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ABSTRACT

This paper summarizes an approach to crystal growth that was published in parts in a variety
of articles over the course of 25 years by the present author and his colleagues. Evidence for this
approach, which is confirmed in detail by data in the cited publications and in the figures and
equations in the supplementary material that accompanies this paper, comes mainly from the
shapes of crystal size distributions (CSDs). Such distributions reveal the growth histories of
natural minerals and synthetic compounds, histories that can be used to make geological

interpretations and to guide industrial syntheses.

CSDs have three fundamental shapes: lognormal, asymptotic and Ostwald. These shapes
result from different degrees of supersaturation near the time of nucleation. The first two
distribution shapes form according to the Law of Proportionate Effect (LPE) at moderate
supersaturation, and the latter rare distribution forms by Ostwald ripening at large
supersaturation. Initially, the first two distributions have mean diameters of up to tens of
nanometers and grow by surface-limited growth kinetics. The slow step in this reaction is
the incorporation of nanoparticles (bits of crystal or adparticles) onto the crystal surface. As
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the crystals become larger their demand for nutrients, as calculated by the LPE, increases
exponentially. Then the slow step in the reaction changes to the rate of transfer of nutrients
to the crystal (supply- or transport-limited growth). Crystal diameters often grow the most
during this latter stage, and the initial CSD shapes that originally formed during surface-
limited growth are retained and scaled up proportionately.

Proportionate growth during the supply-limited stage can be simulated approximately by
multiplying the diameter of each crystal in a distribution by a constant. Crystals also can
grow by a constant rate law in which a constant length is added to each crystal diameter in
the distribution. This rare process causes the original CSD to narrow so that its initial shape
is not preserved. The growth law that prevails, either proportionate or constant, is
determined by the manner in which nutrients are supplied to the crystal. Supply is by
advective flow during proportionate growth, with the nutrient solution moving with respect
to the crystals. Constant growth relies on the random diffusion of nutrients through a
quiescent solution. Proportionate growth is by far the most common growth law, and
therefore nutrient supply by diffusion alone during crystal growth is uncommon.

Distributions formed by Oswald ripening, and those formed by other rare processes, also
are discussed. During Ostwald ripening, nucleation caused by mixing reactants at large
supersaturation forms crystals that are extremely fine and numerous. The larger crystals
grow at the expense of the finer, less stable crystals, thereby forming, on completion, the
universal steady-state CSD shape predicted by the Lifshitz-Slyozov-Wagner (LSW) theory.
This unique CSD shape, as well as other rare shapes, then are scaled up to larger sizes by

supply-limited proportionate growth.
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crystal growth

GROWTH OF LOGNORMAL CRYSTAL SIZE DISTRIBUTIONS

Minerals most commonly have lognormal crystal size distributions (CSDs; Figs. 1, 15 and 17
in Eberl et al. 1998; Fig. 2 in Kile and Eberl 1999; Figs. 3 and 9 in Kile et al. 2000; Fig. 5b in
Bove et al. 2002; Figs. 1 and 3 in Eberl et al. 2002a; Fig 3 in Kile and Eberl 2003; Figs. 5 and 7
in Badino et al. 2009; Fig. 3 in Eberl 2022). A lognormal distribution (Fig. 1) is described by the

equation:

90 = [ exp {= (55) IO —al?}. )

where g(X) is the continuous theoretical frequency distribution of variable X, where, in this case,
the Xs are crystal diameters that are parallel to a given crystallographic direction. Equation 1 can
be solved if two parameters are known: o and p* are the mean and variance of the distribution of
the natural logs of X. The original scale units for o need to be specified because it is a log. B
indicates the breadth of a distribution for a given a.

Iteration of the Law of Proportionate Effect (LPE) is the simple mathematical procedure that
generates the lognormal distribution (Koch 1966) and thereby simulates crystal growth (Eberl et
al. 2000):

Xip1 =X +€X;, (2)
where X; is the diameter of an individual crystal, €j is a random number that varies independently

for each crystal between 0 and 1, and j denotes the calculation cycle for the LPE iteration.

Starting, for example, with 1000 crystals having a diameter of 1 nm, Equation 2 is solved j times
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for each crystal by substituting X1 back into the equation for X; The distribution evolves from
an even distribution into a lognormal one when the crystal sizes resulting from the LPE
calculation are grouped into equally spaced bin sizes, using the bin centers as X. For example,
sizes calculated by the LPE that range between 2.5 and 3.5 nm are grouped as 3 nm, and the
number of crystals in the bin is noted. Continued iteration of the LPE leads to an increase in the
mean size and variance of the distribution (Fig. 2 in Eberl et al. 1998).

The results of the LPE calculation are verified as being lognormal by calculating the
parameters o and (B from the numbers of crystals in the binned LPE sizes, where @ =
YIn(X)f(X), and p? = Y[In(X) — a]?f (X), where f(X) is the frequencies of binned crystal
sizes X. The two parameters are entered into Equation 1, and the theoretical lognormal number
of crystals for each binned size is calculated from Equation 1 by multiplying a normalized g(X)
times the total number of crystals counted, in this case 1000. This distribution is compared
statistically (using the Chi-square test, or the Kolmogorov-Smirnov test for sparse data) to the
distribution of crystals calculated from the LPE to verify the lognormal shape. The same general
procedure is used to test measured distributions for log-normality.

