Quartz texture and chemical composition fingerprint ore-forming fluid evolution at Bilihe porphyry Au deposit, NE China

Jingxin Hong¹, ², Degao Zhai¹*, Manuel Keith²

¹State Key Laboratory of Geological Processes and Mineral Resources, and School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China

²GeoZentrum Nordbayern, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany

*E-mail: dgzhai@cugb.edu.cn

Revised submission to: American Mineralogist

With 11 Figures, 1 Table, and 4 Supplemental Tables

24-Aug-2023

Revision 3

Word Count: 11570
ABSTRACT

Quartz is widely distributed in various magmatic-hydrothermal systems and shows variable textures and trace element contents in response to multiple generations, enabling this mineral phase to serve as a robust tracer for monitoring hydrothermal fluid evolution. This study highlights that integrated high-resolution SEM-CL textures and trace element data of quartz can be used to constrain physicochemical fluid conditions and trace the genesis of quartz in porphyry ore-forming systems. The Bilihe deposit is a Au-only porphyry deposit located in the Central Asian orogenic belt, NE China. Four quartz generations were distinguished following a temporal sequence from early-stage dendritic quartz, unidirectional solidification textured quartz (UST quartz), gray banded vein quartz (BQ), to late-stage white calcite vein quartz (CQ), with the Au precipitation being mostly related to dendritic quartz, UST quartz, and BQ. The well-preserved dendritic quartz with sector-zoned CL intensities and euhedral oscillatory growth zones crystallized rapidly during the late magmatic stage. The relatively low Al contents of dendritic quartz were interpreted to be related to accompanied feldspar or mica crystallization, while the high Ti contents indicate high crystallization temperatures (~750 °C). The comb-layered UST quartz displays heterogeneous patchy luminescence with weak zoning, hosts coeval melt and fluid inclusions, and retains the chemical characteristics of magmatic dendritic quartz. High Ti and low Al contents of UST quartz suggest a formation at relatively high temperatures (~700 °C) and high pH conditions. Three sub-types can be defined for
hydrothermal BQ (BQ1, BQ2, and BQ3) based on contrasting CL features and trace element contents. The Al contents increase from BQ1 to BQ2 followed by a drop in BQ3, corresponding to an initial decrease and subsequent increase in fluid acidity. Temperature estimates of BQ decrease from BQ1 (635 °C) to BQ3 (575 °C), which may, however, be disturbed by high growth rates and/or high TiO₂ activity. The CQ typically displays a CL-bright core and CL-dark rim with oscillating CL intensities, and is characterized by the lowest Ti and highest Al, Li, and Sb contents compared to the other quartz types, which suggests a deposition from more acidic and lower temperature fluids (~250 °C). Trace element patterns indicate that a coupled Si⁴⁺ ↔ (Al³⁺) + (K⁺) element exchange vector is applied for dendritic quartz, UST quartz, and BQ. By contrast, charge-compensated cation substitution of Si⁴⁺ ↔ (Al³⁺, Sb³⁺) + (Li⁺, Rb⁺) is favored for CQ. The comparison with compiled trace element data of quartz from other porphyry Au, Cu, and Mo deposits worldwide suggests that Ti, Al, Li, K, and Ge concentrations, as well as Al/Ti and Ge/Ti ratios, have the potential to discriminate metal fertility of porphyry mineralization.

Keywords: Bilihe; porphyry Au deposit; quartz; SEM-CL texture; trace elements; fluid evolution

INTRODUCTION

Quartz is one of the most ubiquitous gangue minerals in veins and veinlets of
magmatic-hydrothermal ore deposits. In porphyry-type deposits, stockwork veins commonly constitute multiple quartz generations, which are characterized by typical dissolution and juxtaposition textures (e.g., Rusk and Reed 2002; Bennett 2014; Pan et al. 2019). However, accurately recognizing the internal textures or temporal relationships of quartz via naked eyes or traditional petrographic techniques is difficult (e.g., Götze et al. 2004; Frelinger et al. 2015; Qiu et al. 2021). Scanning electron microscope cathodoluminescence (SEM-CL) is an effective tool to reveal the defect structure of minerals, enable the visualization of the homogeneity or heterogeneity of quartz crystals, distinguish different quartz generations, and deconvolute the sequence of mineralizing events (e.g., Rusk and Reed 2002; Götze et al. 2004, 2012, 2021; Rusk et al. 2008; Maydagán et al. 2015). Additionally, trace element analysis by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) can provide important information about trace element concentration and incorporation in different quartz generations (e.g., Tanner et al. 2013; Maydagán et al. 2015; Breiter et al. 2017; Mao et al. 2017). Accordingly, the combination of SEM-CL and LA-ICP-MS analysis is instructive for constraining various physicochemical fluid parameters, such as temperature, pressure, pH, and initial melt/fluid composition, as well as tracking fluid pathways, fluid-rock reactions, fluid evolution, and mineral precipitation in magmatic-hydrothermal systems (Rusk and Reed 2002; Götze et al. 2004; Rusk et al. 2008; Müller et al. 2010; Tanner et al. 2013; Maydagán et al. 2015; Breiter et al. 2017; Gao et al. 2022; Raimbourg et al. 2022). Most
studies devoted to CL textures and trace element chemistry of quartz in porphyry deposits have focused on the common Cu/Mo sub-types (e.g., Redmond et al. 2004; Landtwing and Pettke 2005; Rusk et al. 2006, 2008; Rusk 2012; Müller et al. 2010; Tanner et al. 2013; Maydagán et al. 2015; Mao et al. 2017; Rottier and Casanova 2020; Gao et al. 2022). However, Au-only porphyry deposits are rarely developed globally (e.g., Sillitoe 2010; Yang and Cooke 2019), and as such the processes that lead to variations in the texture and trace element composition of quartz in Au-only porphyries are less well understood (Yang et al. 2015; Huang et al. 2021; Qiao et al. 2022).

The Bilihe porphyry Au-only deposit in NE China is such an example, where multiple quartz generations are developed that are closely associated with the Au deposition. Yang et al. (2015) proposed that most of the Au mineralization at Bilihe is of magmatic origin, as supported by petrographic observations on dendritic and comb-layered quartz. Huang et al. (2020) proposed that the unidirectional solidification textured quartz (UST quartz) represents the most fertile unit of Au deposition. Qiao et al. (2022) combined textural observations with fluid inclusions and in-situ oxygen isotope analysis of UST and gray banded vein quartz to investigate the ore-forming conditions of two distinct Au precipitation events. However, the dynamics and kinetics of the complex growth histories of quartz in a relative chronological order are still poorly understood, but provide important new insights to better constrain the Au deposition processes in the Bilihe Au-only porphyry and similar deposits worldwide.
To address the above issues, we performed systematic SEM-CL measurements followed by in-situ trace element analysis of the different quartz generations, as revealed by distinct CL intensities in quartz from the magmatic to hydrothermal stages at Bilihe. On this basis, we constrained the physiochemical conditions and evolutionary history of the mineralizing fluids that controlled the Au deposition.

