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Abstract    24 

25 

For active volcanoes, knowledge of the architecture of the plumbing system and the 26 

conditions of magma storage prior to an eruption are highly important given their influence 27 

on the eruptive style and thus the management of future volcanic crises. Here chlorine is 28 

used as a geobarometer for potassic alkaline magmas at the Campi Flegrei volcanic 29 

complex, revealing the shallowest depth of fluid-melt equilibration with respect to Cl. The 30 

results for representative fallout deposits of selected explosive eruptions show the existence 31 

of a multi-depth equilibration zone through time, including shallow magma storage. We 32 

describe evidence for the shallowest zone located at a depth equivalent to 65 MPa for the 33 

Agnano Monte Spina eruption (4,482–4,625 cal. yrs BP), at ~100 MPa for the Pomici 34 

Principali (11,915–12,158 cal. yrs BP) and the Astroni 6 (4,098–4,297 cal. yrs BP) 35 

eruptions, and close to 115 MPa for the last explosive eruption of Monte Nuovo (AD 1538). 36 

For comparison, the pressure estimated for a possible reservoir feeding the Cretaio eruption 37 

of Ischia island (AD 430), the only studied eruption on Ischia, is ~140 MPa. The pressure 38 

estimates for the two largest magnitude eruptions, the Campanian Ignimbrite (39 ka) and the 39 

Neapolitan Yellow Tuff (14.9 ka), are also discussed with respect to available magma 40 

withdrawal models. The pressures estimated using the Cl geobarometer for the magma 41 

leading to the fallout phases of these two eruptions provide evidence for a low-volume 42 

shallow domain (~40 MPa) for the Plinian phase of the Campanian Ignimbrite eruption and 43 

a main, deeper reservoir (~130–165 MPa) for the Neapolitan Yellow Tuff eruption. The 44 

inferred shallowest equilibration pressures are interpreted here as corresponding to 45 

transitory, short-lived magma apophyses  whose eruption may have been facilitated by 46 

optimum tectonic stresses, rheological behavior of the crust and efficiency of volatile 47 

exsolution. Alternatively, these magma apophyses may represent an evolved, crystal-rich 48 



3 

ponded magma into which a volatile-rich magma ascending from depth was injected. The 49 

transient nature of such very shallow reservoirs is suggested by the short timescales inferred 50 

from diffusion modelling on crystals available in the literature for the studied Campi Flegrei 51 

eruptions. 52 

The influence of sulfur (S) on Cl solubility is assessed through Cl solubility modelling 53 

and applied to different eruptions. In addition, the pressure at which magmatic fluids and 54 

melts equilibrated with respect to Cl is shallower for the Campi Flegrei volcanic complex 55 

than the Somma-Vesuvio volcanic complex, erupting more homogeneous differentiated 56 

magma, of trachytic or phonolitic composition. This approach of using Cl to investigate the 57 

architecture of the plumbing system can be extended to all alkali-rich magma systems.  58 

59 

Highlights 60 

• H1: Cl acts as a geobarometer for alkaline magmas emitted at Campi Flegrei and Ischia61 

• H2: contrasted architecture and dynamics of magma plumbing system of ignimbritic62 

eruptions compared to other eruptions 63 

• H3: the H-C-O-S-Cl-F system has to be considered when discussing volatile behavior64 

65 
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68 

69 
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1. Introduction70 

71 

The chemical and physical characteristics of erupted magmas result from a combination of 72 

processes occurring at depth in the crust, during both magma storage and ascent. The 73 

shallow crustal reservoirs of a given magmatic system are thus key environments as their 74 

characteristics constrain both the composition of the extruded magma and the style of the 75 

eruption (Bower and Woods, 1998; Andujar et Scaillet, 2012; Bachmann and Huber, 2016; 76 

Popa et al., 2019). Therefore, establishing their location, as well as the pre-eruptive magma 77 

conditions, both chemical (e.g., composition, amount of volatiles, fluid saturation condition) 78 

and physical (e.g., viscosity, density), is of primary importance (Goepfert and Gardner, 79 

2010; Parmigiani et al., 2017; Edmonds and Woods, 2018; Huber et al., 2019;  Popa et al., 80 

2021a, b;) 81 

The general concept of the dynamic architecture of the magma plumbing system has 82 

undergone revision recently (Cashman et al., 2017; Bachmann and Huber, 2016: Magee et 83 

al., 2018). The crustal plumbing system results from the degree of connection between 84 

multi-depth transient batches of magma of variable composition. Their location, shape and 85 

magma storage conditions can be assessed by different means. Geophysical surveys (mostly 86 

seismic reflection) provide useful information on the location and shape of existing 87 

reservoirs (Pritchard and Gregg, 2016 and references therein). The petrology of volcanic 88 

products provides a valuable tool for defining pre-eruptive conditions of the magmatic 89 

reservoirs feeding past and ongoing events (Blundy and Cashman, 2008; Samaniego et al., 90 

2011; Gurioli et al., 2017; Berthod et al., 2021; Re, 2021; Pontesilli et al., 2023). This 91 

includes melt inclusion (MI) chemistry (e.g., Wallace, 2005) and mineral-melt 92 

thermobarometry, which provides constraints on the depth at which magmas formed, 93 

stagnated and/or equilibrated in the lithosphere (e.g., Putirka, 2008, and references therein). 94 
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Experimental petrology also provides strong constraints on the prevailing conditions at 95 

depth, using laboratory experiments to reproduce the P, T, fO2, and PH2O conditions that 96 

prevailed during crystallization of the phase assemblage of the erupted products (e.g., 97 

Scaillet et al., 2008). 98 

This article presents and discusses the results of a study based on the application of the Cl 99 

geobarometer, and is aimed at improving  current understanding on the evolution of the 100 

magmatic systems feeding the volcanoes of the Phlegraean Volcanic District (PVD) in the 101 

Neapolitan area of southern Italy (Orsi et al., 1996a). The collected data are also compared 102 

with those available for the Somma-Vesuvio volcanic complex (SVVC) (Balcone-Boissard 103 

et al., 2016). 104 

105 

2. Geological context and volcanological background106 

107 

The PVD is located in the Campanian volcanic area and includes the Campi Flegrei (CF), 108 

Ischia and Procida volcanic fields. Of these three volcanic fields, CF and Ischia are still 109 

active and  both are dominated by a resurgent caldera (Orsi et al., 1996a, 2022; Santacroce et 110 

al., 2003; Orsi, 2022; Orsi et al., 2022; Fig. 1 and SM1 in Supplementary Material). The 111 

PVD is located to the west of the SVVC, which is the third most active Neapolitan volcano 112 

(Fig. 1b). This volcanic district is inhabited by more than 1.5 million people, making it one 113 

of the highest risk volcanic areas on Earth (e.g., Lirer et al. 2010; Orsi et al., 2003; 114 

Bevilacqua et al., 2022; and references therein). Volcanism began here prior to 150 ka, and 115 

has continued with several explosive, sometimes high-magnitude caldera-forming eruptions, 116 

until historical times (Orsi et al., 1996a, 2003; Santacroce et al., 2003; Orsi, 2022, Orsi et al., 117 

2022). Over the last few decades, the CF caldera has experienced several unrest episodes, 118 

also known as bradyseismic crises, with significant ground uplift and subsidence, seismicity, 119 
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gravity changes and variations in geochemical parameters of gas and water effluents. De 120 

