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ABSTRACT 8 

This paper summarizes an approach to crystal growth that was published in parts in a variety 9 

of articles over the course of 25 years by the present author and his colleagues.  Evidence for this 10 

approach, which is confirmed in detail by data in the cited publications and in the figures and 11 

equations in the supplementary material that accompanies this paper, comes mainly from the 12 

shapes of crystal size distributions (CSDs).  Such distributions reveal the growth histories of 13 

natural minerals and synthetic compounds, histories that can be used to make geological 14 

interpretations and to guide industrial syntheses.    15 

CSDs have three fundamental shapes: lognormal, asymptotic and Ostwald.  These shapes 16 

result from different degrees of supersaturation near the time of nucleation.  The first two 17 

distribution shapes form according to the Law of Proportionate Effect (LPE) at moderate 18 

supersaturation, and the latter rare distribution forms by Ostwald ripening at large 19 

supersaturation.  Initially, the first two distributions have mean diameters of up to tens of 20 

nanometers and grow by surface-limited growth kinetics.  The slow step in this reaction is 21 

the incorporation of nanoparticles (bits of crystal or adparticles) onto the crystal surface.  As 22 
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the crystals become larger their demand for nutrients, as calculated by the LPE, increases 23 

exponentially.  Then the slow step in the reaction changes to the rate of transfer of nutrients 24 

to the crystal (supply- or transport-limited growth).  Crystal diameters often grow the most 25 

during this latter stage, and the initial CSD shapes that originally formed during surface-26 

limited growth are retained and scaled up proportionately.   27 

Proportionate growth during the supply-limited stage can be simulated approximately by 28 

multiplying the diameter of each crystal in a distribution by a constant.  Crystals also can 29 

grow by a constant rate law in which a constant length is added to each crystal diameter in 30 

the distribution.  This rare process causes the original CSD to narrow so that its initial shape 31 

is not preserved.  The growth law that prevails, either proportionate or constant, is 32 

determined by the manner in which nutrients are supplied to the crystal.  Supply is by 33 

advective flow during proportionate growth, with the nutrient solution moving with respect 34 

to the crystals.  Constant growth relies on the random diffusion of nutrients through a 35 

quiescent solution.  Proportionate growth is by far the most common growth law, and 36 

therefore nutrient supply by diffusion alone during crystal growth is uncommon.   37 

Distributions formed by Oswald ripening, and those formed by other rare processes, also 38 

are discussed.  During Ostwald ripening, nucleation caused by mixing reactants at large 39 

supersaturation forms crystals that are extremely fine and numerous.  The larger crystals 40 

grow at the expense of the finer, less stable crystals, thereby forming, on completion, the 41 

universal steady-state CSD shape predicted by the Lifshitz-Slyozov-Wagner (LSW) theory.  42 

This unique CSD shape, as well as other rare shapes, then are scaled up to larger sizes by 43 

supply-limited proportionate growth. 44 
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GROWTH OF LOGNORMAL CRYSTAL SIZE DISTRIBUTIONS 48 

Minerals most commonly have lognormal crystal size distributions (CSDs; Figs. 1, 15 and 17 49 

in Eberl et al. 1998; Fig. 2 in Kile and Eberl 1999; Figs. 3 and 9 in Kile et al. 2000; Fig. 5b in 50 

Bove et al. 2002; Figs. 1 and 3 in Eberl et al. 2002a; Fig 3 in Kile and Eberl 2003; Figs. 5 and 7 51 

in Badino et al. 2009; Fig. 3 in Eberl 2022).  A lognormal distribution (Fig. 1) is described by the 52 

equation: 53 

𝑔ሺ𝑋ሻ ൌ ቂ
ଵ

௑ఉ√ଶగ
ቃ 𝑒𝑥𝑝 ቄെ ቀ

ଵ

ଶఉమ
ቁ ሾ𝑙𝑛ሺ𝑋ሻ െ 𝛼ሿଶቅ ,           (1) 54 

where g(X) is the continuous theoretical frequency distribution of variable X, where, in this case, 55 

the Xs are crystal diameters that are parallel to a given crystallographic direction.  Equation 1 can 56 

be solved if two parameters are known:  and  are the mean and variance of the distribution of 57 

the natural logs of X.  The original scale units for  need to be specified because it is a log.   58 

indicates the breadth of a distribution for a given .  59 

Iteration of the Law of Proportionate Effect (LPE) is the simple mathematical procedure that 60 

generates the lognormal distribution (Koch 1966) and thereby simulates crystal growth (Eberl et 61 

al. 2000):   62 

𝑋𝑗൅1 ൌ 𝑋𝑗 ൅ 𝜀𝑗𝑋𝑗 ,    (2) 63 

where Xj is the diameter of an individual crystal, jis a random number that varies independently 64 

for each crystal between 0 and 1, and j denotes the calculation cycle for the LPE iteration.  65 