REGIONAL GEOLOGY

The Central Asian orogenic belt (CAOB) is a Phanerozoic accretionary orogen located between the Siberian and North China Craton (NCC) (Fig. 1a). The belt consists of four main blocks (Fig.1b), including the Erguna, the Xing’an-Airgin Su, the Songliao-Hunshandake, and the Jiamusi blocks, among which the first three are commonly referred as the Xing’an-Mongolian orogenic belt (XMOB; Xu et al. 2014, 2015). These four blocks are separated by four NE-trending sutures, namely the Xinlin-Xiguitu, the Xilinhot-Heihe, the Mudanjian, and the Ondor Sum-Yongji sutures (Fig. 1b; Xu et al. 2014, 2015). Tectonically, the Bilihe porphyry Au-only deposit is hosted by the EW-trending middle Ordovician to early Silurian Bainaimiao arc (Yang et al. 2016), which is located along the northern margin of the NCC and to the south of the Solonker suture zone (Fig. 1c). It is debated whether the Bainaimiao arc was an island arc (Zhang et al. 2014) or a subduction-related continental margin arc (Xiao et al. 2003; Yang et al. 2016). The arc consists of early Paleozoic calc-alkaline volcanic sequences of
basaltic, andesitic, and rhyolitic lavas; and an intrusive complex of quartz diorite, tonalite, and minor gabbro, granodiorite, and granite (Tang and Yan 1993; Nie and Bjørlykke 1999; Yang et al. 2016).

The northern margin of the NCC records a complicated series of geodynamic events (e.g., Xiao et al. 2003; Zhang et al. 2010; Wu et al. 2011; Xu B et al. 2013; Xu W et al. 2013; Wilde 2015), with the formation of numerous different types of ore deposits during subsequent stages of tectonic evolution in the region (Zhao et al. 2021a, 2023; Hong et al. 2021; Zhai et al. 2019, 2020). Widespread Permian intrusive rocks include monzonite, granite porphyry, granodiorite (280 Ma; Zhang et al. 2020), biotite adamellite (274-268 Ma; Xiao et al. 2012), and minor gabbro (279 Ma; Liu et al. 2019). Most of them relate to the I-type series with subordinate A-type intrusions, resulting from the southward subduction of the Paleo-Asian oceanic plate underneath the northern margin of the NCC (e.g., Wu et al. 2011; Liu et al. 2013, 2019; Yang et al. 2016; Zhao et al. 2021b).

Available geochronological data show that the porphyry Cu-Au deposits and lode Au deposits hosted in or close to the Bainaimiao arc mainly formed during the late Paleozoic (Fig. 1c), which includes the Bilihe porphyry Au-only deposit (ca. 269 Ma, Zhu et al. 2018) and the Hadamiao Cu-Au deposit (270-266 Ma, Wang et al. 2019). These similar ages reveal that within the constraints of the current geochronology, the ages of Au ore formation and spatially related magmatic activity overlap.
ORE DEPOSIT GEOLOGY

Outcrops in the Bilihe ore district are mainly composed of Permian volcano-sedimentary sequences of basalt, basaltic andesite, rhyolite, and tuff interbedded with minor tuffaceous sandstone, which are covered by Tertiary red mudstone and Quaternary sediments. The mafic to felsic volcanic rocks are of Permian age (andesitic rocks, 281 ± 4 Ma, Qing et al. 2012; rhyolite, 274 ± 3 Ma, Yang et al. 2016) are exposed along an east-northeast trending belt bound by regional faults (Fig. 2a). The faults are predominantly NW-striking and subordinately NE-striking within the ore district (Ge et al. 2009).

The Au ores of the Bilihe deposit are subdivided into the Center I and II orebodies (Fig. 2a). The Center I orebody is dominated by quartz vein-type mineralization and the deposit contains an ore resource of 3.1 t of Au at 6.2 g/t Au, which is associated with a narrow NW-trending quartz diorite dike (Ge et al. 2009). The Center II orebody is located ~1 km to the SW of the Center I orebody (Fig. 2b), and is covered by pre-ore rock units of early Permian andesite, tuff, and Cenozoic sedimentary rocks (Liu and Nie 2015). It is spatially and temporally related to a buried and elongated tongue-shaped intrusion, possibly referring to multiple intrusive events with geochemical compositions varying from diorite in the lower part to granite in the upper part (Yang et al. 2016; Zhu et al. 2018). The Center II orebody is characterized by porphyry-type mineralization and contains >25 t of Au at an average grade of 2.7 g/t Au (Huang et al. 2020). No other ore
metals (such as Cu, Mo, Ag) were found in economic grades (Ge et al. 2009). The high-grade (>3 g/t) Au ores are dominantly hosted in the granodiorite porphyry (Fig. 2b), where numerous dendritic quartz phenocrysts and auriferous quartz veins occur (Yang et al. 2015). The granodiorite porphyry shows metaluminous high-K calc-alkaline characteristics at 62.2 to 64.4 wt% SiO₂ (Wang et al. 2019).

Hydrothermal alteration zones are well developed in the Center II orebody. From deep to shallow level, the alteration dominantly followed a sequence of potassic (K-feldspar + biotite), phyllic (sericite + quartz + pyrite), intermediate argillic (illite + smectite + carbonate + tourmaline), and propylitic (chlorite + epidote) alteration, superimposed by later carbonatization and silicification (quartz + carbonate ± pyrite ± fluorite) zones (e.g., Li et al. 2021). Pervasive yellow-green intermediate argillic and propylitic alteration have intensely overprinted the early potassic alteration, which is only partly preserved in deeper levels of the porphyry system (Zhu et al. 2018). Tourmaline alteration is widely developed in and surrounding the intrusion, which extends for some meters in the adjacent wall rocks (Li et al. 2021). As a sulfide-poor deposit, the sulfide and sulfosalt minerals at Bilihe have a low modal abundance of <2 vol.% and show a simple mineralogical composition, predominantly including pyrite, chalcopyrite, and molybdenite, with minor pyrrhotite, and tetrahedrite-tennantite. Oxides are mainly composed of magnetite, ilmenite, and minor rutile, which account for ~5 vol% (Yang et al. 2015). As the main Au-hosting mineral, quartz is the most important gangue mineral in
the Bilihe Au-only porphyry deposit. Mineral thermobarometers indicate magma ascent
or decompression (from ~ 3-5 kbar to ~ 0.5-1.8 kbar) from a deeper reservoir (~6.5 km)
to the final emplacement depth (~2 km) associated with the ore formation (Huang et al.
2020). Fluid inclusions yielded variable pressure estimates ranging from 0.08 to 0.30 kbar
for the auriferous quartz veins, suggesting a vein formation at transitional lithostatic to
hydrostatic pressure conditions (Qiao et al. 2022).

SAMPLES AND ANALYTICAL METHODS

The quartz-bearing porphyry vein samples were collected from the open pit and
from drill cores of the Center II orebody at Bilihe. Polished thin sections were used for
petrographic observations and textural classification of quartz and associated minerals in
preparation for electron microscopy.