Siena et al. (2010) suggested that a shallow magma batch was intruded to a depth of about 4 121 

km during the 1982-84 unrest episode. The last and still ongoing of these unrests began in 122 

late 2004/early 2005 (Del Gaudio et al., 2010; Ricco et al., 2019; Chiodini et al., 2015, 2022; 123 

Scarpa et al., 2022, and references therein). There are various interpretations for the source 124 

of these more recent unrest episodes (a comprehensive review can be found in Bonafede et 125 

al., 2022). One interpretation of the 2012-2013 episode by D’Auria et al. (2015)involves the 126 

intrusion of ~0.004 km3 of magma at shallow depth (~3 km). The authors believe that these 127 

results can be extrapolated to other events that have occurred over the last 60 years, 128 

probably reflecting a persistent shallow magma plumbing structure that has been repeatedly 129 

refilled. 130 

The PVD volcanism has been related to extensional processes affecting the Tyrrhenian 131 

margin of the Southern Apennines since the Miocene, mainly through NW-SE normal and 132 

subordinate NE-SW transverse faults (Moretti et al., 2013b and references therein). The CF, 133 

Procida and Ischia volcanoes are NE-SW aligned. The CF and Ischia calderas developed at 134 

the intersection of the two major regional fault systems where there is a dense, complex 135 

network of tectonic and volcano-tectonic features. This structural setting has generated a 136 

localized zone of particularly high permeability within the lithosphere, allowing ascent and 137 

deep-to-shallow emplacement of volatile-bearing magma bodies (e.g. Arienzo et al., 2016).s 138 

The magmas erupted at the PVD belong to a mildly K-enriched alkaline series (Na2O – 2 139 

≤ K2O). Those of the Procida volcanic field are the least evolved, being mostly trachybasalt 140 

and shoshonite (D’Antonio et al., 2007), while the magmas erupted at the CF and Ischia 141 

volcanic fields have undergone complex magmatic evolution. The latter evolved from 142 

shoshonite through to trachyte or phonolite, and were affected by open-system evolution 143 

processes, such as mingling/mixing and crustal contamination, during periods of stagnation 144 
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at variable depths during their ascent towards the surface (e.g., Orsi et al., 1995; Civetta et 145 

al., 1997; Signorelli et al., 1999; Pappalardo et al., 2002; Piochi et al., 2005; D'Antonio et 146 

al., 2007, 2022; Pabst et al., 2008; Tonarini et al., 2009; Arienzo et al., 2010, 2011, 2016; 147 

Pappalardo and Mastrolorenzo, 2012; Moretti et al., 2013; Fedele et al., 2016; Fedele, 2022). 148 

A combination of geophysical and petrological data highlights the existence of two main 149 

magma storage zones. The deeper zone is located at more than 8 km in depth (Zollo et al., 150 

2008; Mangiacapra et al., 2008; Arienzo et al., 2016) whereas the shallower one is at ~ 4 km 151 

(De Siena et al., 2017; Arienzo et al., 2010; Voloschina et al., 2021). 152 

Major- and trace-element data indicate that the Procida primitive K-basalts have a 153 

subduction-related isotopic signature, whereas all other PVD and Mount Somma-Vesuvio 154 

deposits also reveal a history of different magmatic processes that occurred in their 155 

plumbing systems (e.g., Tonarini et al., 2004; D’Antonio et al., 2007; Di Renzo et al., 2011).  156 

Below is a brief description of the eruptions explored in this study and the volcanoes 157 

from which they erupted (see SM 1 for details).  158 

• The catastrophic caldera-forming eruptions of the CF volcanic field. The eruptive159 

and deformation history of the CF volcanic field is dominated by the Campanian160 

Ignimbrite (CI; ~39 ka, Giaccio et al., 2017) and the Neapolitan Yellow Tuff (NYT;161 

~15 ka, Deino et al., 2004) caldera-forming eruptions (Orsi et al., 1996a). The CI162 

eruption extruded ~300 km3 of magma Dense Rock Equivalent (DRE) (Fedele et al.,163 

2003), and comprises a complex event marked by an early Plinian phase that created164 

a fallout deposit followed by the generation of voluminous pyroclastic density165 

currents (PDCs) (Fisher et al., 1993; Rosi et al., 1999; Fedele et al., 2016; Moretti et166 

al., 2019). The NYT eruption, the largest known trachytic phreato-Plinian event,167 

extruded more than 40 km3 of magma DRE (Orsi et al., 1992a, 1995; Wohletz et al.,168 

1995). The caldera related to this eruption has been the site of intense volcanism and169 
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deformation since its formation and is currently the active portion of the CF caldera 170 

(Orsi et al., 1996a; Capuano et al., 2013).  171 

• The explosive eruptions of the post-NYT caldera. Post-NYT volcanism has involved172 

more than 70 eruptions within the NYT caldera, grouped into three periods of173 

activity (Di Vito et al., 1999; Orsi et al., 2004, 2009; Smith et al., 2011). They are174 

mostly phreatomagmatic eruptions, with some Plinian eruptions. The products of the175 

magmatic Plinian phases (hereafter referred to ‘explosive eruptions’) of selected176 

explosive events have been used for this study. The eruptions are Pomici Principali177 

(PP; Fig. 1; 11,915 - 12,158 cal. yrs BP; 0.64 km3 of erupted magma DRE), Agnano-178 

Monte Spina (A-MS; Fig. 1; 4,482 - 4,625 cal. yrs BP; 0.85 km3 of erupted magma179 

DRE), Astroni 6 (As6; Fig. 1; 4,098 - 4,297 cal. yrs BP; 0.23 km3 of magma DRE).180 

Products from the Monte Nuovo (MN; Fig. 1; AD 1538; about 0.03 km3 of magma181 

DRE), the last and only historical eruption of the CF caldera, which occurred after182 

about 3.5 ka of quiescence (Orsi et al., 2009), have also been analyzed.183 

• Ischia volcanic field. Volcanism at the island of Ischia began more than 150 ka BP.184 

The eruptive and deformation history of the volcanic field has been deeply185 

influenced by the high magnitude, caldera-forming Monte Epomeo Green Tuff186 

eruption (~55 ka) (Vezzoli 1988; Orsi et al., 1991; Brown et al., 2008, 2014), during187 

which a deep magma plumbing system developed (Moretti et al., 2013). The Cretaio188 

Tephra (CT; Fig. 1; AD 430 cal. Age) extruded <0.02 km3 of magma DRE and189 

represents the highest magnitude eruption on the island in the last 10 ka (Orsi et al.,190 

1992b, 1996b).191 

• Procida. The volcanic field of the island of Procida is located between the CF and192 

the island of Ischia volcanic fields (Fig. 1b) and includes five monogenetic193 

volcanoes. The erupted magmas of intermediate composition indicate that shallow194 
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crustal magma chamber conditions were not established (De Astis et al., 2004; 195 

Mormone et al., 2011; Esposito et al., 2018). The last eruption formed the Solchiaro 196 

tuff ring (23,624 ± 330 cal. yrs BP; Morabito et al., 2014) and was fed by the most 197 

primitive magma ever erupted at both PVD and SVVC (D'Antonio et al., 2007).  198 

199 

3. Materials and Methods200 

201 

The details of the materials and methods are provided in the Supplementary Material 202 

section (SM2). For the explosive eruptions, we analyzed pumice clasts from the earliest 203 

magmatic Plinian phase. However, for the CI caldera-forming eruptions, we also analyzed 204 

pumice clasts from the different PDC units. 205 

Here, we provide details on the Cl geobarometer tool. Chlorine is a recognized 206 

geobarometer for alkaline magmas, providing  estimates of the pressure of magma storage in 207 

shallow crustal reservoirs (Lowenstern, 1994; Balcone-Boissard et al., 2016). For fluid-208 

saturated silicate melts, Cl preferentially partitions into the fluid phase rather than the melt, 209 

as shown by the pioneering work of Signorelli and Carroll (2000, 2002). At shallow depths 210 