Starting, for example, with 1000 crystals having a diameter of 1 nm, Equation 2 is solved  j times 66 
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for each crystal by substituting Xj+1 back into the equation for Xj,.  The distribution evolves from 67 

an even distribution into a lognormal one when the crystal sizes resulting from the LPE 68 

calculation are grouped into equally spaced bin sizes, using the bin centers as X.  For example, 69 

sizes calculated by the LPE that range between 2.5 and 3.5 nm are grouped as 3 nm, and the 70 

number of crystals in the bin is noted.  Continued iteration of the LPE leads to an increase in the 71 

mean size and variance of the distribution (Fig. 2 in Eberl et al. 1998).  72 

The results of the LPE calculation are verified as being lognormal by calculating the 73 

parameters and  from the numbers of crystals in the binned LPE sizes, where 𝛼 ൌ74 

∑𝑙𝑛ሺ𝑋ሻ𝑓ሺ𝑋ሻ, and 𝛽ଶ ൌ ∑ሾ𝑙𝑛ሺ𝑋ሻ െ 𝛼ሿଶ𝑓ሺ𝑋ሻ, where f(X) is the frequencies of binned crystal 75 

sizes X.  The two parameters are entered into Equation 1, and the theoretical lognormal number 76 

of crystals for each binned size is calculated from Equation 1 by multiplying a normalized g(X) 77 

times the total number of crystals counted, in this case 1000.  This distribution is compared 78 

statistically (using the Chi-square test, or the Kolmogorov-Smirnov test for sparse data) to the 79 

distribution of crystals calculated from the LPE to verify the lognormal shape.  The same general 80 

procedure is used to test measured distributions for log-normality. 81 

The LPE is assumed to be the central equation that describes relative crystal growth rates in 82 

natural and synthetic systems because it duplicates the experimentally measured lognormal 83 

shapes of natural and synthetic CSDs (Eberl et al. 1998; Eberl et al. 2002a).  The LPE models 84 

crystal growth as a stochastic process, as opposed to being deterministic.  This means that 85 

although crystal growth has a random component (), this randomness follows a rule (the LPE).  86 

Therefore, although the relative growth rates of individual crystals can not be calculated 87 

precisely, the distribution shape calculated by iterating Equation 2 is predictably lognormal.   88 
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If the LPE is taken literally, it offers other insights into the growth process.  The growth 89 

particles (termed nanoparticles, adparticles or colloids) that attach themselves to a crystal’s 90 

surface are a random fraction of a crystal’s initial size (jXj) rather than being individual atoms, 91 

ions or monomers.  Such crystallization by oriented particle attachment is supported by electron 92 

micrographs that show diverse types of nanoparticles in various stages of attachment (e.g., Fig. 93 

12 in Ivanov et. al. 2014; Fig. 2 in De Yoreo et. al. 2015).  Atom by atom or molecule by 94 

molecule growth would not produce lognormal CSDs.  Also, according to the LPE, growth by 95 

the coalescence of nanoparticles occurs in discrete cycles (j) rather than continuously.    96 

The LPE also indicates that the relative rate of crystal growth is a function of the linear 97 

dimensions of the crystal (i.e., of its diameter X), rather than of its surface area or volume.  In the 98 

older literature this type of growth was termed size dependent growth; but, more specifically, it 99 

is now termed proportionate growth.  Whereas previously such growth was considered to be a 100 

rarity, proportionate growth is in fact the most common growth mechanism (Eberl et al. 1998).  101 

The random variable in the LPE also clarifies crystal growth dispersion, whereby individual 102 

crystals, all initially of the same size, and each subjected to identical growth environments, can 103 

grow at different rates (see Eberl et al. 1998, p. 503, for pertinent references). 104 

The LPE (Equation 2) is not the complete story, because the predicted growth rate can not be 105 

sustained.  Unconstrained iteration of the LPE leads to exponential growth, and eventually to 106 

very large adparticles and distribution variances (Figs. 2 and 3 in Eberl et al. 1998).  However, 107 