The LPE is assumed to be the central equation that describes relative crystal growth rates in
natural and synthetic systems because it duplicates the experimentally measured lognormal
shapes of natural and synthetic CSDs (Eberl et al. 1998; Eberl et al. 2002a). The LPE models
crystal growth as a stochastic process, as opposed to being deterministic. This means that
although crystal growth has a random component (¢), this randomness follows a rule (the LPE).
Therefore, although the relative growth rates of individual crystals can not be calculated

precisely, the distribution shape calculated by iterating Equation 2 is predictably lognormal.
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If the LPE is taken literally, it offers other insights into the growth process. The growth
particles (termed nanoparticles, adparticles or colloids) that attach themselves to a crystal’s
surface are a random fraction of a crystal’s initial size (g;X;) rather than being individual atoms,
ions or monomers. Such crystallization by oriented particle attachment is supported by electron
micrographs that show diverse types of nanoparticles in various stages of attachment (e.g., Fig.
12 in Ivanov et. al. 2014; Fig. 2 in De Yoreo et. al. 2015). Atom by atom or molecule by
molecule growth would not produce lognormal CSDs. Also, according to the LPE, growth by

the coalescence of nanoparticles occurs in discrete cycles (j) rather than continuously.

The LPE also indicates that the relative rate of crystal growth is a function of the linear
dimensions of the crystal (i.e., of its diameter X), rather than of its surface area or volume. In the
older literature this type of growth was termed size dependent growth; but, more specifically, it
is now termed proportionate growth. Whereas previously such growth was considered to be a
rarity, proportionate growth is in fact the most common growth mechanism (Eberl et al. 1998).
The random variable in the LPE also clarifies crystal growth dispersion, whereby individual
crystals, all initially of the same size, and each subjected to identical growth environments, can
grow at different rates (see Eberl et al. 1998, p. 503, for pertinent references).

The LPE (Equation 2) is not the complete story, because the predicted growth rate can not be
sustained. Unconstrained iteration of the LPE leads to exponential growth, and eventually to
very large adparticles and distribution variances (Figs. 2 and 3 in Eberl et al. 1998). However,
Equation 2 applies only to the initial stages of growth, immediately during and after nucleation,
when calculation of the growth rate is limited only by the incorporation of nanoparticles (X))
onto the crystal surface. It is a rate that prevails at distribution mean sizes that range up to tens

of nanometers (as indicated by Fig. 2 in Eberl et al. 1998). At larger sizes calculation of the
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growth rate is limited by the rate of supply of material to the crystal, rather than by incorporation
onto the surface. Equation 2 is modified for supply-limited growth to account for a limited
volume of nutrients carried to the surfaces during each calculation cycle (j) of the LPE (for
details concerning this volume-limiting calculation see Equation 8 in Eberl et al. 1998, or
Equation 2 in Kile et al. 2000). This modification of the LPE leads to the calculation of
adparticles that are limited in size, that are small compared to the size of the growing crystal, and
that preserve B° during growth. Thus surface-limited growth initially gives the distribution a
lognormal shape, whereas subsequent supply-limited growth preserves this shape (meaning that
B? remains constant) as the mean size (o) increases (see Fig. 6 in Eberl et. al. 1998; Fig. 7 and
Table 2 for continuous growth experiments in Kile et al. 2000; see Fig. 3 for a similar
experiment in Eberl et al. 2002a).

The growth of a distribution during supply-limited growth can be duplicated approximately by
multiplying the crystal sizes in the distribution by a constant (k, which is a constant of

proportionality or scale factor). Equation 2 then reduces to X(+1) = kX, where the constant k

substitutes for the random variable (1 + ¢j). This procedure increases the distribution’s mean size

while keeping its variance constant. However, this calculation, although convenient, is not
completely satisfactory because multiplication by k does not express the random tendency for
growth found at small diameters. Multiplication by K causes the growth rate of individual
crystals to be predictable. A more realistic calculation applies the volume adjusted growth limit
for each iteration of the LPE, as was discussed above. The shape of the resulting distribution is
the same for either calculation, but the sizes of individual crystals differ because the latter

calculation contains a random number rather than a constant (Fig. 2B in Eberl et al. 2002a).
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CSDs that have very different mean sizes, ranging from nanometers (e.g., illite crystal
thicknesses; see Fig. 5b in Bove et al. 2002) to meters (giant gypsum crystals in Naica’s Cueva
de los Cristales that range to >11 m long; see Figs. 5 and 7 in Badino 2009), have lognormal
shapes with similar variances (e.g., Fig. 16 in Eberl et al. 1998 and Fig. 7 in Kile et al. 2000).
Such shapes most likely result from the proportionate growth of lognormal distributions that
were formed according to LPE growth early in crystallization. Other growth mechanisms, such
as ripening, constant growth or entirely random growth, would quickly destroy the lognormal
shape and alter the variances (Fig. 8 in Eberl et al. 1998; Figs. 2 and 3 in Eberl et al. 2002a).
Therefore, control of the initial CSD shape during and immediately after nucleation is key to
controlling the shape of the final CSD because the earlier shape is scaled up during supply-

limited growth.

FORMATION OF CSD SHAPES OTHER THAN LOGNORMAL

Diverse conditions near the time of nucleation can lead to a variety of CSD shapes. These
shapes include the commonly found asymptotic CSD, and the rare Ostwald, transitional, non-

Ostwald and multimodal CSDs.