Scanning electron microscope cathodoluminescence (SEM-CL)

The SEM-CL imaging of quartz was carried out using a Tescan thermal field
emission SEM equipped with a MIRA3-XMU CL spectrometer at the Research Center of
Genetic Mineralogy, China University of Geosciences Beijing (CUGB). An acceleration
voltage of 10 kV and beam-current of 10 nA were used. Due to the small field of view,
some images presented here are mosaics of multiple CL images digitally stitched together
after acquisition. Processing of the SEM-CL images included brightness, contrast, and
coloring to facilitate the textural classification of quartz, which was performed by the
ImageJ software (Schneider et al. 2012). The combination of SEM-CL imaging and optical transmitted light microscopy allowed to distinguish quartz textures and generations, which guided the following LA-ICP-MS study and helped to avoid accidental ablation of fluid and mineral inclusions in quartz.

Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS)

The quantitative trace element composition of the different quartz textures and generations was determined by LA-ICP-MS at the State Key Laboratory of Geological Processes and Mineral Resources at CUGB, using a New Wave UP193SS laser ablation system coupled with an Agilent 7500a ICP-MS. A 36 µm spot size was used with a laser energy density of 10 J/cm² and a repetition rate of 10 Hz. These conditions led to controlled and continuous ablation of quartz, with only little spalling or fracturing. Helium was used as the carrier gas and argon was used as the make-up gas, which were mixed via a T-connector before entering the torch. The ICP-MS operated in P/A mode with an Ar flow rate of 1 L/min. Oxide production was monitored leading to $^{238}\text{U}^{16}\text{O}/^{238}\text{U}$ values that were consistently <0.6%. For the trace element calibration, NIST SRM610 was used for the external standardization, which was analyzed twice every 10 quartz analyses to monitor the instrument drift. Fifty seconds of background (i.e., gas blank) signal and 55 s of quartz ablation were collected for each analysis. The following elements were measured by LA-ICP-MS: ^7Li, ^9Be, ^{11}B, ^{24}Mg, ^{27}Al, ^{29}Si, ^{31}P, ^{39}K, ^{44}Ca, ^{45}Sc, ^{49}Ti, ^{55}Mn, ^{57}Fe, ^{65}Cu, ^{66}Zn, ^{72}Ge, ^{85}Rb, ^{88}Sr, ^{90}Zr, ^{93}Nb, ^{98}Mo, ^{107}Ag, ^{121}Sb, ^{133}Cs.
Results

Quartz petrography and gold occurrence

The quartz textures and generations in the Bilihe deposit can be related to three distinct stages: (1) magmatic stage, (2) magmatic to hydrothermal transitional stage, and (3) hydrothermal stage. Dendritic quartz is considered to form in the late magmatic stage, which characteristically has a relatively large size (<0.2 to 5 cm long) and well-preserved arms, suggesting magma undercooling and relatively rapid crystallization (Figs. 3a-b). In the magmatic-hydrothermal transitional stage, unidirectional solidification textured quartz (UST quartz) layers developed (Figs. 3c-d). The thickness of the UST quartz layers ranges from several millimeters to centimeters (Figs. 3c-d, g), and they locally extend for several meters laterally. The crystallization direction of the prismatic UST quartz is consistently inward towards the center of the granitic stocks (Fig. 3c; Erdenebayar et al. 2014). Based on crosscutting relations and mineral assemblages, three distinct vein-types in the hydrothermal stage have been recognized in the Bilihe deposit (Figs. 3e-h). The early K-feldspar veins typically represent the earliest hydrothermal event and are crosscut...
by later gray banded vein quartz (BQ, Fig. 3e) that show a translucent to gray-black appearance (Figs. 3e-h). The BQ has a thickness of several millimeters and are irregular, discontinuous, and locally accompanied by K-feldspar alteration halos. As such, these veins are potentially analogues to A- and B-type veins known from porphyry Cu deposits (Sillitoe 2010), but lack the common sulfide mineralization at Bilihe. Some of them reopened and were infilled by calcite along the center of the vein or intersected by later calcite veins (Fig. 3h). The late hydrothermal calcite vein quartz (CQ) is white, reaches several centimeters in thickness (Fig. 3h) and consists of carbonate (calcite + dolomite), quartz, pyrite, and tourmaline.

The main Au-bearing quartz units at Bilihe include the dendritic quartz, UST quartz, and BQ (Fig. 4). Gold locally forms clusters or isolated grains (Figs. 4a-b, h-i), commonly as rounded droplets or hexagonal shapes. In the dendritic quartz, Au trails forming straight lines of typically 100 to 500 μm length (Fig. 4b) and locally up to 2,000 μm were observed, which generally lack any spatial relation to fractures (Fig. 4b). By contrast, Au grains of irregular or angular shape either occur in healed micro-fractures that intersect the UST quartz and BQ (Figs. 4c-d, f-g), or coexist with minor sulfides and sulfosalts, such as pyrite, chalcopyrite, and tennantite-tetrahedrite (Figs. 4j-k). Rare amounts of Au are also found in the adjacent alteration zones (Figs. 4g-l).

SEM-CL textures of quartz
The CL images of dendritic quartz revealed sector-zoned features with euhedral concentric growth zoning (Figs. 5a-b). The growth zones are typically 5 to 100 μm in width and parallel to the grain boundary, consisting of micron-scale CL-dark and CL-bright alternating bands. Locally, Au trails hosted in dendritic quartz are consistent with the kink point of concentric CL zones in the host quartz (Fig. 5c; Yang et al. 2015).

The growth fabrics in UST quartz are more heterogenous with weak zoning and patchy luminescence (Figs. 5d-e). Some UST quartz grains display CL-bright cores and CL-dark rims (Fig. 5f). Gold grains can be found interstitial between UST quartz crystals (Fig. 5f).

Commonly, BQ growth commenced from the vein wall towards the center. Three BQ sub-types (BQ1, BQ2, BQ3) can be distinguished based on their contrasting CL character (Figs. 5g-h). The CL texture of BQ1 is dominated by mosaic or roughly equigranular CL-gray quartz, showing a homogeneous CL intensity. The BQ2 is dominated by euhedrally zoned quartz with micron-scale growth zones of oscillating CL intensity, with local dissolution fronts (Figs. 5g-i). The BQ3 formed interstitial between BQ1 and BQ2 with dissolution textures at the contact boundaries and displays darker CL intensities compared to the two earlier BQ types (Figs. 5g-h). The BQ1 and BQ3 quartz grains usually lack internal growth zones or other internal variations in CL intensity and are intensely fractured by splatter and cobweb textures. Abundant CL-dark magnetite is hosted in BQ1 and BQ2 (Figs. 5g-h). Gold associated with pyrite was observed in fractures of BQ2 (Fig. 5i). The CQ has a euhedral shape with a CL-bright core and
CL-dark growth zones towards the rim (Figs. 5j-k). In some grains, the CL-bright core appears to have embayed edges against the overgrown rim. Splatter and cobweb textures also occur in the CQ grains.