Equation 2 applies only to the initial stages of growth, immediately during and after nucleation, 108 

when calculation of the growth rate is limited only by the incorporation of nanoparticles (jXj) 109 

onto the crystal surface.  It is a rate that prevails at distribution mean sizes that range up to tens 110 

of nanometers (as indicated by Fig. 2 in Eberl et al. 1998).  At larger sizes calculation of the 111 
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growth rate is limited by the rate of supply of material to the crystal, rather than by incorporation 112 

onto the surface.  Equation 2 is modified for supply-limited growth to account for a limited 113 

volume of nutrients carried to the surfaces during each calculation cycle (j) of the LPE (for 114 

details concerning this volume-limiting calculation see Equation 8 in Eberl et al. 1998, or 115 

Equation 2 in Kile et al. 2000).  This modification of the LPE leads to the calculation of 116 

adparticles that are limited in size, that are small compared to the size of the growing crystal, and 117 

that preserve 2 during growth.  Thus surface-limited growth initially gives the distribution a 118 

lognormal shape, whereas subsequent supply-limited growth preserves this shape (meaning that 119 

 remains constant) as the mean size () increases (see Fig. 6 in Eberl et. al. 1998; Fig. 7 and 120 

Table 2 for continuous growth experiments in Kile et al. 2000; see Fig. 3 for a similar 121 

experiment in Eberl et al. 2002a).   122 

The growth of a distribution during supply-limited growth can be duplicated approximately by 123 

multiplying the crystal sizes in the distribution by a constant (k, which is a constant of 124 

proportionality or scale factor).  Equation 2 then reduces to  X(j+1) = kXj, where the constant k 125 

substitutes for the random variable (1 + j).  This procedure increases the distribution’s mean size 126 

while keeping its variance constant.  However, this calculation, although convenient, is not 127 

completely satisfactory because multiplication by k does not express the random tendency for 128 

growth found at small diameters.  Multiplication by k causes the growth rate of individual 129 

crystals to be predictable.  A more realistic calculation applies the volume adjusted growth limit 130 

for each iteration of the LPE, as was discussed above.  The shape of the resulting distribution is 131 

the same for either calculation, but the sizes of individual crystals differ because the latter 132 

calculation contains a random number rather than a constant (Fig. 2B in Eberl et al. 2002a).   133 
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CSDs that have very different mean sizes, ranging from nanometers (e.g., illite crystal 134 

thicknesses; see Fig. 5b in Bove et al. 2002) to meters (giant gypsum crystals in Naica’s Cueva 135 

de los Cristales that range to >11 m long; see Figs. 5 and 7 in Badino 2009), have lognormal 136 

shapes with similar variances (e.g., Fig. 16 in Eberl et al. 1998 and Fig. 7 in Kile et al. 2000).  137 

Such shapes most likely result from the proportionate growth of lognormal distributions that 138 

were formed according to LPE growth early in crystallization.  Other growth mechanisms, such 139 

as ripening, constant growth or entirely random growth, would quickly destroy the lognormal 140 

shape and alter the variances (Fig. 8 in Eberl et al. 1998; Figs. 2 and 3 in Eberl et al. 2002a).  141 

Therefore, control of the initial CSD shape during and immediately after nucleation is key to 142 

controlling the shape of the final CSD because the earlier shape is scaled up during supply-143 

limited growth. 144 

FORMATION OF CSD SHAPES OTHER THAN LOGNORMAL 145 

Diverse conditions near the time of nucleation can lead to a variety of CSD shapes.  These 146 

shapes include the commonly found asymptotic CSD, and the rare Ostwald, transitional, non-147 

Ostwald and multimodal CSDs.   148 

Nucleation occurs in supersaturated solutions when crystals appear that have radii (r) greater 149 

than that of the critical radius (r*).  If r >r* crystals can nucleate and grow.  If r<r* they dissolve.  150 

A crystal having a size equal to r* is in equilibrium with the solution, and neither grows nor 151 

dissolves.  A solution needs to be supersaturated, rather than simply saturated, to form growing 152 

nuclei because the saturation state for a mineral (i.e., its solubility product) is determined for the 153 

infinitely large crystal, and, therefore, does not address an increase in solubility related to an 154 

increase in specific surface energy for finer crystals.  Furthermore, concentrations measured for a 155 

bulk solution do not address inhomogeneities present in a solution at the nanometer scale 156 
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(particularly upon mixing), further complicating the calculation of  r*.  In addition, the value for 157 

r* may increase during nucleation and growth if the saturation level falls as crystallization 158 

proceeds. 159 

Experiments with calcite nucleation and growth and with computer simulation (Eberl et al. 160 