Nucleation occurs in supersaturated solutions when crystals appear that have radii (r) greater
than that of the critical radius (r*). If r >r* crystals can nucleate and grow. If r<r* they dissolve.
A crystal having a size equal to r* is in equilibrium with the solution, and neither grows nor
dissolves. A solution needs to be supersaturated, rather than simply saturated, to form growing
nuclei because the saturation state for a mineral (i.e., its solubility product) is determined for the
infinitely large crystal, and, therefore, does not address an increase in solubility related to an
increase in specific surface energy for finer crystals. Furthermore, concentrations measured for a
bulk solution do not address inhomogeneities present in a solution at the nanometer scale
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(particularly upon mixing), further complicating the calculation of r*. In addition, the value for
r* may increase during nucleation and growth if the saturation level falls as crystallization
proceeds.

Experiments with calcite nucleation and growth and with computer simulation (Eberl et al.
1998; Kile et al. 2000; Eberl et al. 2000) indicate that variations in nucleation history can lead to
CSD shapes that are not lognormal. For example, if nucleation occurs over an extended time at a
constant or accelerating nucleation rate while previously formed nuclei grow according to the
LPE, an asymptotic distribution (Fig. 1) results in which the smallest size category has the
largest frequency (see also: Table 2 and Figs. 4 and 13 in Eberl et al. 1998; Fig. 2 in Kile et al.
2000). After an initial period of nucleation and growth, this shape can be preserved (p* is held
constant) and scaled up by subsequent supply-limited proportionate growth, as was discussed.
This commonly occurring asymptotic shape can be described approximately using the lognormal
equation (Equation 1), but it doesn’t often pass the statistical test. It can readily evolve into a
lognormal shape if nucleation ceases while surface-limited growth continues (Figs. 6 and 7 in

Bove et al. 2002).

A second complication in CSD shape is related to nucleation that occurs when concentrated
solutions are suddenly mixed. Such an event, which is rare in nature, can lead to the universal
steady state shape that is expected for supply-limited Ostwald ripening, a distribution that is
skewed opposite to that of lognormal (Fig. 1). The equation for this shape was derived
independently by Lifshitz and Slyozov (1961) and by Wagner (1961) in what is known as the
LSW theory. As was similarly discussed for the lognormal distribution, the LSW equation that
describes the Ostwald distribution (Equation A20 in Eberl et al. 1998) differs from the simple

equation that is iterated to simulate the distribution (Equation 10 in Eberl et al. 1998, presented
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by Markworth 1970). Experiments and calculations (Kile et al. 2000) have shown that this
unique universal steady-state shape forms initially at very large levels of supersaturation, where
abundant and extremely fine nuclei precipitate. A large contrast in specific surface areas among
these particles leads to growth of the larger nuclei (r>1*) at the expense of the dissolution or the
incorporation of the smaller, less stable nuclei (r<r*) according to the Ostwald ripening
mechanism, with r* approximated by the mean radius.

According to LSW theory, the CSD for any mineral that has undergone sufficient ripening will
have the identical negatively skewed distribution shape when the data are plotted on reduced
axes (size/mean size vs. frequency/maximum frequency), a shape that is independent from the
initial, pre-ripened CSD shape, and that has a cutoff at large sizes (Fig. 1; see also Fig. 4 in Kile
et al. 2000). The coincidence of CSDs on a reduced plot means that the variances are equal. The
Ostwald shape, which has a constant and small variance of about 0.06, is scaled up by supply-
limited growth, which leads to an increase in mean size while the variance is preserved. The

resulting crystals all have nearly the same size (Fig. 8 in Kile et al. 2000).

The Ostwald CSD forms initially at large supersaturation, whereas the lognormal shape forms
initially at smaller supersaturation. Nuclei precipitated at smaller saturation are larger and fewer,
and therefore are less subject to ripening. Calcite crystallization experiments (Table 1 and Fig. 6
in Kile et al. 2000) showed that lognormal CSDs formed at initial omegas ranging from 22 to 40,
where omega is defined as the ion activity product of the solution divided by the mineral
solubility product. Therefore a solution with an omega of one is at equilibrium with a crystal
that has negligible specific surface energy. However, the Ostwald CSD appeared at initial
omegas >100, where nuclei formed having very large specific surface energies. Between these

values (28 to 69) CSDs crystallized that had transitional shapes between lognormal and Ostwald,
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indicating incomplete ripening prior to the preservation of their shapes by supply-limited
proportionate growth (Fig. 5 in Kile et al. 2000).

The Ostwald and transitional CSD shapes were readily crystallized in the laboratory where
they formed for calcite by the rapid mixing of concentrated calcium and carbonate solutions
(Kile et al. 2000). However, such environmental conditions are rare in nature. The Ostwald
shape has been found for garnets in metamorphic rock by Miyazaki (1991). Carlson (1999)
objected to this interpretation because the surface energy driving force for the ripening of such
large porphyroblasts would be negligible. Carlson correctly reasoned that ripening should not be
effective for crystals larger than a fraction of a um. However, as was discussed, the Oswald
distributions likely formed from extremely small crystals during and immediately after
nucleation. These shapes then were preserved for the garnets during supply-limited
proportionate growth.

An entire sequence of CSD shapes, from Ostwald to transitional to lognormal, has been found
on Mars for hematite concretions (Martian blueberries; Figs. 2 and 3 in Eberl 2022). Concretion
diameters were measured from photographs taken during a traverse by the Opportunity rover.
This set of distribution shapes indicates differences in initial relative levels of groundwater
supersaturation with respect to hematite solubility (see Fig. 6 in Kile et al. 2000 for analogous
calcite experiments). Concretions likely precipitated from hydrothermal solutions that were
generated suddenly by bolide impact on groundwater or permafrost (Eberl 2022). Iron for the
hematite may have come from the bolide.