(i.e., less than 210 MPa pressure equivalent at  1,000 °C; Anderko & Pitzer, 1993; Driesner 211 

and Heinrich, 2007), the components of the silicate melt-NaCl-H2O pseudo-system are 212 

immiscible (Fig. 2a). The exsolved fluid phases include a H2O-rich vapor phase and a Cl-213 

rich brine. The composition and stability of the two-phase fluid depends on the silicate melt 214 

composition, temperature and pressure (Fig. 2a). This non-ideal fluid behavior is expressed 215 

by the Cl concentration in the silicate melt that is invariant or buffered when both vapor 216 

phase and brine are present, described by the Gibb’s phase rule. The buffering effect on the 217 

Cl concentration in an alkaline silicate melt indicates an equilibrium between the melt and a 218 
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two-phase fluid in the reservoir, at subsolvus conditions (Fig. 2a, b). At higher pressure, the 219 

silicate melt is in equilibrium with a vapor phase alone. In some magmas, Cl-bearing 220 

minerals such as apatite or feldspathoids, if present in sufficient quantity, could also be 221 

responsible for a Cl-buffering effect. Hereafter we refer to the Cl concentration resulting 222 

from such a buffering effect as the “Cl buffer value”. 223 

In this study, the Cl concentration in the residual glass (RG) has been measured for 224 

representative pumice clasts from each sampled fallout layer. Clast selection was based on 225 

the density measurements of a minimum of 100 pumice clasts per eruptive unit (Fig. 2b; 226 

Supplementary material SM3). Depending on the density distribution, the number of 227 

selected clasts was adjusted, totaling 3 to 7. Some coexisting MIs were also analyzed to fully 228 

describe the fluid saturation conditions of the magma: some MIs may have been entrapped 229 

before the buffering effect on Cl, when Cl was still demonstrating incompatible behavior 230 

(Balcone-Boissard et al., 2016). The presence of both vapor and brine led to the Cl-buffering 231 

effect on the silicate melt that is clearly preserved as residual glass of the eruptive products 232 

(Fig. 2b). 233 

 It is important to bear in mind that magma ascent may cause volatile degassing that may 234 

lead to micro-crystallization of the silicate melt. As rapid magma ascent may inhibit Cl 235 

partitioning into bubbles due to its low diffusivity in such differentiated melts, Cl may 236 

exhibit non-volatile behavior, leading to an increase in the Cl content by mass balance 237 

(Balcone-Boissard et al., 2009; Feisel et al., 2023). Thus, the Cl buffer value needs to be 238 

corrected for this degassing-induced crystallization effect (Tables 1, 2b Supplementary 239 

Material, SM3). The correction involves a manual decrease of the Cl buffer value by the 240 

percentage of degassing-induced microlites (which increases the Cl content through the 241 

mass balance effect), assuming that no Cl partitions into the microlites. The corrected Cl 242 
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buffer value for the degassing-induced microlite content, if deemed necessary after textural 243 

investigations, is then representative of the reservoir conditions prior to eruption. 244 

The challenge is then to convert the determined Cl buffer value into a pressure, namely 245 

the pressure of the last magma equilibration zone before eruption. For that purpose, there are 246 

two possibilities: i. using an experimentally determined Cl solubility law, where one exists 247 

for the studied sample composition, or ii. using a modelled Cl solubility law as developed by 248 

Webster et al. (2015). Most of the experimental determinations of Cl solubility use natural 249 

pumice clasts as starting material (Signorelli and Carroll, 2000, 2002). Each experimental Cl 250 

solubility law directly corresponds to a specific magma composition represented by a 251 

residual glass, and the application of the compositionally appropriate solubility law allows 252 

one to determine the pressure of equilibration of the magma based on the Cl buffer value, at 253 

a given temperature (Fig. 2c). The storage conditions of magmas with compositions for 254 

which the Cl solubility law has not been experimentally determined can still be defined from 255 

the Cl concentration in residual glass, using the Cl solubility model developed by Webster 256 

and collaborators (Webster et al., 2015). This model expresses the influence of each major 257 

and minor element (e.g., Si, Ti, Al, Mn, Fe, Mg, Ca, Na, K, and F) on Cl solubility through 258 

experimentally determined association coefficients. This approach takes into account the 259 

initial silicate melt composition and any associated changes in composition due to fractional 260 

crystallization, including subtle changes in melt composition. However, the results of recent 261 

experiments on both Cl solubility and Cl behavior in natural samples point out the more 262 

general role of S in the H-C-O-S-F-Cl system and how well this system describes the 263 

volatile behavior in alkali silicate melts (Webster et al., 2015). In particular oxidized S, 264 

when present, may substantially reduce the solubility of Cl in silicate melts at oxidizing 265 

conditions by modifying the extent to which it dissolves (Beermann et al., 2015; 266 

Botcharnikov et al., 2004; Webster et al., 2015, 2014). Therefore, the Cl concentration 267 



12 

calculated using the model for a studied bulk melt composition, may also have to be 268 

corrected for the effect of oxidized S by reducing the modelled Cl solubility value by 30-269 

40% relative (Webster et al., 2015, 2014). This effect can lead to underestimations of the 270 

storage pressure. 271 

As discussed here, the presence of S has not yet been fully incorporated into the Cl 272 

solubility model (Webster et al., 2015), and this issue may introduce a bias between the 273 

pressure determined using this model versus that estimated with the compositionally 274 

relevant experimental Cl solubility law. When all parameters influencing Cl solubility in 275 

silicate melt are taken into consideration, application of both the Cl experimental solubility 276 

law and the Cl solubility model should give similar pressure estimates. 277 

278 

4. Results279 

4.1. Texture: phenocryst content and residual glass microcrystallinity  280 

The different textures of the studied pumice clasts are best illustrated by the Back-Scattered 281 

Electron images (BSE; SM3 in Supplementary Material). The residual glass in the clasts has 282 

no visible sign of alteration. The pumice clasts of the CI fallout sequence are characterized 283 

by having few phenocrysts (<5 vol%; Signorelli et al., 1999) and a low microcrystallinity, 284 

while those of the NYT samples exhibit an even lower concentration of phenocrysts (<3 285 

vol%; Orsi et al., 1995) and microlites in the groundmass. The products of magmatic Plinian 286 

phases of the explosive eruptions contain < 3 vol% phenocrysts, apart from those of the A-287 

MS which are more porphyritic (5 – 10 vol%). Pumice clasts of the PP, A-MS and AS-6 288 

eruption sequences display a microlite-free groundmass, and those of the AS-6 typically 289 

contain alternating highly and poorly vesiculated bands (Tonarini et al., 2009). CT pumice 290 

clasts (<5 vol% phenocrysts) contain vesicles with thin glassy walls with no microlites. MN 291 
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pumice samples, in contrast, have a high microlite content (~30 vol%; Piochi et al., 2005) 292 

that is mostly composed of feldspars.  293 

294 

295 

4.2. Residual glass composition: major elements and volatile (S and halogens - Cl, F) 296 

contents 297 

298 

The residual glass compositions of the analyzed pumice erupted at Campi Flegrei and Ischia 299 

display SiO2 contents of between 57 and 63 wt% and alkali (Na2O+K2O) contents of 300 

between 11 and 15 wt%. Residual glass is thus either trachytic (A-MS, CT), or phonolitic 301 

