature and 207 

the target. For a given feature, a higher importance score indicates that the feature has 208 

more importance in the classification. The influence of each feature on the prediction 209 

results is analyzed using four classification criteria, including the olivine formation 210 

environment, mineralization status, volcanic status, and petrography group. Only features 211 
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with high importance are considered because after the model reaches the highest accuracy, 212 

adding more features to the model does not increase the accuracy but decreases it slightly 213 

(Zou et al., 2022). 214 

The feature importance of the four classification criteria is shown in Figure 4. The 215 

ranking of the features for identifying the olivine formation environment is from high to 216 

low the contents of CaO, Ni, FeO, Cr2O3, Fo, MgO, MnO, and SiO2 (Fig. 4a). The CaO 217 

and Ni contents have the highest importance scores, while the FeO, Fo, Cr2O3, and MgO 218 

contents have comparable feature importance scores for predicting the mineralization 219 

status (Fig. 4b). The CaO content has the top score for predicting the volcanic status and 220 

petrography group, and the Ni content ranks second for predicting the volcanic status and 221 

is less important for predicting the petrography group (Fig. 4c-d). In all cases, The SiO2 222 

content has the lowest feature importance scores for all four criteria. The importance 223 

scores of the olivine elements for predicting the olivine formation environment are 224 

plausible. Olivine consists of >99% MgO, FeO, and SiO2 (Foley et al., 2013). Thus, the 225 

major element contents provide insufficient information on the formation environment, 226 

but the comparable feature importance scores of the MgO, FeO, and Fo contents suggest 227 

that the combination of these features contributes significantly to the classification results. 228 

Olivine has a simple crystal structure; the octahedral M1 and M2 sites have a similar size 229 

(73 and 76.7 pm) (Zanetti et al., 2004) and provide locations for trace elements that have 230 

similar cation radii and charges to substitute for Mg2+ (72 pm) and Fe2+ (78 pm). The 231 
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divalent cations Ni2+ (69 pm) and Mn2+ (67 pm) readily enter these octahedral sites; thus, 232 

they have high contents in olivine, and their partitioning behavior is controlled by the 233 

temperature and the MgO concentrations of olivine and silicate melts (Matzen et al., 2013; 234 

2017a; b). The Ni and Mn contents in the mantle-derived melt are sensitive to the tectonic 235 

setting (Yao et al., 2018; Chen et al., 2022), which may also hold for their contents in the 236 

olivine crystallized from the mantle-derived melt. However, the values and ranges of the 237 

partition coefficient of Mn between olivine and the melt are ~0.5-1 (Matzen et al., 2017b), 238 

limiting the variability of the Mn content in the olivine. Therefore, Mn has an 239 

insignificant role (Fig. 4). In contrast, the partition coefficient of Ni is highly variable 240 

(~3-90, Foley et al., 2013; Matzen et al., 2017a), indicating strong compositional 241 

variation. There is also competition in the partitioning of Ni between olivine and sulfide, 242 

explaining the high importance scores of Ni in the three classification results (Fig. 4a-c). 243 

Calcium is the most complex elements in our dataset. The large radius of Ca2+ (100 244 

pm) causes it to preferentially occupy the larger M2 sites by Ca-Fe substitution (Coogan 245 

et al., 2005), which is counterbalanced by a higher proportion of Mg2+ at the smaller M1 246 

sites (Di Stefano et al., 2019). Therefore, the partitioning of Ca into olivine becomes 247 

more pronounced as the Fo number decreases (Libourel, 1999). In addition, the inverse 248 

relationship between pressure and the olivine Ca content has been widely used to 249 

distinguish between volcanic and mantle olivines (Simkin and Smith, 1970; Foley et al., 250 