There is another kind of ripening, other than Ostwald, during which crystals dissolve
randomly with respect to size, thereby supplying nutrients for other crystals to grow. During

such supply-limited random ripening (also termed non-Ostwald ripening) something other than
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specific surface area influences solubility. For example, some crystals could be less stable due to
lattice strain, polytype, or because they are located in hotspots. Assuming that the less stable
crystals disappear completely, the initial CSD shape (B?) remains constant as mean size increases
(Fig.11 in Eberl et al. 1998), thereby mimicking supply-limited growth; but this process differs
because it occurs in a closed system (here defined as a system in which nutrients for growth
come from the dissolution of the crystals themselves), and because a large amount of material
passes through solution for a small increase in mean size. It is not known if random ripening is
an important growth mechanism in nature because its CSD does not have a distinctive shape of
its own. Evidence for such ripening has been noted experimentally in isotopic studies of the
growth of Fisher calcite crystals treated hydrothermally in a closed system at 500° C for various
lengths of time (Figs. 18 and 19 in Eberl et al. 1998).

Mineral CSDs may have other shapes. For example, samples that have undergone several
nucleation events can be composed of multiple lognormal distributions (Fig. 2C in Kile et al.
2000). These distributions can be decomposed into their component lognormal CSDs by fitting
them with appropriate means and variances using Equation 1. In addition, CSD shapes that have
undergone mixing or winnowing by sediment transportation can be recognized by the relation
between o and B, the values for which may lie outside a field expected for in situ crystal
growth, as was demonstrated for the clay mineral illite in Yukon River sediments (Fig. 18B in
Eberl 2004). In a like manner, the reaction path for illite crystals can be ascertained from their
thickness distribution shapes by plotting distribution parameters onto an o vs. 3* diagram, as was
shown for illite crystals from the San Juan Mountains, Colorado (Figs. 6 and 7 in Bove et al.

2002).

ORIGIN OF PROPORTIONATE GROWTH
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CSDs may increase in mean size by proportionate growth or by constant growth (Eberl et al.
2002a). The latter growth law, which is expressed X+1) = Xj+ K, often is assumed in modeling
(e.g., population balance modeling; McCabe’s AL law; JIMAK equation), but rarely is found in
nature. Growth experiments with centimeter size K-alum crystals having a variety of initial sizes
indicate that, for such large crystals, proportionate growth occurs in stirred systems, whereas
constant growth occurs in systems that are not stirred (Figs. 1 and 2 in Kile and Eberl 2003).
Thus, the advective supply of nutrients to crystals favors proportionate growth, whereas diffusion
in still solutions leads to constant growth. The reason for this behavior is attributed to a nutrient
depleted boundary layer in solution next to a crystal. This layer is progressively thinned by the
greater velocity necessary for a solution to contour around larger crystals, thereby tending to
increase growth rate based on crystal diameter, as has been modeled by Stefan-Kharicha et al.
(2020).

A contrary result was found during the experimental nucleation and growth of fine (28 um
mean) calcite crystals (Fig. 3 in Kile and Eberl 2003). They exhibited proportionate growth by
retaining a lognormal CSD for both stirred and unstirred systems, an effect attributed to to their
small size and to solution movement during initial mixing or to visually unobserved convection
and/or Brownian motion (Kile the al. 2000). However, calcite CSDs did show the narrowing
effect expected for constant growth when grown from concentrated solutions in a silica gel-filled
column (Kile and Eberl 2003). Silica gel was used to minimize advection and increase nutrient
supply by diffusion. These calcite crystals grew to a mean diameter of about 310 um, and had a
very small variance of 0.02. An initial Ostwald distribution shape and variance (B> = 0.07) was

recovered by subtracting a constant 140 um from each crystal diameter, indicating that constant

Page 12 of 19

Always consult and cite the final, published document. See http:/www.minsocam.org or GeoscienceWorld



271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America.
The published version is subject to change. Cite as Authors (Year) Title. American Mineralogist, in press.
DOI: https://doi.org/10.2138/am-2022-8851. http://www.minsocam.org/

growth began to alter an Ostwald distribution shape at a mean diameter of about 170 um (Fig. 4c

in Kile and Eberl 2003).

Two examples of constant growth were discovered in natural flow-restricted environments
(Kile et al. 2000). Calcite CSDs within a molar tooth structure (Proterozoic Belt Supergroup,
Western Montana, USA), having a mean size of 13 pm and a variance of 0.02, started constant
growth at 7.5 um from an initial Ostwald distribution shape (Fig. 5 in Kile and Eberl 2003).
Possible greigite crystals, found in a diatom test in Pyramid Lake, NV, also may have undergone
some constant growth that deformed an initial Ostwald CSD (Fig. 6 in Kile and Eberl 2003).