(MN), or lies astride both compositions (PP, As6) (Fig. 3 and Tables 1, 2 in Supplementary 302 

Material). The residual glass of the samples of the Solchiaro eruption sequence displays a 303 

homogenous shoshonitic composition (e.g., 50.6-51.2 wt% SiO2, 7.6-8.0 wt% Na2O + K2O, 304 

and 7.4-7.6 wt% CaO) (Fig. 3b, Table 1 in Supplementary Material). Within each eruption, 305 

the Cl content of the residual glass is constant, whereas F varies significantly (NYT: F = 306 

0.19-0.28 wt%, Cl = 0.58 ± 0.02 wt%; PP: F = 0.18-0.29 wt%, Cl = 0.68 ± 0.02 wt%; A-307 

MS: F = 0.24-0.41 wt%, Cl = 0.78± 0.03 wt%; As6: F = 0.19-0.25 wt%; Cl: 0.68 ± 0.02 308 

wt%; MN: F = 0.50-0.60 wt%, Cl = 0.66± 0.02 wt%; CT: F = 0.19-0.36 wt%, Cl = 0.55 ± 309 

0.01 wt%) (Fig. 4). The CI fallout deposits have similar F contents (0.35-0.46 wt%) 310 

throughout, and Cl values that vary with stratigraphic height (base: 0.90 ± 0.02 wt%; 311 

middle: 0.84 ± 0.01 wt%; top: 0.78 ± 0.02 wt%) (Fig. 5). Pumice samples collected from the 312 

voluminous, stratigraphically overlying PDC deposits show large variations in Cl 313 

concentrations (from 0.01 up to ~1 wt%) (Supplementary Material SM4). For six of the 314 

investigated eruptions (CI, NYT, PP, As6, MN, and CT), S has also been measured (Fig. 6). 315 

The RESIDUAL GLASS shows S contents below the detection limit (80 ppm) for CT and 316 
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MN and mean S up to 500 ± 126 ppm for NYT, 104 ± 14 ppm for CI and less than ~300 ± 317 

65 ppm for both PP and As-6. For Solchiaro, F and Cl contents span restricted ranges of 318 

0.09 - 0.15 wt% and 0.17-0.18 wt%, respectively (Table 1 in Supplementary Material), 319 

while S has not been measured. 320 

321 

4.3. Melt inclusion (MI) composition: major elements and volatile (S and halogens - Cl, 322 

F) contents323 

324 

S contents of some melt inclusions in crystals from the CI (pyroxenes), NYT (magnetites) 325 

and CT (magnetites) have been analyzed. The MIs trapped in magnetite from the NYT show 326 

the highest S concentration (603 ± 30 ppm). Those from the CT feldspars extracted from the 327 

whole eruption sequence display an S content (250 ± 40 ppm) similar to the mean value for 328 

CI (252 ± 64 ppm). The presence of anhedral iron sulphide in CT and NYT eruptions, 10 to 329 

50 µm in diameter, trapped in magnetite and containing 33.7 ± 1.5 wt% of S, indicates a 330 

high S concentration in the melt that precipitates out into sulphides (Table 2a in 331 

Supplementary Material). 332 

333 

5. Discussion334 

335 

5.1 Volatile (halogen, S) content of the melts feeding the investigated eruptions 336 

Halogen (F and Cl) and S contents in both residual glass and melt inclusions have rarely 337 

been reported in the literature (Arienzo et al., 2010, 2016; Fourmentraux et al., 2012; 338 

Moretti et al., 2013; Balcone-Boissard et al., 2016; D’Augustin et al., 2020). The available F 339 

and Cl contents detected in both residual glass and melt inclusions of the A-MS samples 340 

support the use of Cl as a geobarometer on the basis of the model developed for the SVVC 341 
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magmas (Fig. 2; Balcone-Boissard et al., 2016). The NYT and CI pre-eruption melts trapped 342 

in melt inclusions show the highest S concentration of all the studied eruptions, as well as 343 

the largest difference between pre-eruption and post-eruption contents. The CT pumice 344 

clasts have moderate S contents in the melt inclusions (250 ± 40 ppm) and completely 345 

degassed residual glass (below the detection limit of 80 ppm), although the presence of iron 346 

sulphide blebs (33.7 ±1.5 wt% of S) suggests a higher S concentration. The S content is low 347 

(~170 ± 65 ppm) in the residual glass of the PP and As-6 samples, and below the detection 348 

limit in the residual glass of MN (no melt inclusion data have been acquired for PP, As-6 349 

and MN samples).  350 

The F (0.09 - 0.15 wt%) and Cl (0.17 - 0.18 wt%) contents of the Solchiaro basic residual 351 

glass (Table 1 in Supplementary Material) are lower than those of the other studied 352 

eruptions, although they are in accordance with the less differentiated composition of the 353 

glass. They are lower than the measured volatile content in melt inclusions in olivines, with 354 

F up to 0.2 wt%, Cl up to 0.45 wt%, and S of 0.17 wt% (Esposito et al., 2011). It is hard to 355 

compare residual glass and melt inclusion data from literature as the detailed study on MI 356 

span a large range of volatile contents, resulting in melt entrapment under volatile saturation 357 

at different depths and times in the magma plumbing system. Here, we consider Solchiaro 358 

magma as an adequate parental end-member of the PVD (Mormone et al., 2011): the 359 

measured residual glass composition can thus be interpreted as being the volatile content for 360 

a step of fractional crystallization of a fluid-undersaturated magma (Fig. 2b; Balcone-361 

Boissard et al., 2016).  362 

363 

5.2 Cl buffer value, S effect and magma equilibrium pressure 364 

5.2.1 Cl buffer value 365 

366 
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The growth of Cl-bearing minerals in a silicate melt is one of the possible processes that can 367 

buffer the Cl concentration of the residual glass. However, the investigated pumice clasts do 368 

not contain Cl-rich phenocrysts or microlites, and the residual glass is not highly 369 

microcrystalline, apart from in samples from the MN eruption. The Cl-rich mineral phases 370 

found at Campi Flegrei are sodalite, fluorite, apatite and biotite; but they occur as rare 371 

microlites, even in the highly crystallized residual glass of the later phase products of the 372 

MN eruption (Melluso et al., 2012; Arzilli et al., 2016). Sodalite occurs in a small quantity, 373 

preventing it from affecting the Cl concentration in the residual glass. Therefore, the 374 

constant Cl values do not represent a buffered melt value due to crystallization of a 375 

condensed phase. Nevertheless, in the case of the highly microcrystalline residual glass of 376 

MN, the melt composition may have been modified by degassing-induced crystallization: 377 

we circumvent this effect on Cl solubility using the experimental Cl solubility law. We 378 

applied a mass-balance correction to the Cl concentration of the MN samples, due to the 379 

presence of 30% of feldspar microlites (Piochi et al., 2005; this work). For all the other 380 

cases, the constant Cl value measured in the residual glass was assumed to be the Cl value 381 

buffered by the fluid assemblage (vapor + brine).  382 

383 

5.2.2 The question of S in the PVD magmas 384 

385 

The geochemical and isotopic features of the PVD rocks erupted over the past 15 ka 386 

differ from those erupted earlier. The detected differences have been partly attributed to an 387 

increase in crustal contamination through time (Pappalardo et al., 2002; D'Antonio et al., 388 