Trace element concentrations

A total of 140 trace element analyses were obtained from the different quartz types, including 40 analyses of dendritic quartz, 30 analyses of UST quartz, 60 analyses of BQ, and 10 analyses of CQ. The analytical results are summarized in Table 1, and the entire dataset is available in Supplemental Table S1. The different trace elements were categorized based on their preferred occupation in the quartz atomic lattice (Larsen et al. 2004; Rottier and Casanova 2020). The reported compositional differences between the different quartz-types generally refer to the median value in the following.

Aluminum, Fe, B, As, Sb, and Ga dominantly form trivalent cations in quartz (Rottier and Casanova 2020). Aluminum and Sb are comparable in most quartz-types except for CQ, which shows the highest contents in these elements (Figs. 6a-b). By contrast, Fe contents in CQ and BQ2 are similar and higher than in the other quartz-types (Fig. 6c). Boron shows a decrease from the magmatic (dendritic quartz) and magmatic-hydrothermal transitional (UST quartz) to the hydrothermal stages (BQ and CQ) (Fig. 6d). Lithium, Na, K, Rb, Cs, and Cu are the main monovalent cations in quartz (Rottier and Casanova 2020). Lithium shows a similar relative variation as Al and Sb (Fig.
whereas all other elements of this group do not show systematic variation from dendritic quartz to CQ (Table 1).

Titanium and Ge are the main tetravalent cations in quartz (Rottier and Casanova 2020). Titanium concentrations decrease slightly from the magmatic (dendritic quartz) and magmatic-hydrothermal transitional stage (UST quartz) to hydrothermal BQ following a significant drop to late-stage CQ (Fig. 6f). Germanium concentrations in quartz show relatively uniform results between 2-10 ppm (Fig. 6g). Magnesium and Mn are the main divalent cations in quartz (Rottier and Casanova 2020). A wide variation between the different quartz-types exceeding two orders of magnitude was observed for Mg, with higher median Mg contents in hydrothermal (BQ and CQ) than in magmatic (dendritic quartz) and magmatic-hydrothermal transitional stage quartz (UST quartz) (Fig. 6h, Table 1). Manganese contents slightly increase from dendritic quartz to CQ with respect to the median values (Fig. 6i, Table 1).

Chondrite-normalized REE patterns (Sun and McDonough 1989) for most quartz-types are relatively flat (Fig. 7), except for a pronounced La enrichment and negative Eu anomaly (δEu=0.33-1.01). In addition, positive Nd anomalies were observed in some analyses of dendritic quartz, UST quartz, and BQ. The overall compositional REE range of dendritic and UST quartz is relatively uniform, whereas pronounced REE variations were observed between different measurements of BQ and CQ.

Two representative grains of (magmatic) dendritic quartz and CQ were selected to
investigate potential trace element variations within single grains with respect to changes in CL intensity (Fig. 8). The CL intensity of dendritic quartz correlates with the Ti, Al, and Ca contents, while the CL intensity of hydrothermal CQ only varies with respect to Ti. In addition, Al and K concentration profiles show a similar relative pattern in dendritic quartz and CQ, but without any relation of the K contents to the CL intensities (Fig. 8).

DISCUSSION

Variations in SEM-CL intensities and implications for quartz chemistry

The physical (e.g., CL intensity and color, micro-inclusion inventory) and chemical (e.g., trace element and isotopic composition) properties of quartz are mostly controlled by the P-T-X conditions during its formation (e.g., Larsen et al. 2004; Götze 2009; Rusk et al. 2011; Rusk 2012; Frelinger et al. 2015; Li et al. 2020; Rottier and Casanova 2020; Götze et al. 2021). Generally, dendritic quartz is thought to be the product of rapid crystallization from highly fractionated magmas during the late magmatic stage (Swanson and Fenn 1986; Yang et al. 2015). For magmatic quartz crystals, CL textures can provide additional information on the P-T-X conditions of the related granitic melts (Götze et al. 2021). The pronounced growth zoning of dendritic quartz (Figs. 5a-b) reflects its magmatic origin and fluctuations in magma temperature, pressure, and melt/fluid composition during crystallization (Erdenebayar et al. 2014; Peng et al. 2010; Li et al. 2011). Quartz and melt/fluid disequilibrium likely led to the destabilization of the quartz
growth boundary and changed the intrinsic textures and trace element distribution in dendritic quartz, as preserved by the growth zoning (Peng et al. 2010; Li et al. 2011). The elongated habit of dendritic quartz (Fig. 3b) is controlled by the two- or three-times faster growth rate of quartz along the c-axis compared to the a-axis (Swanson and Fenn 1986). The representative CL image of the sector-zoned texture represents the r and z faces of quartz (Fig. 8a; Yang et al. 2015). The r face commonly shows higher CL intensity and trace element concentrations than the z face (Fig. 8a), implying a faster growth rate for the r face (Swanson and Fenn, 1986; Yang et al. 2015). The relatively low Al concentration in magmatic dendritic quartz compared to the other quartz-types (except BQ3, Fig. 6a) is likely the result of Al consumption by the earlier onset of feldspar and possibly some mica crystallization from the magma (Larsen et al. 2004). Huang and Audétat (2012) showed experimentally that Ti is preferentially incorporated into quartz at higher growth rates. Hence, the high Ti contents in dendritic quartz could be the result of enhanced Ti incorporation in crystal defects during rapid non-equilibrium quartz growth, which could be triggered by degassing during magma ascent (Cernuschi et al. 2018). In addition, it has been shown that the Ti content in quartz positively correlates with its formation temperature in porphyry systems and is decoupled from most other trace elements (Landtwing and Pettke 2005; Rusk et al. 2006; Thomas et al. 2010; Huang and Audétat 2012; Maydagán et al. 2015). Accordingly, the crystallization temperatures of the different quartz-types from Bilihe were estimated by Ti-in-quartz geothermometry.
(TitaniQ) following the equation by Huang and Audétat (2012) (Supplemental Table S2). Dendritic quartz yielded unrealistically high crystallization temperatures >900 °C, which we refer to the non-equilibrium incorporation of Ti in dendritic quartz due to its high growth rates. As a consequence, the lowest Ti contents of dendritic quartz were used, which provide the best approximation of the actual crystallization temperature (~750 °C; Cernuschi et al. 2018).