There may be a practical application for these observations. If one wants to create a CSD
containing uniform sizes (for example, a non-scoring abrasive or a congruently dissolving drug),
one could encourage the initial formation of an Ostwald CSD by nucleation at large
supersaturation, followed by constant growth in an immobile solution which would further
decrease variance (Eberl et al. 2002b). It may also be possible to encourage a narrowing of
CSDs through rapid stirring or flushing, whereby the flow of solution around crystals is fast

enough to be minimally affected by crystal diameters.
IMPLICATIONS

The LPE, and the related volume constrained LPE, offer a concise and simple explanation for
some of the baffling features concerning crystal growth, including size dependent growth, crystal
growth dispersion, the common lognormal shape, and the narrow range of variance for each of
the three basic types of CSDs (Fig. 7 in Kile et al. 2000). The equation also indicates that growth
depends on the incorporation of nanoparticles rather than single atoms, a prediction that accords

with electron micrograph evidence mentioned previously.
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293 A random number lies at the heart of this equation; but what are the consequences of

294  accepting randomness? As was discussed, randomness means that the growth rate of individual
295  crystals can not be calculated precisely, but only the distribution shape can be predicted. In an
296  analogy to crystal growth, randomness also appears in the foundations of quantum mechanics.
297  The double slit experiment indicates that one can not calculate (based on the Schrodinger

298  equation) the precise location of an electron fired through double slits onto a fluorescent screen,
299  but one can only predict the shape of the distribution of a large number of electrons striking the
300 screen. Likewise, one can not predict the moment for the radioactive decay of an individual

301  atom, but only the decay rate for a large group of atoms. Stochastic models also are used to

302  model chemical reactions (Gillespie 2007). In fact, many natural systems likely have such built-
303  inrandomness (Mann 1970), especially if they express a lognormal distribution. The presence of
304  arandom component means that experimental results are not precisely reproducible no matter
305  how much care is taken. However, on the positive side, the presence of randomness frees us

306  from a completely deterministic world view.
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Larson (1971). Such geological studies generally assume a constant-rate growth law in a
population balance equation, whereas the present paper emphasizes a different approach. I am
deeply grateful to the US Geological Survey for its support of this research prior to my

retirement.
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Figure 1. The three fundamental shapes for crystal size distributions. All have been produced in
synthesis experiments, by calculation, and have been found in nature. This figure is from

Kile et al. (2000).
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SUPPLEMENTARY MATERIAL FOR THE PAPER:
Crystal Growth According to the Law of Proportionate Effect
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Both of the above distributions pass the Kolmogorov-Smirnov test for lognormal
shape (the red curves) at the > 10% level, the most significant level in the
tables.
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modeling of illite crystal particles and growth mechanisms in a zoned
hydrothermal deposit, Lake City, Colorado. American Mineralogist, 87,
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Fig. 2. Examples of inorganic
crystals formed by CPA. (A) Nano-
particles of anatase (TiO,) with
perfect alignment after apparent
attachment event with the ¢ axis
oriented along the long dimension
of the aggregate (116). (B and C)
Sequential in situ images showing
oriented attachment of ferrihydrite
with creation of an edge dislocation
(yellow lines) and resulting tilt of
lattice planes above and below the
edge dislocation (red lines) (27, 30).
(D to F) TiO2 nanocrystals showing
defects incorporated through CPA,
including (D) low-angle tilt bounda-
ries, (E) screw dislocations, and (F)
twin planes. In (E), the variations in
contrast and slight shift in lattice
fringe clarity and alignment indicate
incorporation of defects. The blue
lines highlight the orientation and
shift in lattice fringe alignment to
either side of the region that
contains the dislocations; the
bright-dark contrast is consistent
with a dislocation having a screw
component. (G) Branched nanowire
of rutile (TiO2), where each branch occurs on a set of twin boundaries (inset)
(60). (H) Single-crystal honeycomb superlattice formed through oriented
attachment of PbSe nanocrystals in an octahedral symmetry. The equilateral
triangle shows the long-range ordering of the structure, and the inset shows
the relationship of the crystalline axes with the superlattice pattern (39)
(1) Cryo-TEM micrograph of a single zeolite nanoparticle (117). (J) Atomic
force micrograph of a zeolite surface showing that its growth proceeds by

attachment of silica nanoparticles (28). (K) Calcium phosphate prenucleation
complexes aggregating to form amorphous calcium phosphate nanoparti-
cles. (Inset) Amorphous calcium phosphate nanoparticle is replaced by out-
growths of calcium-deficient octacalcium phosphate (5). (L) Magnetite crystal
growing through the accretion of disordered ferrihydrite-like nanoparticles
(57). (M) Goethite mesocrystal formed by the assembly of nanocrystals shows
lattice fringes that correspond to (021) planes (62).
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TABLE 2

Summary of crystal growth mechanisms and their characteristics

System Growth Mechanism CSD Shape Comments
Open Nucleation and growth with  Asymptotic. B? increases exponentially with
constant or accelerating increase in a.
nucleation rate.
Nucleation and growth with Lognormal. B? increases linearly with
decaying nucleation rate. increase in o.
Surface-controlled growth. Lognormal. B? increases linearly with
increase in o.
Supply-controlled growth. Preserves shape of previous B? remains constant with

Closed  Ostwald ripening (supply-con-

trolled).

Random ripening (supply-con-
trolled). Klso termeP n):)n-
Ostwald or kinetic ripening.

Agglomeration.

CSD.

CSD becomes more sym-
metrical with increasing per-
centage of ripening, becomes
negatively skewed, and even-
tually approaches universal
steady-state reduced profile.

Preserves shape of previous
CSD.

Can be pseudo-lognormal or
multimodal, or have other
shapes.

increase in o; therefore,
steady-state reduced profiles.

Distribution maximum moves
to the right of theoretical lo§-
normal curve, Generally, B!
decreases with increase in a.
Universal steady-state profile
may not be reached.

A large amount of material
passes through solution fora
small increase in mean size.
32 remains constant with
increase in a; therefore
steady-state reduced profiles.