1998; Kile et al. 2000; Eberl et al. 2000) indicate that variations in nucleation history can lead to 161 

CSD shapes that are not lognormal.  For example, if nucleation occurs over an extended time at a 162 

constant or accelerating nucleation rate while previously formed nuclei grow according to the 163 

LPE, an asymptotic distribution (Fig. 1) results in which the smallest size category has the 164 

largest frequency (see also: Table 2 and Figs. 4 and 13 in Eberl et al. 1998; Fig. 2 in Kile et al. 165 

2000).  After an initial period of nucleation and growth, this shape can be preserved ( is held 166 

constant) and scaled up by subsequent supply-limited proportionate growth, as was discussed.  167 

This commonly occurring asymptotic shape can be described approximately using the lognormal 168 

equation (Equation 1), but it doesn’t often pass the statistical test.  It can readily evolve into a 169 

lognormal shape if nucleation ceases while surface-limited growth continues (Figs. 6 and 7 in 170 

Bove et al. 2002). 171 

A second complication in CSD shape is related to nucleation that occurs when concentrated 172 

solutions are suddenly mixed.  Such an event, which is rare in nature, can lead to the universal 173 

steady state shape that is expected for supply-limited Ostwald ripening, a distribution that is 174 

skewed opposite to that of lognormal (Fig. 1).  The equation for this shape was derived 175 

independently by Lifshitz and Slyozov (1961) and by Wagner (1961) in what is known as the 176 

LSW theory.  As was similarly discussed for the lognormal distribution, the LSW equation that 177 

describes the Ostwald distribution (Equation A20 in Eberl et al. 1998) differs from the simple 178 

equation that is iterated to simulate the distribution (Equation 10 in Eberl et al. 1998, presented 179 
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by Markworth 1970).  Experiments and calculations (Kile et al. 2000) have shown that this 180 

unique universal steady-state shape forms initially at very large levels of supersaturation, where 181 

abundant and extremely fine nuclei precipitate.  A large contrast in specific surface areas among 182 

these particles leads to growth of the larger nuclei (r>r*) at the expense of the dissolution or the 183 

incorporation of the smaller, less stable nuclei (r<r*) according to the Ostwald ripening 184 

mechanism, with r* approximated by the mean radius. 185 

According to LSW theory, the CSD for any mineral that has undergone sufficient ripening will 186 

have the identical negatively skewed distribution shape when the data are plotted on reduced 187 

axes (size/mean size vs. frequency/maximum frequency), a shape that is independent from the 188 

initial, pre-ripened CSD shape, and that has a cutoff at large sizes (Fig. 1; see also Fig. 4 in Kile 189 

et al. 2000).  The coincidence of CSDs on a reduced plot means that the variances are equal.  The 190 

Ostwald shape, which has a constant and small variance of about 0.06, is scaled up by supply-191 

limited growth, which leads to an increase in mean size while the variance is preserved.  The 192 

resulting crystals all have nearly the same size (Fig. 8 in Kile et al. 2000). 193 

The Ostwald CSD forms initially at large supersaturation, whereas the lognormal shape forms 194 

initially at smaller supersaturation.  Nuclei precipitated at smaller saturation are larger and fewer, 195 

and therefore are less subject to ripening.  Calcite crystallization experiments (Table 1 and Fig. 6 196 

in Kile et al. 2000) showed that lognormal CSDs formed at initial omegas ranging from 22 to 40, 197 

where omega is defined as the ion activity product of the solution divided by the mineral 198 

solubility product.  Therefore a solution with an omega of one is at equilibrium with a crystal 199 

that has negligible specific surface energy.  However, the Ostwald CSD appeared at initial 200 

omegas >100, where nuclei formed having very large specific surface energies.  Between these 201 

values (28 to 69) CSDs crystallized that had transitional shapes between lognormal and Ostwald, 202 



 

  Page 10 of 19 

indicating incomplete ripening prior to the preservation of their shapes by supply-limited 203 

proportionate growth (Fig. 5 in Kile et al. 2000). 204 

The Ostwald and transitional CSD shapes were readily crystallized in the laboratory where 205 

they formed for calcite by the rapid mixing of concentrated calcium and carbonate solutions 206 