The comb-layered UST quartz is typically developed in the mineralized granodiorite porphyry at Bilihe, which crystallized during the magmatic-hydrothermal transition at the roof of the magma chamber, where the exsolved aqueous fluids ponded (Lowenstern and Sinclair 1996; Yang et al. 2008; Erdenebayar et al. 2014; Hong et al. 2019; Bain et al. 2022). The zoning patterns of UST quartz (Figs. 5d-e) demonstrate periodic degassing during melt-fluid cooling at the top of the granodiorite porphyry (Erdenebayar et al. 2014). The corrosion along the UST quartz rim (Fig. 5f) may be caused by local SiO₂ undersaturation (Erdenebayar et al. 2014). The comparable Al and Ti contents in UST quartz from the magmatic-hydrothermal transitional stage relative to the magmatic dendritic quartz indicate similar pH and temperature conditions during the formation of these quartz generations (Rusk et al. 2008; Huang and Audétat 2012). Alternatively, UST quartz may retain the trace element characteristics of the magmatic dendritic quartz, as supported by abundant primary melt inclusion in UST quartz (Yang et al. 2015). It has been noted from experiments that the Al contents of hydrothermal quartz also depend on
the ionized Al in the fluid, which increases with decreasing fluid pH (Rusk et al. 2008; Müller et al. 2010; Li et al. 2020). Overall, the Al contents increase from the magmatic-hydrothermal transitional (UST quartz) to the hydrothermal stage (BQ1 and BQ2), suggesting that the pH gradually decreased during the fluid evolution (Fig. 6a). The similar Ti contents indicate that the formation and chemistry of UST quartz were probably also affected by rapid crystal growth (Huang and Audétat 2012; Cernuschi et al. 2018). Consequently, the lowest Ti contents were used for the temperature estimates to avoid any overestimation (Huang and Audétat 2012; Cernuschi et al. 2018). This approach yielded a temperature of ~700 °C for UST quartz, which is in the range of related hypersaline primary fluid inclusion data (>600 °C, Qiao et al. 2022). The suggested temperatures are also comparable with those of UST quartz from the Qulong Cu-Mo deposit, China (600-700 °C; Qu et al. 2017) and Saginaw Hill porphyry Cu system, USA (~650 °C; Bain et al. 2022).

Gray banded vein quartz (BQ) in porphyry deposits shows several consistent CL characteristics in successive generations (e.g., Butte, Montana, Rusk and Reed 2002; Bingham Canyon, Utah, Landtwing and Pettke 2005; Oyu Tolgoi, Mongolia, Müller et al. 2010; Altar, Argentina, Maydagán et al. 2015; Dabaoshan, China, Mao et al. 2017; Haquirra East, Peru, Cernuschi et al. 2018; Taiyangshan, China, Qiu et al. 2021). The earliest BQ generation commonly exhibits CL-bright intensities and homogeneous granular mosaic textures that lack internal growth zoning. By contrast, the subsequent BQ
generations commonly show darker CL intensities according to their lower Ti contents compared to the earlier CL bright BQ (Mao et al. 2017; Cernuschi et al. 2018; Qiu et al. 2021). At Bilihe, the homogeneous CL texture of BQ1 is consistent with the observations of BQ from the aforementioned porphyry deposits (Figs. 5g-h), which result from relatively rapid nucleation and precipitation (e.g., Mao et al. 2017). Also, the mosaic texture of BQ1 is indicative of the transition from lithostatic to hydrostatic pressure conditions, and rapid quartz growth is likely a product of depressurization (Rusk and Reed, 2002; Rusk 2012). High CL intensity of BQ2 with variable CL characteristics along growth zones (Figs. 5g-h) implies rapid crystallization on a disturbed surface (Gotte et al. 2011). In addition, the sharp boundaries in CL intensity among oscillating growth zones indicate minimal trace element diffusion or reprecipitation after initial quartz crystallization (Mao et al. 2017). Homogeneous mosaic texture was also observed for BQ3, but with lower CL intensity and trace element concentrations compared to the former BQ types (Figs. 5 and 6). The increasing Al from dendritic quartz to BQ2 indicates decreasing fluid pH, which agrees with the generally suggested pH decrease during porphyry evolution (Beane and Tittley 1981; Seedorff et al. 2005). By contrast, the drop in the Al content from BQ2 to BQ3 suggests a relatively fast increase in fluid pH possibly related to sericitic alteration that surrounds the BQ veins, which consumes H⁺ from the fluid upon host rock sericitization (Rusk et al. 2008; Müller et al. 2010; Li et al. 2020). Due to the fast crystal growth of BQ, we also used the minimum Ti contents for
the temperature estimates yielding 635 °C for BQ1, 600 °C for BQ2, and 575 °C for BQ3 (Huang and Audétat 2012), which agrees with the upper-temperature limit (550 to 625 °C) revealed by alteration mineral stabilities in sericitic alteration zones (e.g., Seedorff et al. 2005). By contrast, the temperatures of fluid inclusion in BQ are substantially lower (~300-400 °C, Qiao et al. 2022), which we refer to the measurement of secondary fluid inclusions modified by post-entrapment processes.

The CL-bright core of CQ appears to have embayed edges against the overgrown rim, implying the dissolution of the core prior to recrystallization of the later rim (Rusk 2012). This is supported by distinct Ca concentrations (laser pits 3 and 8 in Fig. 8b) at the boundary between the core and rim. Such dissolution textures were recognized in other porphyry deposits (Maydagán et al. 2015; Mao et al. 2017; Qiu et al. 2021), and the small-scale dissolution and re-equilibration of pre-existing quartz can be caused by overprinting of late to post-magmatic fluids along micro-cracks or around fluid inclusions (Erdenebayar et al. 2014). The highest Al concentrations are displayed in CQ among all types of quartz, demonstrating increasing fluid acidity in accordance with the muscovite and argillic alteration. Formation temperatures of ~250 °C were estimated by Ti in CQ (Supplemental Table S2), which also agrees with typical argillic alteration temperatures (<300 °C; Beane and Titley 1981; Seedorff et al. 2005), possibly reflecting the transition to epithermal conditions. Additionally, CQ shows elevated contents of Li and Sb, which indicates that a significant amount of these elements is more likely to be incorporated into
epithermal quartz at lower temperatures (<300 °C; Jourdan et al. 2009).

In summary, the trace element characteristics of the different quartz-types from Bilihe indicate decreasing quartz formation temperatures from magmatic dendritic quartz at ~750 °C to CQ at ~250 °C, which marks the epithermal transition. In analogy, we conclude that Al can be used as a tracer for fluid pH, indicating a general decrease in fluid pH with porphyry evolution, except for BQ3, which agrees with the consecutive alteration assemblages.

Substitution mechanisms

The atomic structure of the quartz lattice consists of strong Si-O bonds and the small size of the Si\(^{4+}\) ion leads to its simple chemical composition with a relatively low capacity for trace element incorporation (Götze 2009; Rusk 2012; Götze et al. 2021). However, different mechanisms of trace element uptake into quartz may occur for some elements, such as Ti, Al, Li, and K (Götze 2009), which is generally governed by substitution into the crystal structure, interstitial atoms or species, and micro-inclusions (i.e., fluid or mineral inclusions) in defects of the crystal (Jacamon and Larsen 2009). There are three possible mechanisms for trace element incorporation into the quartz lattice (Götze et al. 2004; Larsen et al. 2004; Jacamon and Larsen 2009; Jourdan et al. 2009): (1) Si\(^{4+}\) can be directly replaced by Ti\(^{4+}\), Ge\(^{4+}\); (2) two neighboring Si atoms in tetrahedral coordination can be replaced by coupled substitution of P\(^{5+}\) together with trivalent Al\(^{3+}\) (Fe\(^{3+}\) or B\(^{3+}\));
(3) Al$^{3+}$, Fe$^{3+}$, Ga$^{3+}$ accommodate in quartz with monovalent cations (Li$^+$, Na$^+$, K$^+$, H$^+$, Rb$^+$ or Cs$^+$) that compensate the charge deficit or enter interstices in structural channels that occur parallel to the c-axis of the quartz crystal (Jourdan et al. 2009).