2007; Di Renzo et al., 2011). Sulfur is an incompatible element for the major crystalline 389 

phases, except for iron sulphide blebs occurring in magnetite, and its solubility is pressure-, 390 

temperature- and oxygen fugacity-dependent (Carroll and Webster, 1994). CO2 flushing via 391 
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fluids released from deeper parental magmas (Mangiacapra et al., 2008; Moretti et al., 392 

2013), rather than an unlikely contribution of the limestone bedrock (D’Antonio, 2011), can 393 

decrease the H2O content in the melt, and may allow for enhanced exsolution of S in the 394 

melt (as the magma becomes less hydrous, its sulphide saturation will decrease and 395 

potentially lead to the generation of an immiscible sulphide phase (Fortin et al., 2015) 396 

 Such exsolution processes may occur in the pre-eruptive magma of the NYT and later 397 

explosive eruptions. Thus, using the Cl solubility model we have to take this into account 398 

and manually introduce the effect of S on Cl solubility.  Conversely, the S content of CI and 399 

NYT is similar, supported by data from the literature and the climatic impact of CI (Fedele 400 

et al., 2005, 2007). No S-effect correction using Cl modelling solubility is required to 401 

explain the Cl signature of CI melts since the experimental Cl solubility law determined 402 

using the CI composition wholly describes the volatile interactions, in particular the S effect 403 

on Cl solubility.  404 

405 

5.2.3. Magma storage pressure 406 

407 

5.2.3.1 The magmatic Plinian phase of the explosive eruptions of Campi Flegrei and 408 

Ischia volcanic fields 409 

For the trachytic A-MS and CT and the phonolitic MN eruptions, the Cl solubility law 410 

available for each of these compositions (Signorelli and Carroll, 2000, 2002) and the Cl 411 

solubility model (Webster et al., 2015) with the S correction, yield the same magma storage 412 

pressure : 65 ± 10 MPa and 140 ± 5 MPa for the trachytic A-MS and CT eruptions, 413 

respectively (Fig. 7c), and 115 ± 10 MPa for the phonolitic MN one (Fig. 7d). For the As6 414 

and PP eruptions, the magma pressure domain is the same, since they were fed by magmas 415 

with the same composition and exhibit the same Cl buffer value (Figs. 3, 4). As the Cl 416 
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solubility curves for trachytic and K-phonolitic melts are close to one another, the pressure 417 

domain is quite narrow, at between 95 and 110 MPa. The pressure values estimated using 418 

the Cl solubility model with the S correction are 90 and 110 MPa for As6 and PP, 419 

respectively (Fig. 7c). Thus, both the Cl solubility law and the solubility model methods 420 

provide the same pressure estimates when the S correction is applied to the modelling (Fig. 421 

8). 422 

423 

424 

5.2.3.2 Caldera-forming eruptions of CF 425 

The samples of the basal fallout sequence of the CI display three different Cl buffer 426 

values, depending on their position in the stratigraphic sequence, hence on the timing of 427 

magma withdrawal (base: 0.90 ± 0.02 wt%; middle: 0.84 ± 0.01 wt%, top: 0.78 ± 0.02 wt%, 428 

Fig. 4b. These Cl values, which are the highest found in the RESIDUAL GLASS of all the 429 

analyzed pumice clasts of the PVD, decrease upwards through the sequence, with each 430 

stratigraphic level clearly showing a specific Cl buffer value. The Cl solubility law has been 431 

experimentally determined specifically for the CI composition (Signorelli and Carroll, 2002) 432 

(Fig. 7a), making it possible to assess the magma equilibration pressure prior to the Plinian 433 

phase. The trachytic magma body formed a shallow apex with its top at 30 ± 5 MPa. The 434 

pressures are also recorded by the compositionally intermediate and poorly evolved CI 435 

products ( 45 ± 5 MPa, and 65 ± 5 MPa, respectively). These differentially evolved magmas 436 

generated the lowermost, the intermediate and the uppermost portions of the fallout 437 

sequence, respectively (Fig. 7a). The same pressures have also been estimated using the Cl 438 

solubility model. It is worth stressing that the correspondence between the results of the two 439 

methods can be only achieved without an S correction. The Cl contents have also been 440 

determined for a few samples from the PDC deposits of the CI eruption sequence. The large 441 
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variability of the obtained results is incompatible with a fluid-buffered effect and could 442 

instead arise from degassing processes or scavenging of Cl by zeolites (Cappelletti et al., 443 

2003). Post-eruptive degassing processes are common in such voluminous deposits that 444 

remain at high temperature for a long time after deposition. The magma corresponding to the 445 

PDC phase may also inherit various geochemical signatures from a chemically and 446 

isotopically distinct batch of magma that recharged sometime before eruption (Arienzo et 447 

al., 2009). 448 

For the NYT, the residual glass covers a large range of composition, straddling the phonolite 449 

and trachyte fields (Fig. 3). Consequently, the pressure domain deduced from the residual 450 

glass composition is large too, between 130 and 165 MPa, using the experimental Cl 451 

solubility law determined for both the trachytic and phonolitic melts (Fig. 7b). Considering 452 

the significant S content in the NYT magma, its influence on Cl solubility must be taken into 453 

account (Fig. 6); therefore, a 35% relative correction of the Cl buffer value has been applied 454 

using the Cl solubility model, yielding a pressure value of ~120-130 MPa, which is close to 455 

the pressure domain estimated using the Cl solubility laws. 456 

457 

5.3 Architecture of the magmatic plumbing systems 458 

459 

The results for magma storage pressures can be discussed in the light of our current 460 

knowledge of the magmatic feeding systems of Neapolitan volcanoes and their intimate 461 

relationships with magma eruption dynamics (Fig. 9) (Arienzo et al., 2010, 2016; Moretti et 462 

al., 2013; Astbury et al., 2018). The studied fallout deposits of the CI and NYT eruptions 463 

account for a minor proportion of the entire eruptive sequences, thus representing only a 464 

small portion of the total extruded magma. Those of the smaller volume explosive eruptions 465 
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(<1 km3 of magma; PP, AM-S, As6 and MN at Campi Flegrei and CT at Ischia), represent 466 

variable and relatively large portions of the total emitted magmas. 467 

For the magmatic Plinian phase of the CI, a low but progressively increasing pressure of 468 

30 ± 5 to 65 ± 5 MPa has been obtained using both methods for establishing Cl buffering 469 

values.  This applies to the stratigraphically lowermost portion of the CI eruption sequence 470 

produced by the accumulation of products representative of the most evolved magma 471 

equilibrating with Cl at low pressure. This pressure range cannot be extrapolated to the 472 

storage conditions of the total volume of magma extruded during the course of the entire 473 

event since it is only relevant for the earliest extruded magma. Indeed, the huge ca. ~300 474 

km3 volume of magma could not be stored at such a shallow depth. Conversely, this portion 475 

may represent a shallow, resident magma later intercepted by the least evolved, ascending 476 

CI magma (Di Salvo et al., 2020). Unfortunately, no pressure data have been obtained for 477 

the poorly evolved CI melts (not erupted) that possibly differentiated at variable depths 478 

during ascent from the deeper zone, located beneath 8 km depth, to the shallower one. 479 

Moreover, no pressure data have been calculated for the PDC deposits as volatile (H2O and 480 