2013), whereas the temperature effect was also proposed to be critical for Ca partitioning 251 
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(O’Reilly et al., 1997). Systematic experiments have shown that the amount of Ca 252 

entering olivine is proportional to the number of network-modifying Ca cations available 253 

in the melts, which is highly sensitive to the alumina, alkali, and ferrous iron contents of 254 

the melt (Libourel, 1999). The magmatic H2O content also affects the partitioning of CaO 255 

between olivine and the silicate melt. Therefore, a Ca-in-olivine geohygrometer was 256 

fabricated to detect olivine grains crystallized from hydrous subduction zone lavas 257 

(Gavrilenko et al., 2016). The CaO content of olivine contains hidden information on the 258 

alkali, aluminum, and water contents of the melt, the pressure-temperature conditions, 259 

and the melt structure (i.e., depolymerization) (Mysen, 2007). These parameters are 260 

critical for classifying the olivine formation environments but cannot be obtained from 261 

other major-minor elemental compositions of olivine. Therefore, the CaO content has the 262 

highest importance score for the four classification criteria (Fig. 4). 263 

Classification results and visualization 264 

The confusion matrix (Stehman, 1997) of the olivine classification is shown in 265 

Figures 5-7. The dark blue cells on the diagonal show the records that are in agreement. 266 

The normalized confusion matrices show that the accuracies of the random forest model 267 

for the formation environment (Fig. 5), mineralization status (Fig. 6), volcanic status (Fig. 268 

7a), and petrography group (Fig. 7b) are very high (0.99, 0.99, 1.0, and 0.99, respectively) 269 

(Table 1). The proposed model has high evaluation indicators scores for different 270 

classification criteria, demonstrating its applicability for the discrimination of the olivine 271 

origins. 272 
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The Uniform Manifold Approximation and Projection (UMAP) algorithm (McInnes, 273 

2018) is used for dimensionality reduction. The output was used to train a random forest 274 

model and create a two-dimensional decision boundary (Fig. 8). The UMAP algorithm 275 

provides a low-dimensional visualization of the proximity relationship between the 276 

sample points by calculating the similarity score between sample points. It finds the 277 

low-dimensional representation of the manifold by learning the manifold structure in the 278 

high-dimensional space. It should be noted that cross-correlations occur between the 279 

element concentrations of the olivine in this study (Fig. A1), and they have a negligible 280 

effect on dimensionality reduction. The classification accuracy of the model is listed in 281 

Table 2.  282 

Model validation 283 

Relationship between regional magmatism and olivine sources. The Emeishan 284 

LIP (ELIP) (~260 Ma) is a good example of a mantle plume-derived continental mafic 285 

LIP. It is located in the western part of the South China block and extends from 286 

southwestern China into northern Vietnam (Chung and Jahn, 1995; Xu et al., 2004; Zhang 287 

et al., 2006; Ali et al., 2010; Shellnutt, 2014). The ELIP covers an area of ~0.3×106 km2 288 

and is predominantly composed of basalts, with exposures of ultramafic and felsic 289 

volcanic rocks, layered mafic-ultramafic intrusions, and silicic plutonic rocks (Shellnutt, 290 

2014). The South China block is composed of the Yangtze and Cathaysia blocks, which 291 

were amalgamated through the westward subduction and subsequent closure of the 292 

intervening ocean during the Neoproterozoic (Yao et al., 2019). Geological records 293 
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suggest that the western margin of the Yangtze block was part of a Neoproterozoic arc 294 

system (Cawood et al., 2020). The late Permian plume and Neoproterozoic 295 

subduction-modified mantle interaction is reflected in the heterogeneity in isotopes of 296 

volcanic and plutonic rocks, such as the elevated δ18O of olivine from some picritic rocks 297 

(Yu et al., 2017), the low δ18O of zircon from the magmatic Fe-Ti-V oxide ore deposit 298 

(Tang et al., 2021), and the extremely enriched Nd isotopes (εNd(t) < -5) of the late 299 

Permian mafic dykes exposed along the western margin of the Yangtze block (Wang et al., 300 

2022). 301 

Based on the plume-modified mantle interaction at the western margin, we infer that 302 

the olivine from the late Permian picrite and basalt along the margin should be a mixture 303 

of multiple olivine populations and may exhibit affinities to two distinct sources. 304 