Although the atomic Al: K or Al: Li ratios deviate from the 1:1 line (Fig. 9a), Al concentrations positively correlate ($R^2=0.75$) with the K concentration in dendritic quartz, UST quartz, and BQ, referring to a coupled Si$^{4+} \leftrightarrow (\text{Al}^{3+}) + (\text{K}^+) \text{ element exchange vector}$ (e.g., Götze et al. 2004; Hong et al. 2019). For CQ, the Al concentration correlates positively with Li ($R^2=0.58$), Rb ($R^2=0.51$), and Sb ($R^2=0.65$) concentrations (Figs. 9b-d), suggesting that these elements are incorporated into low-temperature quartz as charge-compensated cations in the substitution of Si$^{4+} \leftrightarrow (\text{Al}^{3+}, \text{Sb}^{3+}) + (\text{Li}^+, \text{Rb}^+)$ (Götze et al. 2004; Larsen et al. 2004; Rusk et al. 2008). Boron, Sb, Ge, and As concentrations are little influenced by mineral inclusions, as their concentrations are commonly very low (<few ppm) in most common minerals in porphyry systems (Rottier and Casanova 2020).

A positive correlation ($R^2=0.49$) is also observed between Al and B except for CQ, supporting that B$^{3+}$ is present via coupled substitution with P$^{5+}$ replacing two neighboring Si atoms (Fig. 9e; Jourdan et al. 2009). The weak correlation between Ge and Al (Fig. 9f) indicates that Ge and Al are not incorporated in quartz via a coupled substitution mechanism (Li et al. 2020).

Porphyry quartz as archives for the nature of Au deposition
Hydrofracturing in the intrusion cupola is a critical process in porphyry systems, providing fluid pathways, which subsequently leads to the formation of mineralized veins and alteration features as a result of water-rock interaction (e.g., Sillitoe 2010; Pirajno and Zhou 2015; Cao et al. 2019; Tosdal and Dilles 2020; Qiu et al. 2021). Stockwork veins in porphyry deposits commonly consist of multiple quartz generations identified by distinct textures (Rusk and Reed 2002; Bennett 2014, Mao et al. 2017; Pan et al. 2019; Qiu et al. 2021). Hence, understanding the formation conditions of different quartz-types can help to reconstruct the crystallization history of minerals and reveal geological processes (Breitera et al. 2017; Götze et al. 2021).

Three stages of Au deposition reflecting distinct formation conditions can be distinguished at Bilihe according to the observations in this study and in combination with previous results (Yang et al. 2015; Qiao et al. 2022). This includes (1) Au related to the magmatic stage (~750 °C), where the round shape of the Au droplets is indicative for the presence of Au melts that were incorporated in the dendritic quartz during undercooling (Figs. 4a-b; Yang et al. 2015; Jian et al. 2021, 2022). A later-stage hydrothermal formation seems to be unlikely, as Au droplets are not related to fractures and occur within dense domains of dendritic quartz. This suggests that the magma was Au saturated, as evidenced by the Au enrichment (~26.3 ppb) in fresh magmatic rocks from the Bainaimiao Group (Yang et al. 2016) compared to average continental crust (~2.5 ppb; Wedepohl 1995). (2) Similar Au droplets were observed in BQ quartz (Fig.
and we conclude, according to Jian et al. (2021, 2022), that the Au melt droplets were transported in the high-temperature fluids (~600 °C) from which the BQ formed. (3)

By contrast, Au of hydrothermal nature is typically related to fractures in BQ, where it coexists with sulfides and tennantite-tetrahedrite (Figs. 4f, j, 5f), or is found in the altered host rocks (Fig. 4l).

Although Au-bearing dendritic and U ST quartz exhibit a high average Au grade of ~15.0 g/t in the Bilihe deposit, they are estimated to only hold less than one-third of the total Au reserves (~8 tonnes; Qiao et al. 2022). By contrast, the auriferous BQ veinlets host over 20 tonnes of the Au reserves (Qiao et al. 2022), implying that significant amounts of the total Au reserves are rather associated with hydrothermal quartz formation rather than with magmatic quartz formation. Thus, integrated information regarding the morphology, CL characteristics, and trace element signatures of hydrothermal BQ1 to BQ3 were used to reconstruct the formation history of the veinlets and the associated precipitation conditions of Au (Fig. 10). This provides insights into the progressive evolution of the Bilihe hydrothermal system and the related Au precipitation mechanisms.

The gray banded veins hosting BQ1 to BQ3 are mainly distributed in the granodiorite porphyry and tuff. As mentioned above, fluids flow through fractures or narrow pathways initially developed in the porphyry rocks due to hydrofracturing associated with the magmatic-hydrothermal fluid ascent. Smaller equigranular CL-homogeneous quartz crystals (BQ1; Fig. 5g) rapidly nucleated and precipitated on
their basal plane with various orientations, because of random nucleation along the walls of the fractures, which is in contrast to the common symmetric quartz formation towards the central vein suture (Fig. 10a; Penniston-Dorland 2001; Qiu et al. 2021). The later large and symmetric euhedral to subhedral CL-bright quartz crystals (BQ2; Fig. 5g) are oriented almost perpendicular to the vein wall and point towards the vein center (Fig. 10b), which overprint the preexisting randomly oriented BQ1. These BQ2 crystals display CL-concentric and sector growth zones along the c-axis (Fig. 10b), which crystallized from more acidic fluids indicated by their higher Al concentration relative to BQ1 (Fig. 6a). Shifts in fluid composition, pressure, temperature, precipitation rate, and/or a turbulent fluid flow regime resulted in rapid deposition of BQ2 with complex growth zonings (Roedder 1984). Gold mainly precipitated accompanying the formation of BQ1 and BQ2. Subsequently, the BQ3 formed as smaller sub-grains with lower CL intensity (Fig. 5g) and slightly lower trace element contents (Fig. 10c). The growth of BQ3 is related to increasing pH and decreasing temperature, as indicated by its Al and Ti contents, which was probably caused by mixing of porphyry fluid with meteoric water. Thereafter, the gray banded vein may be reopened and the post-ore calcite veinlets precipitated along the center (Fig. 10d).

In summary, quartz chemistry and CL textures of successive generations of quartz are controlled by the physical and chemical evolution of fluids in porphyry systems (Mao et al. 2017; Qiu et al. 2021). Within a specific quartz veinlet, the sequence of
chronological events detected by CL with trace element concentrations can further evaluate potential physiochemical fluctuations in the hydrothermal fluids (Qiu et al. 2021).