(Kile et al. 2000).  However, such environmental conditions are rare in nature.  The Ostwald 207 

shape has been found for garnets in metamorphic rock by Miyazaki (1991).  Carlson (1999) 208 

objected to this interpretation because the surface energy driving force for the ripening of such 209 

large porphyroblasts would be negligible.  Carlson correctly reasoned that ripening should not be 210 

effective for crystals larger than a fraction of a µm.  However, as was discussed, the Oswald 211 

distributions likely formed from extremely small crystals during and immediately after 212 

nucleation.  These shapes then were preserved for the garnets during supply-limited 213 

proportionate growth.  214 

An entire sequence of CSD shapes, from Ostwald to transitional to lognormal, has been found 215 

on Mars for hematite concretions (Martian blueberries; Figs. 2 and 3 in Eberl 2022).  Concretion 216 

diameters were measured from photographs taken during a traverse by the Opportunity rover.  217 

This set of distribution shapes indicates differences in initial relative levels of groundwater 218 

supersaturation with respect to hematite solubility (see Fig. 6 in Kile et al. 2000 for analogous 219 

calcite experiments).  Concretions likely precipitated from hydrothermal solutions that were 220 

generated suddenly by bolide impact on groundwater or permafrost (Eberl 2022).  Iron for the 221 

hematite may have come from the bolide. 222 

There is another kind of ripening, other than Ostwald, during which crystals dissolve 223 

randomly with respect to size, thereby supplying nutrients for other crystals to grow.  During 224 

such supply-limited random ripening (also termed non-Ostwald ripening) something other than 225 
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specific surface area influences solubility.  For example, some crystals could be less stable due to 226 

lattice strain, polytype, or because they are located in hotspots.  Assuming that the less stable 227 

crystals disappear completely, the initial CSD shape () remains constant as mean size increases 228 

(Fig.11 in Eberl et al. 1998), thereby mimicking supply-limited growth; but this process differs 229 

because it occurs in a closed system (here defined as a system in which nutrients for growth 230 

come from the dissolution of the crystals themselves), and because a large amount of material 231 

passes through solution for a small increase in mean size.  It is not known if random ripening is 232 

an important growth mechanism in nature because its CSD does not have a distinctive shape of 233 

its own.  Evidence for such ripening has been noted experimentally in isotopic studies of the 234 

growth of Fisher calcite crystals treated hydrothermally in a closed system at 500° C for various 235 

lengths of time (Figs. 18 and 19 in Eberl et al. 1998). 236 

Mineral CSDs may have other shapes.  For example, samples that have undergone several 237 

nucleation events can be composed of multiple lognormal distributions (Fig. 2C in Kile et al. 238 

2000).  These distributions can be decomposed into their component lognormal CSDs by fitting 239 

them with appropriate means and variances using Equation 1.  In addition, CSD shapes that have 240 

undergone mixing or winnowing by sediment transportation can be recognized by the relation 241 

between  and , the values for which may lie outside a field expected for in situ crystal 242 

growth, as was demonstrated for the clay mineral illite in Yukon River sediments (Fig. 18B in 243 

Eberl 2004).  In a like manner, the reaction path for illite crystals can be ascertained from their 244 

thickness distribution shapes by plotting distribution parameters onto an  vs.  diagram, as was 245 

shown for illite crystals from the San Juan Mountains, Colorado (Figs. 6 and 7 in Bove et al. 246 

2002). 247 

ORIGIN OF PROPORTIONATE GROWTH 248 
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CSDs may increase in mean size by proportionate growth or by constant growth (Eberl et al. 249 

2002a).  The latter growth law, which is expressed X(j+1) = Xj+ k, often is assumed in modeling 250 

(e.g., population balance modeling; McCabe’s ΔL law; JMAK equation), but rarely is found in 251 

nature.  Growth experiments with centimeter size K-alum crystals having a variety of initial sizes 252 

indicate that, for such large crystals, proportionate growth occurs in stirred systems, whereas 253 

constant growth occurs in systems that are not stirred (Figs. 1 and 2 in Kile and Eberl 2003).  254 