Very little material need pass
through solution for a large
increase in mean size. If most
of the crystals are involved, B2
may decrease; otherwise it
may 1mcrease.
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Equation 8:

Supply-controlled growth in the open system.—One can imagine an open system in which
the rate of crystal growth is controlled by the rate of nutrient supply rather than by the
rate at which the crystal surface can grow in an infinite reservoir of nutrients. For
example, the supply may be slowed by diffusion or by the rate of dissolution of an
unstable phase that is a nutrient source, or crystals may grow so large that supply can not
keep up with the exponentially increasing demand for nutrients required by LPE growth.
This situation is simulated in GALOPER by specifying the total increase in volume that
1001 crystals are permitted (2AV,) during each cycle of eq (5). The crystals first are
allowed to grow freely during a calculation cycle according to eq (5). Next the growth
volume for that cycle for each crystal is calculated (AV;; pg), and the growth volumes for
all crystals are summed (2AV;pg). The unconstrained growth volume for each crystal
then is reduced proportionately by the ratio of allowed volume to unconstrained growth
volume:

AV, = (AV >4V, 8
= (Vg ®)
The corrected growth volume for each crystal (AV)) is added to the previous volume of
the crystal, and a new diameter for each crystal for that growth cycle is then calculated
from the equation for the volume of a sphere. The calculation is repeated for each growth
cycle. Therefore, during this type of growth the LPE is still the growth law, but growth is
limited proportionately by supply.

Equation 10:

2. For diffusion-controlled ripening, the instantaneous rate at which a crystal changes size
is given by:

r

; (10)

where r = the crystal radius, t = time (or calculation cycles), r* = the critical radius,
which is equal to the mean radius (), and K is a constant (see app. 2).

Equation A20:

A remarkable feature of surface- and supply-controlled Ostwald ripening is the evolution of the crystal size
distribution with the passage of time. It was shown by Lifshitz and Slyozov (1961) and Wagner (1961) that at
large time this distribution can be approximated by certain universal functions that develop irrespective of the
initial CSD. For example, in the case of supply-controlled crystal growth this fanction has the form:

f(r, t) = Const

(t74/3)u2 3 ) A%
(3 — 2u)”/3(3 + u)7/3 exp 2“ —_ 3 ( )
where u = /T = 1/r*. As can be seen in figure 9A, normalized f(r, t) has an asymptotic profile with two
characteristic features: (A) this function is equal or very close to zero at u > 3/2 or r > (3/2)f; (B) it has a
left-hand skewed distribution of crystal sizes.
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Figure 12. TEM images reflecting the sequence of stages in the oriented attachment of nanocrystals.!'4°
(a) Original FeSs crystals, (b) agglomeration of crystallites, (¢) attachment of crystallites, (d) recrystallization to form cubic single crystals,
(e—h) formation of thin FeS; plates as a result of attachment and recrystallization processes.



Kile, D. and Eberl, D. (1999) Crystal growth mechanisms in miarolitic cavities of the Lake
George ring and vicinity, Colorado. American Mineralogist, 84, 718-724.

0.4 [~ . v - 0.4 ~ - : " .
a Microcline, b Microcline,
1985 1989
03} 03} 1
> >
(4] Q
g :
S o2t 1 g o2f
o T
Q [
1 S
w s
01F 1 0.1
0.0 - Lo . 0.0 —é— . )
0 10 20 30 40 50 0 20 40 60 80 100 120
Size, nm x 106 Size, nm x 106
0.3 . — 0.4 . . . .
. Microcline
c ’ d Quartz, 1985
1992 ’
03}
o 02f -
(4] o
g 5
e g. 0.2t
8 o
L L™
w oo1f w
01
0.0 - 0.0 - et aa e,
0 4 0 50 100 150 200
Size, nm x 106 Size, nm X 106

FIGURE 2. Representative plots showing CSDs superimposed on the theoretical lognormal curves (solid lines): (a) microcline, LGR, 1985;
(b) microcline, LGR, 1989; (¢) microcline, north of LGR, 1992; and (d) quariz, LGR, 1985,



Kile, D. and Eberl, D. (2003) On the origin of size-dependent and size-independent crystal
growth: Influence of advection and diffusion. American Mineralogist, 88, 1514-1521.

FIGURE 1. Water-jacketed crystallization vessel with variable-speed
stirrer for alum experiments.

a Stirred System
18
" 41100
16 4 9600
b A 92200
0 10801
.

S
l\
>
»
Frequency

Final - Initial Diameter (cm)

08[
06
04F
02
00 . . o 20 40 60 80 100 120
1 2 3 4 Diameter (ym)
Initial Dlameter (cm) FIGURE 3. CSD for calcite formed in a non-stirred system, with
theoretical lognormal curve.
Static System
b .
12 Figure 4C
o 400
16 " 1290
o 10-1200
.E 141 * 12400
b 1.2 ¢ @ Maasured lower ring
! & 12 Thecratical Ostwald, pre McCabes
© ] Measured minus 160 um
1.0
a 10
; 08 A
T e g ‘e w
- '_'rn head ] b o
E . oC .
04 e o° * s 06
02}
0.4
%% 1 2 3 4
& 02 )
Initial Diameter (cm) o,
o
FIGURE 2. Growth rate as a function of initial crystal size measured 0. -
v.0 05 1.0 1.5 2.0

for (a) stirred and (b) unstirred systems for alum crystals.



b
101 1.0}
° I Thoorotical Ostwakd
I (o] Moasured minus 6 ym
F ------ . > " I‘I
s 08r '= ; 08t .: ".
f 1 P
: H P
) oo
- . ‘
g as i E osf P
H E : \
Fi i Ei ! H
g 1 £ & i
> 04 '|. E 04F .'l “'. 4
- 1 g i H
§ i g / ;
\ { o}
i 4 :
1 1)
4 S/ H
0.0 . Le—o el . el . .
° s 10 15 2 25 ) 5 10 15 20 25
Dlameter (ym)

Diameter (um)
FIGURE §, Calcite crystals found in the Proterozoic molar tooth structure: (a) measured CSD compared with the Galoper simulation (>

20%) and the theoretical CSD expected for Ostwald ripening; (b) measured CSD with constant growth stage subtracted from the crystal sizes
compared with the theoretical Ostwald curve.