Comparison with quartz from other porphyry systems

Trace element compositions of quartz can be applied to fingerprint different types of ore formation and to decipher the fluid evolution of magmatic-hydrothermal ore deposits. For example, Rusk (2012) used Ti and Al concentrations and Al/Ti ratios to discriminate porphyry-type deposits, orogenic Au deposits, and epithermal deposits. It is also reported that the Ge/Al ratios can be used to distinguish magmatic and hydrothermal quartz (Müller et al. 2018). Rottier and Casanova (2020) proposed that trace element contents and ratios vary systematically between quartz from different porphyry vein-types. As a consequence, we conclude that compiled trace element data of quartz may help to distinguish between porphyry Cu, Mo, and Au sub-types (Fig. 11). Here, we present a compilation of ~1800 trace element compositions of quartz from different porphyry systems. This includes data from 1 porphyry Au-only deposit (this study), 6 porphyry Cu deposits (Butte, Los Pelambres, El Teniente, El Salvador, Santa Rita, and Haquira East), 1 porphyry Mo deposit (Dabaoshan), 5 porphyry Cu-Au deposits (Far Southeast, Central Oyu Tolgoi, Zesen Uul, Grasberg, and North Parkes), 1 porphyry Cu-Mo deposit (Yuanzhuding), and 3 porphyry Cu-Au-Mo deposits (Bingham, Altar, and Cerro de Pasco)
(Fig. 11; Supplemental Tables S3 and S4). We note that the following classification of the porphyry sub-types presented here refers to the studies from which the quartz data was extracted. We selected Al, Ti, Li, K, Ge, and Sb to define binary discrimination diagrams since these elements are commonly analyzed due to their relatively high abundance in quartz, and their systematic variations between the different porphyry sub-types (Fig. 11).

Collectively, we found that Ti, Al, Li, and K, as well as Ge/Ti and Al/Ti can be used to discriminate the different porphyry sub-types (Fig. 11). Despite some compositional overlaps, Ti, Al, Li, K, and Ge concentrations in quartz decrease from Au or Cu-Au to Cu-Mo and Mo porphyry deposits (Figs. 11a-c). Although, there seems to be an overall Ti decrease from porphyry Au-only to porphyry Mo deposits (Fig. 11a), however, temperature control on the Ti variation seems to be unlikely in this case, as temperature does not vary systematically between porphyry sub-types (Barton et al. 2020). By contrast, Al and Li concentrations increase in quartz with decreasing pressure conditions (Rambourg et al. 2022), and it is known that Au-only porphyries tend to form at shallower crustal levels compared to their Cu and Mo counterparts (Murakami et al. 2009; Sillitoe 2017). Hence, the decreasing Li and Al contents in quartz from porphyry Au-only to Mo deposits reflect the distinct formation of these porphyry sub-types (Fig. 11b). In addition, porphyry Au-only and Cu-Au deposits exhibit higher K concentrations in quartz compared to porphyry Mo deposit (Fig. 11c). Generally, quartz form porphyry Au or Cu-Au deposits show little variation in their Ge concentrations (2-10 ppm), whilst quartz
from porphyry Mo or Cu-Mo deposits show a much broader Ge range (0.26-28.6 ppm, Fig. 11d). Finally, most quartz from porphyry Mo or Cu-Mo deposits shows higher Ge/Ti and Al/Ti ratios than those from Au-only or Cu-Au porphyries (Fig. 11d). Although the processes that control the trace element variations in quartz between porphyry sub-types on the global scale remain elusive and require more detailed investigation, which is out of scope of this study, we showed that trace elements in quartz are suitable to discriminate between porphyry sub-types and that Li and Al in quartz vary with respect to porphyry formation depth.

IMPLICATIONS

This study reports the distinctive SEM-CL textures and trace element contents of four quartz generations recording the fluid evolution from the magmatic to hydrothermal stages in the Bilihe porphyry Au-only deposit, NE China. The application of CL textures combined with trace element data of successive quartz generations can advance the comprehension of the relation between CL intensities and quartz chemistry, trace element substitution in quartz, and the specific ore-forming physiochemical environments. Additionally, we note that temperature estimates by Ti-in-quartz geothermometry are sensitive to overestimation in porphyry environments due to rapid growth rate of quartz, which must therefore be handled with care. Finally, it is of broad significance to apply compiled trace element compositions and ratios of quartz to predict metal fertility of
porphyry mineralization. We address that the processes that cause these global trace element variations between porphyry sub-types require further investigation, but Li and Al seem to be particularly suitable to record relative changes in porphyry formation depth.

ACKNOWLEDGEMENTS

This research was supported financially by the National Natural Science Foundation of China (Grants 42122012 and 92062219), the Inner Mongolia Academician Project (Grant 2022-TZH03), and the China Scholarship Council (CSC; File No. 202206400014). We thank Li Su and Hongyu Zhang (CUGB) for the quartz trace element analyses, and Junfeng Shen (CUGB) for the quartz SEM-CL analyses. Sincere thanks are given to John Dilles, another two anonymous reviewers, and Associate Editor Daniel Gregory for their constructive comments and editing, which greatly improved this work.

REFERENCES

et Cosmochimica Acta, 68(18), 3741-3759.

Landtwing, M., and Pettke, T. (2005) Relationships between SEM-cathodoluminescence...

Raimbourg H., Famin V., Canizarès A., and Trong L. (2022) Fluid pressure changes recorded by trace elements in quartz. Geochemistry, Geophysics, Geosystems, 23(10), e2022GC010346.

96(5-6), 703-708.

Wilde, S. (2015) Final amalgamation of the Central Asian orogenic belt in NE China:

the pre-Mesozoic tectonic unit division of the Xing-Meng Orogenic Belt (XMOB).

Zhao, Q., Zhai, D., Mathur, R., Liu, J., Selby, D., Williams-Jones, A.E. (2021a) The giant

FIGURE CAPTIONS

Figure 1. Regional geological map of the Bilihe deposit in NE China. (a) Tectonic map of the Central Asian orogenic belt (CAOB; based on Jahn et al. 2004); (b) Simplified geological map of part of the Xing-Meng Orogenic Belt (XMOB) showing the study area (modified from Xu et al. 2014); (c) Tectonic map of central Inner Mongolia showing the structures and tectonic belts (modified from Yang et al. 2016). Abbreviations: EB = the Erguna block, XAB = the Xing’an-Airgin Sum block, SHB = the Songliao-Hunshandake block; JB= and the Jiamusi block, XXS = Xinlin-Xiguitu suture, XHS = the Xilinhot-Heihe suture, MS = the Mudanjiang suture, OYS = the Ondor Sum-Yongji suture.

Figure 2. (a) Geological map of the Bilihe deposit showing main geologic units and faults (modified from Ge et al. 2009). (b) Geological section along cross-section A-B through the Center II orebody (modified from Wang et al. 2019).

Figure 3. Hand specimen photos and photomicrographs of different quartz generations from the Bilihe Au deposit. (a) Well-preserved dendritic quartz hosted by granodiorite
porphyry. (b) Dendritic quartz in transmitted light. (c) Multi-layered comb UST quartz, and the yellow arrows towards the center of the granitic stocks. (d) UST quartz in transmitted light. (e) Sinuous K-feldspar vein cut by weakly curved gold-bearing BQ with local K-feldspar halo. (f) Dendritic quartz cut by BQ stockworks. (g) Contorted UST quartz layer showing basal, thin, finer-grained parts cut by BQ, with disseminated tourmaline alteration. (h) BQ stockworks cut by CQ with white to brown cement. Abbreviations: GDP = granodiorite porphyry, KV = K-feldspar vein, Tur = tourmaline.