Thus, the advective supply of nutrients to crystals favors proportionate growth, whereas diffusion 255 

in still solutions leads to constant growth.  The reason for this behavior is attributed to a nutrient 256 

depleted boundary layer in solution next to a crystal. This layer is progressively thinned by the 257 

greater velocity necessary for a solution to contour around larger crystals, thereby tending to 258 

increase growth rate based on crystal diameter, as has been modeled by Stefan-Kharicha et al. 259 

(2020).  260 

A contrary result was found during the experimental nucleation and growth of fine (28 µm 261 

mean) calcite crystals (Fig. 3 in Kile and Eberl 2003).  They exhibited proportionate growth by 262 

retaining a lognormal CSD for both stirred and unstirred systems, an effect attributed to to their 263 

small size and to solution movement during initial mixing or to visually unobserved convection 264 

and/or Brownian motion (Kile the al. 2000).  However, calcite CSDs did show the narrowing 265 

effect expected for constant growth when grown from concentrated solutions in a silica gel-filled 266 

column (Kile and Eberl 2003).  Silica gel was used to minimize advection and increase nutrient 267 

supply by diffusion.  These calcite crystals grew to a mean diameter of about 310 µm, and had a 268 

very small variance of 0.02.  An initial Ostwald distribution shape and variance ( = 0.07) was 269 

recovered by subtracting a constant 140 µm from each crystal diameter, indicating that constant 270 
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growth began to alter an Ostwald distribution shape at a mean diameter of about 170 µm (Fig. 4c 271 

in Kile and Eberl 2003).  272 

Two examples of constant growth were discovered in natural flow-restricted environments 273 

(Kile et al. 2000).  Calcite CSDs within a molar tooth structure (Proterozoic Belt Supergroup, 274 

Western Montana, USA), having a mean size of 13 µm and a variance of 0.02, started constant 275 

growth at 7.5 µm from an initial Ostwald distribution shape (Fig. 5 in Kile and Eberl 2003).  276 

Possible greigite crystals, found in a diatom test in Pyramid Lake, NV, also may have undergone 277 

some constant growth that deformed an initial Ostwald CSD (Fig. 6 in Kile and Eberl 2003). 278 

There may be a practical application for these observations.  If one wants to create a CSD 279 

containing uniform sizes (for example, a non-scoring abrasive or a congruently dissolving drug), 280 

one could encourage the initial formation of an Ostwald CSD by nucleation at large 281 

supersaturation, followed by constant growth in an immobile solution which would further 282 

decrease variance (Eberl et al. 2002b).  It may also be possible to encourage a narrowing of  283 

CSDs through rapid stirring or flushing, whereby the flow of solution around crystals is fast 284 

enough to be minimally affected by crystal diameters. 285 

IMPLICATIONS 286 

The LPE, and the related volume constrained LPE, offer a concise and simple explanation for 287 

some of the baffling features concerning crystal growth, including size dependent growth, crystal 288 

growth dispersion, the common lognormal shape, and the narrow range of variance for each of 289 

the three basic types of CSDs (Fig. 7 in Kile et al. 2000).  The equation also indicates that growth 290 

depends on the incorporation of nanoparticles rather than single atoms, a prediction that accords 291 

with electron micrograph evidence mentioned previously. 292 
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A random number lies at the heart of this equation; but what are the consequences of 293 

accepting randomness?  As was discussed, randomness means that the growth rate of individual 294 

crystals can not be calculated precisely, but only the distribution shape can be predicted.  In an 295 

analogy to crystal growth, randomness also appears in the foundations of quantum mechanics.  296 

The double slit experiment indicates that one can not calculate (based on the Schrödinger 297 

equation) the precise location of an electron fired through double slits onto a fluorescent screen, 298 

but one can only predict the shape of the distribution of a large number of electrons striking the 299 

screen.  Likewise, one can not predict the moment for the radioactive decay of an individual 300 

atom, but only the decay rate for a large group of atoms.  Stochastic models also are used to 301 

model chemical reactions (Gillespie 2007).  In fact, many natural systems likely have such built-302 

in randomness (Mann 1970), especially if they express a lognormal distribution.  The presence of 303 

a random component means that experimental results are not precisely reproducible no matter 304 

how much care is taken.  However, on the positive side, the presence of randomness frees us 305 

from a completely deterministic world view.  306 
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 406 

Figure 1.  The three fundamental shapes for crystal size distributions.  All have been produced in 407 

synthesis experiments, by calculation, and have been found in nature.  This figure is from 408 

Kile et al. (2000). 409 
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