F, Cl) contents are dominated by post-deposition degassing processes and the growth of 481 

zeolites (Cappelletti et al., 2003) which can entrap Cl. The very low-pressure values 482 

obtained contrast with the high storage pressures that characterize the magma producing the 483 

later PDCs (e.g. Moretti et al., 2019) but they do provide constraints on the architecture of 484 

the shallowest equilibration zone of the magma plumbing system prior to the CI eruption.  485 

The depth at which magma bodies form is controlled by volatile exsolution and crustal 486 

rheology. At pressures > 250 MPa, the viscosity of the crust in long-lived magmatic 487 

provinces is sufficiently low to inhibit most eruptions (Huber et al., 2019). Conversely, 488 

magma chamber growth at lower pressure (<150 MPa) is inhibited due to a combination of 489 

the exsolution of a volatile phase and high evacuation rates, and the crust being more 490 
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viscous and brittle. However, a long-lived system can accumulate magma and build up 491 

reservoirs in the lower crust thanks to the long duration of intrusions (Karakas et al., 2017). 492 

Such a modification to the lower crustal zone impacts the upper portion of the crust, by 493 

modifying the thermal budget and thus reducing the flux of magma required to sustain a 494 

shallow magma reservoir. Here it can be inferred that the upper crust was mechanically and 495 

thermally able to relax, allowing the formation of shallower, less voluminous magma 496 

bodies. Such low pressure magma bodies are only transient, and unable to grow to a 497 

significant size, as they quickly erupt if recharged by fresh magma (Huber et al. 2019). 498 

The greatest portion of the CI magma was likely stored at higher pressure than that of 499 

the batch feeding the Plinian phase. The latter, with an estimated volume of ~12 km3, likely 500 

formed a vertically extended apex at pressures of 30 to 65 MPa. In this situation, the upper 501 

crust is able to host a growing magma body. 502 

Our results are in accordance with the model proposed by Marianelli et al. (2006), based 503 

on the volatile content of melt inclusions. The authors suggest a decompression event from 504 

the deepest reservoir located at 150 MPa, down to 50 MPa, representing the upward 505 

movement of the trachytic magma into the crust. This may correspond to the potentially 506 

large, eruptible and long-lived magma bodies expected beneath volcanoes (Huber et al., 507 

2019). Fanara et al. (2015), based on volatile content of residual glass measured on natural 508 

samples and estimated experimentally, also suggested a similar structure with two magma 509 

reservoirs located at different levels: a deeper one at about 8 to 15 km and a shallower one at 510 

1 to 8 km. The occurrence of a vertical apex of the magma chamber is justified by the strong 511 

correlation between the pressure values estimated from the Cl buffering effect and 512 

stratigraphic heights of the analyzed samples. This apex would have been formed following 513 

a possible pressure build-up of the reservoir, by a magma intrusion from the deeper part of 514 

the system. This scenario can explain the unrest phases at CF which could be driven by 515 
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small portions of un-eruptible magma located at shallow depth (De Siena et al., 2010). There 516 

are two main hypotheses to account for the shallow depth of the earliest erupted magma. 517 

The first is linked to the tectonic setting of the PVD: the most evolved magma batch, located 518 

at the top of the larger chamber with a mean depth of about 8 km, intruded a dense network 519 

of fractures and faults that are related to the regional NE-SW and NW-SE structural systems. 520 

The Plinian phase of the eruption was fed by a central vent formed in a discrete sector of this 521 

vertically extensive, uppermost portion of the reservoir. These faults then controlled the 522 

eruption-related collapse of the caldera (Orsi et al., 1996a; Moretti et al., 2013).  The other 523 

hypothesis is to consider the crustal magma plumbing system as being made of transient 524 

portions of magma stored at different depths. The uppermost reservoirs, with the most 525 

evolved trachytic magma, only correspond to a small part of the magma involved in the 526 

Plinian phase, which was able to be recharged several times (Di Salvo et al., 2020). When 527 

the eruption began, the decompression destabilized the magma stored within a larger 528 

reservoir at greater depth, following a volatile saturation event or intrusion of a more mafic, 529 

high-temperature magma (Arienzo et al., 2009, 2011; Di Salvo et al., 2020). The transient 530 

nature of the shallowest magma found here is in accordance with the effects of crustal 531 

rheology. 532 

The NYT caldera-forming eruption extruded 40 km3 of magma. The pressure/depth of the 533 

magma emitted during the Plinian events with trachytic-phonolitic compositions has been 534 

evaluated using the two methods, giving a minimum pressure of 130 MPa for the top of the 535 

reservoir. This location for the NYT magma reservoir is in agreement with the hypothesized 536 

top of the reservoir at about 4 km determined by modelling of the thermal regime of the CF 537 

magmatic system (Di Renzo et al., 2016). 538 

The results for the residual glass of the A-MS eruption suggest a magma reservoir 539 

located at a pressure of 65 MPa, perhaps inherited from the NYT eruption (de Vita et al., 540 
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1999). This pressure value is slightly lower, implying a shallower depth, than that proposed 541 

by Arienzo et al. (2010) based on melt inclusion geobarometry. These authors also showed 542 

that two superimposed reservoirs were evacuated during the eruption and that deep CO2-543 

flushing occurred. The CO2 may have played a significant role by dehydrating the magma 544 

and by modifying the H2O-Cl equilibrium. Thus, the magma storage pressure might have 545 

been higher than that deduced here from the Cl buffering effect. 546 

The pressures of the magmatic reservoirs feeding the PP and As6 eruptions have been 547 

estimated at similar values of 95-110 MPa, while the storage pressure for the magma feeding 548 

the MN eruption has been estimated at 115 MPa using the Cl solubility method. This 549 

estimate is similar to the value of 150 MPa defined by Piochi et al. (2005) on the basis of 550 

geochemical modelling of H2O solubility in magma (MELTS). Such a depth is in agreement 551 

with the reconstruction made by Di Vito et al. (2016) based on the historical, archaeological 552 

and geological record of the Campi Flegrei caldera. The authors estimated the surface 553 

deformation preceding the Monte Nuovo eruption and investigated the shallow magma 554 

transfer. Data suggest progressive magma accumulation in a source c.a. 5 km below the 555 

caldera center, and its transfer to a depth of c.a. 4 km below Monte Nuovo. 556 

The pressure of the storage zone of the magma feeding the CT eruption, the only event on 557 

Ischia that has been studied here, is 140 MPa, a value that falls within those evaluated by 558 

Moretti et al. (2013b). These authors suggested a composite plumbing system beneath Ischia 559 

including magma storage zones located at various depths, the shallowest of which is at 100-560 

160 MPa.  561 

The pressure estimates evaluated using the Cl barometer are extremely shallow, 562 

compared to most previous estimates of magma storage depths in the CF region obtained 563 

using other techniques (e.g., melt inclusions, geophysics). The results indicate the vapor-564 

melt equilibration of ephemeral magma ponding zones at shallow depth within a dynamic 565 
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magma plumbing system. Beyond the stable magma reservoir located below a depth of 8 566 

km, multiple magma ponding zones may have transiently formed at shallower depths at least 567 

during the past 10 – 15,000 years (Pabst et al., 2007). 568 

In addition to the interpretations of the CF plumbing system discussed here (Fig. 9), 569 