Frequency

8 9 10

Diameter (ym)

FIGURE 6. Greigite (?) from Pyramid Lake, Nevada: (a)
photomicrograph of crystals found within diatom tests, and (b) CSD

measured for crystals compared with a Galoper simulation (x*
significance >20%).



64, 2937-2950.

0.25
. CCNG-30/2 A
Galoper simulation
0.29 . Measured
> oS
e
s
3
o
o
4
& a10
0os
| ——
0.00
o 10000 20000 30000 40000 50000
Size (nm)
LY
B
04
> 03
2
@
3
-3
K
b 02
(A
"o 5000 10000 T 1s000
Size (nm}
015
CCNG-25 c
010
>
Qo
3
L]
3
o
]
'
0.05 |'
0,00
° 10000 20000 30000 40000 50000
Size (nm)

Fig. 2. (A) Characteristic asymptotic CSD for sample CCNG-30/2.
The Galoper simulation used a critical nucleus size of 3 nm (read from
Fig. 10, using ) = 20 from Table 1) with 143 crystals nucleating per
calculation cycle, followed by supply-controlled growth to the correct

Kile, D., Eberl, D., Hoch, A., and Reddy, M. (2000) An assessment of calcite crystal growth
mechanisms base on crystal size distributions. Geochimica et Cosmochimica Acta,

020
* Baker calcite A
A
"- | Theoretca lograrmal
\ [reeses==  Galoper simulaton
015 o .
>
@
H
3 0.10
o
2
-~
0.05
S -
000 5000 10000 15000
Size (nm)
02% =
CCNG-40
. Theoratical lognormal
0.20 |-e=re==s  Galoper simutation
. Moasured
> 015
£
5
3
o
2
wooto
0.05
S 5000 10000 15000 20000
Size (nm)
032
° CCNG-43/3 c
0.10 * e Th@oratical lognormal
wwemeeme  Galoper simulation
. Measured
008
>
Q
13
3 ose
g
-~
004
002
A o .l
0903 20000 40000 60000 80000

Size (nm)

Fig. 3. (A) Plot of size vs. frequency showing lognormal CSD for Baker
calcite. Galoper simulation used a critical nucleus size of 3 nm and a
probability for nucleation of 0.6, followed by supply lied growth;
significance level for )’ comparison b imulation and
ments = 10 to 20%. (B) Plot of size vs. frequency for a typical lognormal
profilc of synthetically grown calcite (CCNG-40). Galoper simulation used
a critical nucleus size of 2.5 nm (Table 1 and Fig. 10) and a probability for

mean size; level of significance for y* comparison d
and measured CSDs = 2.5 to 5%. (B) Characteristic asympiotic CSD
for sample CCNG-2. CSD simulated as in A, with significance level =
110 5%. (C) Bimodal CSD lting from ial addition of CaCl,
and KOH for sample CCNG-25.

leation of 0.85, followed by supply-controlled growth; significance
level > 20%. (C) Plot of size vs. frequency for a typical log: | profile
of synthetically grown calcite (CCNG-43/3). Galoper simulation used a
critical nucleus size of 3 nm (Table 1 and Fig. 10), and a probability for
nucleation of 0.60; significance level > 20%.




0.30

CCNG-9 A

8

Frequency
o
@

0.10
0.05
0.00 —~
0 5000 10000 15000 20000
Size (nm)
025
CCNG-13 B
020 Lognormal
——®— Moasurod
: 015
c
°
3
g
w o010
005
000
o 20000 40000 60000
Size (nm)

‘0.0 0.5 1.0 1.5 2.0
Diameter/mean dlameter

Fig. 4. (A) Negatively skewed CSD characteristic of Ostwald ripen-
ing (CCNG-9). (B) Negatively skewed CSD characteristic of Ostwald
ripening (CCNG-13). (C) Reduced plot showing ripened samples with
the theoretical, universal, steady-state curve expected for diffusion-

lled Ostwald ripening ding to the LSW theory, with ripened
samples.

020
7-26 A
® Measured
015 — Theoretical lognormal
A = GALOPER simulation
\
\
\
ry \
8
= 0.104
o
°
2
w
0,054
o 10000 ?00'00 30000 10500 SDZDO 80000
Size, nm
030
7-12 B
028 “‘ ® Measured
» — Theoretical lognormal
3 - Galoper simulation
020
>
©
H
S o
o
o
v aod
s
- o W'co 10500 15000 20000 15600 M;W 15000
Size, nm
Cc
7-20
.
® Measured
018 .
N ~— Theoretical lognormal
<% ~-= GALOPER simulation
- ]
o \
H
S oo
-4
3
4
w
0,08
0 80000 20000

Size, nm

Fig. 5 (A) Transitional CSD (samplc 7-26) with a shape that is
i between 1 1 and Ostwald curves. Starting () =
28.2. ¥ significance between experimental data and Galoper simula-
uon 5 lo 10% ®B) Tnuxmonll csn (sample 7-12) with a shape that
g ] and Ostwald curves, Starting {) =
53 7. x* significance between experimental data and Galoper simula-
tion = ll) 10 20% (C) Tmnsmoml CSD (sample 7-20) with a shape
that is i | and Ostwald curves. Starting
0 = 69.2. x* significance between experimental data and Galoper
simulation = > 20%.