However, the random forest model classified the olivine from these picritic and basaltic 305 

rocks (Hexi, Jizushan, and Huangcaoba areas) as the Ph-CB-V type (Fig. 9a; Table S2), 306 

which does not contain signatures of the orogenic belt. Hence, we investigated the Sr-Nd 307 

isotopes of the Ph-CB-V type-dominated picritic and basaltic rocks and found that these 308 

rocks had much higher εNd(t) values (-0.94 to 5.07) than those of the spatially related 309 

isotopically enriched mafic dykes (Fig. 9b; Table S3). The analytical methods and results 310 

are provided in Table S3. According to our classification results and the distinct groups of 311 

Sr-Nd isotopes (Wang et al., 2022), we suggest that the melting of a plume mantle 312 

component contributed the most picrite and basalt, whereas the mafic dykes at  the 313 

western margin of the Yangtze block were generated by the interaction of two distinct 314 
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sources, i.e., a mantle plume and a Neoproterozoic subduction-modified, Nd 315 

isotope-enriched lithospheric mantle. Therefore, the proposed machine learning model 316 

has significant potential for revealing the component contribution of heterogeneous 317 

sources to regional magmatism and constraining their geodynamic environments. 318 

Mineral prospectivity of small intrusions in orogenic belt. The Central Asian 319 

Orogenic Belt (CAOB) is one of the largest accretionary orogens on the Earth and is 320 

situated between the Siberian, European, Tarim, and Sino-Korean cratons (Sengör et al., 321 

1993; Jahn et al., 2000; Kröner et al., 2007; Windley et al., 2007 and references therein). 322 

Examples of magmatic sulfur-rich deposits generated in small mafic/ultramafic intrusions 323 

are commonly assigned to post-subduction magmatism in the CAOB, northern China 324 

(e.g., Kalatongke, Huangshandong, Huangshan, Tulaergen, Poyi, and 325 

Hongqiling-Piaohechuan; Song et al., 2009; Gao et al., 2013; Wei et al., 2013, 2019; Li et 326 

al., 2019; Xue et al., 2016, 2021, 2022). These large deposits and more than a hundred 327 

prospects are excellent targets for the localization of Cu-Ni mineralization in this 328 

accretionary orogenic belt. The Qixin mafic-ultramafic complex is a newly discovered 329 

mafic-ultramafic intrusion under active exploration at the southern margin of the CAOB. 330 

The complex is characterized by a large gabbroic body and several small ultramafic 331 

bodies intruding into older gabbroic and metamorphic rocks (Xue et al., 2019). The 332 

ultramafic bodies are composed predominantly of lherzolite, troctolite, and minor 333 

amounts of websterite.  334 

As listed in Table S2, the random forest model predictions via olivine chemistry 335 
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demonstrate that a large proportion of the olivine in the Qixin ultramafic-troctolitic rocks 336 

is classified into the mineralization states Ph-OB-SI-M (Fig. 9c; Table S2). The prediction 337 

results are consistent with the long-held belief that olivine grains originated from a ~285 338 

Ma orogeny-related small intrusion. Explorations have shown that the Qixin ultramafic 339 

intrusion hosts significant Ni-Cu sulfide mineralization zones based on an ongoing 340 

drilling program (Fig. 9d). As a result, we are optimistic that the proposed machine 341 

learning model can accurately identify the sulfide signals in the mafic and ultramafic 342 

magma systems and is a reliable tool for regional prospecting. More importantly, it can be 343 

used to detect intrusion-scale mineralization in the feeder system at depth. 344 

IMPLICATIONS 345 

The proposed random forest algorithm enabled the accurate discriminations of 346 

twelve genetic types of olivine. We could determine the component contributions of 347 

different mantle sources to the formation of olivine originating from complex sources, 348 

such as the interactions between a plume and arc, plume and mid-ocean ridge, or a 349 

mid-ocean ridge and continental margin. The contribution provides new opportunities for 350 