Fourmentraux et al. (2012) have published work on the volatile behavior of the magma 570 

feeding the Averno 2 eruption (di Vito et al., 2011). They pointed out that two independent 571 

batches of magma rose through vertical fractures at the periphery of the NYT caldera. In 572 

particular, H2O and Cl data indicate a storage pressure of 25 MPa for the shallowest and 573 

most-differentiated erupted magma. This magma thus  represents the shallowest depth of 574 

those that have erupted over the past 15 ky at the CF, which probably formed just a short 575 

time prior to eruption. 576 

577 

5.4. Pre-eruptive water contents 578 

579 

As a corollary to the pressure and depth constraints presented here for magmas feeding 580 

the selected PVD eruptions, the maximum pre-eruptive H2O content for these silicate melts 581 

has also been estimated (Fig. 9). Such estimates can be performed if the H2O solubility law 582 

for the composition of the erupted magma is known. Water concentrations were estimated 583 

using a H2O solubility law for the composition of the melt corresponding to the pressure 584 

deduced from the Cl-buffering effect (Fig. 9, 10). However, this approach ignores the 585 

influence of other volatiles (mainly CO2 and S) on H2O solubility, as experimental H2O 586 

solubility laws do not generally take them into account. The obtained results suggest H2O 587 

contents of ~4 wt% for phonolitic (MN eruption), and between 1.5 and 6.5 wt% for trachytic 588 

magmas. These represent maximum values, because the presence of CO2 could depress the 589 

amount of water dissolved in melt at saturation by lowering the solubility limit of water, 590 
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which would lead to Cl extraction from the melt (Botcharnikov et al., 2007). It is also 591 

likely that there could be significant CO2 fluxing through shallow magma chambers at PVD. 592 

CO2 fluxing closely linked to deep supercritical CO2-rich fluids partly controls eruption 593 

dynamics (Moretti et al., 2013; Moretti et al., 2019). This process, due to a decrease in H2O 594 

solubility induced by increasing CO2 fugacity of the fluid phase, could also enhance volatile 595 

saturation in the magma, increasing the amount of exsolved fluids. The minimum exsolved 596 

H2O content during magma ascent can be estimated using the H2O content in melt 597 

inclusions. In several cases, the H2O contents measured in melt inclusions are consistent 598 

with our estimates (Fig. 10). The water content determined for the A-MS eruption has values 599 

of between 0.85 and 3.05 wt% (Arienzo et al., 2010), providing a relatively good match for 600 

the value of 4 wt% obtained using the H2O solubility law. For the CI eruption, H2O contents 601 

of 2 - 3 wt% were found for the shallow portion of the reservoir (Marianelli et al., 2006; 602 

Moretti et al., 2019), in agreement with the value (1.5 - 2 wt%; Fig. 10) determined using 603 

the solubility law. These data describe the H2O content (from 0.83 ± 0.07 to 3.74 ± 0.06 604 

wt%) for the trachytic magmas emitted during the CI eruption, as measured in melt 605 

inclusions by Fanara et al. (2015). 606 

607 

5.5. Comparison with the eruptions of Somma-Vesuvio Volcanic Complex and other 608 

alkali-rich systems 609 

610 

Previous researchers have highlighted a long-lived common pool of magma located at 8-611 

10 km depth beneath the Campanian volcanoes (Pappalardo and Mastrolorenzo, 2012; Zollo 612 

et al., 2008) and the possibility of coupled deformation in recent times (uplift and 613 

subsidence at PVD and SVVC are correlated; Walter et al., 2014). This link could be due to 614 

a possible migration of magmatic fluids from depth: upward migration of magma causes 615 
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pressure changes within magma or hydrothermal fluid reservoirs, which causes ground 616 

deformation that can be measured as displacement at the surface, as at both the PVD and 617 

SVVC given that the two complexes are geographically close to each other (Gonnermann et 618 

al., 2012; Freymuller et al., 2015). Several geochemical studies on melt inclusions have 619 

demonstrated that magma storage occurred at depths of 3-5 km and 8-10 km (e.g., Scaillet et 620 

al., 2008), with an upward migration of the magma chamber through time. Using the same 621 

method as in the present work, Balcone-Boissard et al. (2016) highlighted two main magma 622 

ponding zones at 180 - 200 MPa and 100 MPa, with a still shallower reservoir at less than 50 623 

MPa feeding the most recent eruptions since AD 1822. This also correlates with a different 624 

magma composition, with the shallowest and most recent eruptions displaying a 625 

Strombolian eruptive style involving a less differentiated melt (tephritic). However, unlike 626 

the PVD, no short-lived shallow magma apophyses have been identified at SVVC; the PVD 627 

is mainly composed of a nested caldera with specific unrest signals. 628 

The buffering effect on Cl is also found at other volcanic systems involving alkali-rich 629 

rhyolitic magmas, such as Pantelleria (Green Tuff eruption) or the East African Rift 630 

(Gedemsa and Corbetti volcanoes, Ethiopia; unpublished data). This shows that 631 

geobarometric constraints can be calculated with Cl for differentiated alkali-rich magmas, 632 

including not only trachyte or phonolite but also rhyolite, and occurring in various 633 

geodynamic contexts.  634 

635 

6. Implications636 

637 

One of the most important results of this work is that Cl can be used as a geobarometer 638 

for alkaline magmas. The identified Cl buffering effect of fluid-melt interaction allows the 639 

shallowest depth at which fluid-melt equilibrium occurs with respect to Cl to be calculated. 640 
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Secondly, these results have major implications for the architecture of the plumbing 641 

system through time: the upper part of the plumbing system has varied in depth through time 642 

(Fig 10), thus corroborating the hypothesis of a dynamic multi-depth plumbing system and 643 

the idea that its architecture has been dictated by both the regional and local structural 644 

setting, fluid saturation, and the thermal regime of the magmatic area. Such extremely 645 

shallow, short-lived magma bodies in the upper crust will not necessarely lead to an 646 

eruption if the feeder system from the deepest reservoir is not maintained, or if the injection 647 

frequency  is too low, in which case the magmas will cool fast and crystallize before 648 

building up a magmatic reservoir of sufficient size to erupt. 649 

This approach can be used for other volcanic systems fed by alkali-rich magmas. By 650 

systematic application to past eruptions of a given volcanic center, it could provide useful 651 

constraints on the architecture of polybaric plumbing systems, seen as being made up of a 652 

several magma ponding zones through the entire crust. 653 

Finally, this study also highlights the importance of  studying the magmatic fluid phase as 654 

a complex C-H-O-S-F-Cl system, with interactions and feedback between different fluid and 655 

melt species. 656 
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Figure captions 1013 

Figure 1: Campi Flegrei – Eruptive History. a) Schematic map of Italy. b) Location of the 1014 

Neapolitan area: Campi Flegrei, Somma-Vesuvio volcanic complex, the islands of 1015 

Ischia and Procida. Outcrop locations shown in grey for CI; brown for Solchiaro; 1016 

yellow for NYT; green for PP; blue for A-MS; red for As6; orange for CT and purple 1017 

for MN. c) Digital terrain model map of the Phlegraean Fields caldera. Major calderas 1018 

areas (CI, NYT), the area of volcano-tectonic collapse (A-MS) and edifices (As6 and 1019 

MN) are marked. Outcrop locations are shown for PP, A-MS, As6 and MN eruptions. 1020 

d) Schematic chronogram of the studied eruptions. Arrows refer to explosive1021 

eruptions, and their length and color reflect the estimated VEI (Volcanic Explosivity 1022 

Index from Mastrolorenzo and Pappalardo, 2006). 1023 

1024 

Figure 2: Cl behavior and evidence of the buffering effect in silicate melt (melt 1025 

inclusion and residual glass composition). Example of A-MS eruption a) The H2O-1026 