————  Lognormal; CCNG-40, omega = 40 V23

> Transitional; 7-20, omega = 69 N
2 149 Ostwald; CONG-13, omega ~ 100 :
O ical O: " dy state @ asymptotic
3 O lognormal #42
o 1.24

0.8 O lognormal #43
e omega
L= _ A lognormal #44

. A Ostwald
£ .
3 0.6
£
— o~
x a
©
E 0.4 o @
> a
e o
s o
[ a
3 02
S
A

e AL, A

00 T T T T T

8.0 8.5 9.0 9.5 10.0 10.5 11.0
o

Size/mean size

Fig. 6. Reduced plot of lognormal, transitional, and Ostwald CSDs showing a progressive shift with increasing () toward.
the theoretical Ostwald steady-state curve.

Fig. 7. Plot of size variance (%) vs. natural log mean size (a) for synthetic calcite.

06

Calcite, SE Colorado
054

© Measured, mean size 6.4 mm

. Measured, mean size 2.6 mm
04 Theoretical lognormal

0.31

Frequency

Size (nm, x 1046)

Fig. 9. Lognomal size distibutions for two natrally occurring calcite samples from southeastern Colorado.

USGS DEN

Fig .B (A) SEM photo F’f synthetic calcite (Baker) illustrating a lognormal CSD with large size variance (B = 0.52).
(B) SEM photo of synthetic calcite (CCNG-19) illustrating an Ostwald CSD with a small size variance (8% = 0.09)



1 methods and conditions for calcite crystal growth experiments.

Table 1. S y of exp
Initial concentration (M)

Sample  CSD Initial vol. Excess (mL) Start Final Calculated
no. shapes (mL)  CaCl, NaHCO, Na,CO, KNO, NaCl CaCl, + KOH pH® pH Duration initial @ Final Q
CCNG2 asymptotic 150 00020  0.002 0.093 15 85 85 100min 20 23
CCNG-30 asymptotic 300 0.0020  0.002 0.093 30 85 84 195min 20 172
CCNG-35 lognormal 300 00020 0.002 0.093 30 88 87 140min 30 24
CCNG-40 lognormal 300  0.0020  0.002 0.093 67 87 84 30min® 40 19
CCNG-42 lognormal 300 00020  0.002 0.093 45 87 85 7hows' 32 21
CCNG-43 lognormal 300  0.0020  0.002 0.093 33 86 85 230 min® 22 18
CCNG-44 lognormal 300 00020  0.002 0.093 32 86 85 Shous 22 17
CCNG-45 lognormal 300 00020 0.002 0,093 64 88 8.5 225min® 41 26
CCNG-9  Ostwald 100 00265 0002 00244 0046 107 100 ~Imin  3090° b
CCNG-13 Ostwald 100 00265 0002 00244 0.046 107 84 l4hours  3090° 2
CCNG-19 Ostwald 400 0.0050 0.0050 050 105 100 40 min 106 67
CCNG-20 Ostwald 200 00265 0002 00244 0046 105 8.1 905hours  3090° 2
CCP-4°  Ostwald 400 00020 0002 0.093 85 85 45hours 5 5
7-26 tramsitional 400 0.0025 00025 0025 025 103 103 53min 282 b
7-12 trensitional 400 0.0038 00050 005 050 105 105 50 min 53.7 ®
7-20 transitional 400 0.0050 00050 005 050 103 103 49 min 69.2 »
CCNG-25 bimodal 00050 0.005 050 99 9.7 105min 514 105

* In lognormal experiments, the time listed is the time from highest pH to final sampling.
® Ca?* concentration data not available for calculation.

¢ Actual value of omega does not exceed ~100 duc to short induction time.

¢ Constant composition experiment using CCNG-19 crystals as seed.

experi
CSD sha L :
ipe Sample no. a I Ciri:eup . ( o sig::‘ﬁ‘eanc:,
. : size (nm) test
oo cong 30 845 064 1,500 ;
e G303 878 068 1,700 Saer Na
e coN .60 052 1,000 2508 Na
CONG-421 ; "
logormal 891 030
QB x @ o amo
962 036 1,500 17810 o
p— ' ' =
logorma g 869 038 2,000 71
lo oG4z 30 049 2,000 1059 =
grormal 038 2,000 -
. — Y 17,853 >20
lognormal - 881 032
ogrormal CONG-44n 9.49 023 Fre] 14300 %
lognormal ' ' o
logmerna NG9 o% 038 270
lo oG4 933 025 2700 12500 o
logorma oo 003 032 2,000 0 S
e jormal cite 772 059 500 Sau e
wald con ; .
Ostwad caws 914 0.10 1,500 9
Ostwald CONG-19 oo 009 Yo a0 %
Ostwald CCNG.20 o 0o 0 = v
Ostwald ccr4 oo oo Zn i ¥
924 0.07 2,000 Toga Na
transitional 7-26 ' “
2z 9.40
lransitional g o
ranstional 112 9.15 013 7000 e Na
- . 965 024 2,000 s Na
_ ; NA
modal CCNG-25 9.93 025 3,000 2312
: NA

NA = not applicable.