using olivine chemistry and machine learning to accurately and effectively evaluate the 351 

magmatic sulfide fertility. It is a simple and efficient approach for global Ni-Cu-PGE 352 

exploration of mafic/ultramafic systems. Our olivine classifier of olivine 353 

forming-environments and sulfide mineralization status can be accessed via 354 

http://cugb.online:8080/olivine_web/main.html.  355 

Large amounts of data on major-minor-trace elemental and isotopic compositions 356 
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has been accumulated for various types of whole rocks and minerals in the last several 357 

decades. Due to an increased focus on “Big Data,” machine learning techniques provide 358 

geologists with new tools to tackle problems that are challenging to solve using 359 

traditional methods. Our study shows that this technique is powerful in uncovering 360 

hidden information from massive data in Earth sciences. Machine learning methods are 361 

required to improve our understanding of geosystems and develop low-cost and 362 

high-accuracy prediction models for mineral exploration. 363 
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FIGURE CAPTIONS 617 

Figure 1. Distribution of samples of global olivine-bearing volcanic and plutonic 618 

rocks used in this study. This map was created using the Generic Mapping Tool (GMT) 619 

package developed by Wessel et al., 2013, 620 

https://www.generic-mapping-tools.org/)-derived topographic data. 621 

 622 

Figure 2. Scatterplots of Fo values and abundances of Ni (a), Fe/Ni (b), Ca (c), and 623 

Mn (d) in global volcanic and plutonic olivines. Overlaps exist in the olivine 624 

populations of the twelve genetic types. 625 

 626 

Figure 3. Flowchart of the random forest algorithm. 627 

 628 

Figure 4. Relative feature importance of the geochemical features of olivine obtained 629 

from Random forest using training data. 630 

 631 

Figure 5. Confusion matrix of the olivine classification results for the formation 632 

environment. The rows show the predicted label, and the columns show the true label. 633 

A darker color indicates higher accuracy. 634 

 635 

Figure 6. Confusion matrix of olivine classification results for mineralization status. 636 

 637 

Figure 7. Confusion matrix of olivine classification results for (a) volcanic and 638 
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intrusive status and (b) petrography group. 639 

 640 

Figure 8. Two-dimensional decision boundaries derived from UMAP and random 641 

forest. 642 

 643 

Figure 9. (a) The predicted mantle sources of late Permian picrites and basalts in the 644 

western margin of the Yangtze block derived from the random forest model. (b) Plot 645 

of initial 87Sr/86Sr isotopic ratios vs. εNd(t) values for the mafic volcanic rocks and 646 

dykes in the western Yangtze block with two different sources. The mantle array is 647 

from DePaolo and Wasserburg (1979). (c) The predicted magmatic sulfide potential of 648 

the Qixin mafic-ultramafic complex at the southern margin of the CAOB derived 649 

from the random forest model. (d) Photographs and polished section 650 

microphotographs of the disseminated sulfide ore in the Qixin ultramafic intrusion. 651 

Abbreviation: Sulf, sulfide; Po, pyrrhotite; Pn, pentlandite; Ccp, chalcopyrite. 652 

 653 

Appendix Figure 1. Correlation coefficient matrix for features of olivine. 654 



Table 1 Summary of model performance under different classification criteria. 

Classification criteria Precision Recall F1 score Accuracy 

Forming-environment 0.99 0.99 0.99 0.99 

Mineralization Status 0.99 0.99 0.99 0.99 

Volcanic and Intrusive Status 1 1 1 1 

Petrography Group 0.99 0.99 0.99 0.99 

Note: The Precision, Recall and F1 score in the table are all weighted averages, which 

represent the cumulative sum of the proportion of the class samples in the total samples 

and the product of the corresponding indicators. 



Table 2 The classification accuracy of decision boundary based on UMAP under different 

classification criteria. 

Classification criteria Accuracy 

Forming-environment 0.88 

Mineralization Status 0.9 

Volcanic and Intrusive Status 0.94 

Petrography Group 0.96 
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