NaCl-silicate melt pseudo-system (redrawn at 1,000°C from Driesner and Heinrich, 1027 

2017). Blue domain: the silicate melt is in equilibrium with two fluids: a vapor phase 1028 

(H2O and/or CO2 and/or S-rich) and a brine (Cl rich). Within this subsolvus domain, at 1029 

a fixed temperature, the Cl concentration in silicate melt is buffered. Orange domain: 1030 
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the silicate melt equilibrates with a single fluid phase (vapor or brine). b) Cl vs Na2O 1031 

(wt%) diagram. Solid dark line: the behavior of an incompatible non-volatile 1032 

component from the most primitive composition considered for CF (Solchiaro 1033 

eruption; Esposito et al., 2011; black ellipse). Red triangles: MI data from the A-MS 1034 

eruption (Arienzo et al., 2010a), and blue squares: the residual glass contents of the A-1035 

MS eruption (this study). c) Pressure estimate from the identified Cl buffer value (2b) 1036 

using the experimental Cl solubility for the A-MS melt composition, a trachytic melt 1037 

compositionally close to samples from the Campanian Ignimbrite for which the Cl 1038 

solubility law (red dots and mean red line) exists. Purple line: pressure estimate from 1039 

Cl buffer value with the associated uncertainty in dotted blue lines (from mean Cl 1040 

value). 1041 

1042 

Figure 3: Alkali-silica diagram for residual glass (Le Bas et al., 1986) a) Residual glass 1043 

composition for Campi Flegrei and Ischia. The EPMA data are from individual 1044 

pumice clasts covering the whole specific density distribution for each eruptive layer 1045 

(Table 1 in Supplementary Material). Each residual glass point represents a mean of at 1046 

least 6 measurements. b) The same as figure (a) with data of the Solchiaro eruption 1047 

(Procida). 1048 

1049 

Figure 4: Halogen contents of residual glass. Compositions of individual pumice clasts 1050 

belonging to the density mode for each eruptive layer. Each residual glass point 1051 

represents a mean of at least 6 EPMA point measurements (see Tables in 1052 

Supplementary Material). The MN eruption data are corrected for microlite content 1053 

(30%; Piochi et al., 2005). a) F versus CaO (wt%) variation diagram. F behaves as an 1054 

incompatible element and can be used as a differentiation index. The least evolved 1055 
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composition of Solchiaro is excluded here for clarity as the mean CaO range is 1056 

between 9 - 13.5 wt% for F contents between 1,500-2,000 ppm. b) Cl versus F (wt%) 1057 

variation diagram. 1058 

1059 

Figure 5: Relationship between the Cl buffering effect and stratigraphy for the CI 1060 

fallout deposit at Acquafidia. a) Stratigraphy of the CI fallout deposit. b) Variation 1061 

diagram of Cl versus F (wt%) in glass. The 3 groups of eruptive units for the CI are 1062 

identified by 3 shades of brown, from light brown for the first eruptive units (highest 1063 

Cl buffer value) to dark brown (lowest Cl buffer value), corresponding to the 1064 

stratigraphy of the fallout (5a). 1065 

1066 

Figure 6: Sulfur (ppm) versus CaO (wt%) variation diagrams. Matrix glass (squares) 1067 

and Melt Inclusions (diamonds, when analyzed) are shown for CI, NYT, PP, As-6, 1068 

MN and CT eruptions. Color scheme as in figure 3. The minimum S detection limit 1069 

with EPMA is 80 ppm. Symbols represent single point measurements. The uncertainty 1070 

is within the symbol size for CaO and 5% for S. Data are given in Supplementary 1071 

Material Table 2. 1072 

1073 

Figure 7: Cl buffering value and pressure estimates using the Cl experimental 1074 

solubility law. For each eruption, the selected Cl experimental solubility law has been 1075 

redrawn and the pressure domain is given (solid line: Cl buffer value representing 1076 

pressure; dashed lines: uncertainty on pressure estimates based on uncertainty on Cl 1077 

buffer value). a) CI eruption with its own Cl experimental solubility curves (trachytic 1078 

composition). b) For NYT, PP and As-6 eruptions, as the composition straddles the 1079 

trachyte and phonolite fields the pressure domain can be bracketed by the respective 1080 
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solubility laws. c) A-MS and CT eruptions: the two available Cl experimental 1081 

solubility curves for these trachytic composition are shown (red: CI composition and 1082 

green: Pomici di Base eruption (Somma-Vesuvio volcanic complex) from (Signorelli 1083 

and Carroll, 2002). Blue: A-MS eruption, and orange: CT eruption pressure estimate. 1084 

d) MN eruption: Cl experimental solubility curves for a K-phonolite of similar1085 

composition (AD 79 eruption of Somma-Vesuvio volcanic complex from Signorelli 1086 

and Carroll, 2000).  1087 

1088 

Figure 8: Cl buffering value and pressure estimates deduced from the Cl solubility 1089 

model (Webster et al., 2015). Solid symbols: blue circle: modelled residual glass with 1090 

no S correction; yellow circles, modelled residual glass with S correction of 30-40%. 1091 

a) As6 eruption: measured Cl experimental and modelled Cl solubility at 90 MPa. Red1092 

diamonds: measured residual glass. b) PP eruption: measured Cl experimental and 1093 

modelled Cl solubility at 100 MPa. Green diamonds: measured residual glass.  1094 

1095 

Figure 9: Pre-eruptive conditions: H2O content estimates from Cl buffer values. 1096 

Experimental H2O solubility laws for trachytic (green curve; Di Matteo et al., 2004) 1097 

and K-phonolite melts (orange curve; Iacono Marziano et al., 2007). Marks correspond 1098 

to each determined pressure domain.  1099 

1100 

Figure 10: Architecture of the shallow magma plumbing systems of Campi Flegrei and 1101 

Ischia. Vertical axis: Pressure is converted into depth using a lithostatic pressure 1102 

gradient of 25 MPa/km. Rectangular box: pressure domain obtained using the Cl 1103 

experimental solubility law. Star: pressure obtained by the Cl solubility model. Averno 1104 
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2 eruption: data from Fourmentraux et al. (2012). For AM-S: the blue arrow indicates 1105 

the possible deepening of the reservoir due to CO2 fluxing (see text for discussion). 1106 

1107 

1108 

1109 

1110 

Supplementary Material 1111 

SM 1 – Outcrop locations 1112 

SM 2 – Material and Methods 1113 

SM 3 – Textural characteristics 1114 

1115 

Tables in Supplementary Material 1116 

1117 

Table 1: Residual glass composition; major and volatile elements. Data of glass 1118 

compositions are recalculated to 100% on anhydrous basis. Each point represents a mean 1119 

value (with Standard Deviation (SD%) indicated). n: number of point analyses. 1120 

Table 2: (a) Melt Inclusion (MI) composition (major and volatile (F, Cl, S) 1121 

elements). FeS analyses represent the globules of sulfur analyzed in CT and NYT eruptions. 1122 

(b) Residual glass (RG) composition; major and volatile (F, Cl, S) elements. Data of1123 

glass composition (MI and RG) are recalculated to 100% on anhydrous basis. BDL: Below 1124 

Detection Limit. Each value is for a single point on one sample of the selected eruptive unit. 1125 

The detection limit for S is 80 ppm. The uncertainty is below 5% for F, Cl and S 1126 

measurements by electronic microprobe (EPMA, Camparis, France; See Supplementary 1127 

Material SM2). 1128 

1129 
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