Figure 4. Main gold-bearing units in the Bilihe gold deposit. (a) Isolated Au grains with hexagonal shape in dendritic quartz. (b) Gold trails of straight lines in dendritic quartz. (c) Irregular Au grains in UST quartz factsures. (d) Irregular Au grains in UST quartz. (e) Isolated Au grains of droplet shape in UST quartz. (f) Irregular Au grains in UST quartz factsures. (g) Irregular Au grains hosted in the interval of UST quartz. (h-i) Isolated Au grains of rounded shape in BQ. (j) Gold coexisting with tetrahedrite, chalcopyrite, and rutile in BQ. (k) Gold coexisting with pyrite, tennantite, and chalcopyrite along the facture in dendritic quartz. (l) Irregular Au grains in the adjacent sericitization zones. Abbreviations: Ccp = chalcopyrite, Py = pyrite, Rt = rutile, Ser = sericitization, Tnt = tennantite, Ttr = tetrahedrite.

Figure 5. The SEM-CL and ImageJ-processed images of different types of quartz in the
Bilihe gold deposit. (a-b) Dendritic quartz featured by sector-zoned with euhedral oscillatory growth zones of fine laminae of 5 to 100 μm in width that are parallel to grain edges. (c) Gold trails hosted in dendritic quartz consistent with the kink point of the CL-concentric zoning of the surrounding quartz. (d-e) Inhomogeneous growth fabrics with weak zoning and patchy luminescence in UST quartz. (f) UST quartz grains of CL-bright cores with CL-dark to CL-bright growth zones with oscillating CL intensity in the rim. Abbreviations: Mag = magnetite.

Figure 6. Percentile box and whisker plots showing the trace element compositions of different quartz types from the Bilihe Au deposit. (a) Al, (b) Fe, (c) B, (d) Sb, (e) Li, (f) Ti, (g) Ge, (h) Mg, (i) Mn.

Figure 7. Chondrite-normalized REE patterns of dendritic quartz (a), UST quartz (b), BQ(c), and CQ (d) in the Bilihe Au deposit. Normalization values are from Sun and McDonough (1989).

Figure 8. The correlation between the CL intensity and trace element concentrations of Ti,
Al, K, and Ca in dendritic quartz (a) and CQ (b).

Figure 9. Concentrations of K, Li, Rb, B, Sb, and Ge versus Al in various types of quartz from the Bilihe Au deposit.

Figure 10. Schematic diagram of the sequence of events juxtaposed in a single hydrothermal quartz vein from the Bilihe porphyry Au deposit. Arrow points out the fluid flow direction. Yellow dots represent Au grains. Light gray quartz represents BQ1, blue quartz represents BQ2, and purple quartz represents BQ3. Veins are symmetrically developed from vein wall to the center. Estimations of temperature and variations in Al, Ti, Li, Sb contents (median values) of BQ1, BQ2, BQ3, and CQ are listed respectively.

Figure 11. Correlation diagrams of selected trace elements. (a) Al vs. Ti; (b) Al vs. Li; (c) Al vs. K; (d) Al/Ti vs. Ge/Ti. Data are from Supplemental Table S3, Rottier and Casanova (2020) and references therein. The black arrows indicate the variation between different porphyry deposit sub-types (e.g., Au vs. Cu-Mo).

Table 1. Representative LA-ICP-MS trace element results of quartz from the Bilihe Au deposit (ppm).
Supplemental Table S1. LA-ICP-MS analyses of quartz from the Bilihe porphyry gold deposit (ppm).

Supplemental Table S2. Summary of estimated Ti-in-quartz geothermometer temperatures from the Bilihe deposit.

Supplemental Table S3. Compiled quartz trace element data from different porphyry ore systems (ppm).

Supplemental Table S4. Summary of total tons of ore and the average grades of Cu, Mo, Au and Ag for the different deposits.
Table 1. Representative LA-ICP-MS trace element results of quartz from the Bilihe Au deposit (ppm)

<table>
<thead>
<tr>
<th>Elements</th>
<th>Al</th>
<th>Li</th>
<th>Ti</th>
<th>K</th>
<th>B</th>
<th>Mg</th>
<th>Mn</th>
<th>Fe</th>
<th>Ge</th>
<th>Rb</th>
<th>Sb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dendritic quartz (n=40)</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>163</td>
<td>5.59</td>
<td>74.6</td>
<td>22.5</td>
<td>2.74</td>
<td>10.1</td>
<td>1.55</td>
<td>101</td>
<td>2.14</td>
<td>0.29</td>
<td>0.18</td>
</tr>
<tr>
<td>Max</td>
<td>1576</td>
<td>71.1</td>
<td>440</td>
<td>920</td>
<td>31.8</td>
<td>459</td>
<td>18.8</td>
<td>330</td>
<td>7.50</td>
<td>4.11</td>
<td>6.70</td>
</tr>
<tr>
<td>Median</td>
<td>665</td>
<td>21.2</td>
<td>300</td>
<td>195</td>
<td>10.4</td>
<td>59.3</td>
<td>3.05</td>
<td>179</td>
<td>3.80</td>
<td>0.58</td>
<td>0.45</td>
</tr>
<tr>
<td>MAD</td>
<td>268</td>
<td>5.18</td>
<td>80.1</td>
<td>125</td>
<td>3.13</td>
<td>37.0</td>
<td>0.66</td>
<td>40.4</td>
<td>0.58</td>
<td>0.23</td>
<td>0.16</td>
</tr>
<tr>
<td>UST quartz (n=30)</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>387</td>
<td>3.97</td>
<td>46.9</td>
<td>77.2</td>
<td>2.95</td>
<td>17.1</td>
<td>2.01</td>
<td>107</td>
<td>2.23</td>
<td>0.44</td>
<td>0.11</td>
</tr>
<tr>
<td>Max</td>
<td>1487</td>
<td>54.7</td>
<td>477</td>
<td>638</td>
<td>26.9</td>
<td>2017</td>
<td>8.40</td>
<td>421</td>
<td>8.43</td>
<td>8.88</td>
<td>2.72</td>
</tr>
<tr>
<td>Median</td>
<td>949</td>
<td>16.3</td>
<td>304</td>
<td>374</td>
<td>10.1</td>
<td>50.0</td>
<td>3.14</td>
<td>169</td>
<td>3.63</td>
<td>1.78</td>
<td>0.49</td>
</tr>
<tr>
<td>MAD</td>
<td>240</td>
<td>3.87</td>
<td>79.0</td>
<td>134</td>
<td>2.51</td>
<td>27.1</td>
<td>0.57</td>
<td>36.4</td>
<td>0.81</td>
<td>1.12</td>
<td>0.28</td>
</tr>
<tr>
<td>BQ1 (n=20)</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>350</td>
<td>6.04</td>
<td>122</td>
<td>49.6</td>
<td>5.19</td>
<td>91.0</td>
<td>1.94</td>
<td>128</td>
<td>2.28</td>
<td>0.36</td>
<td>0.19</td>
</tr>
<tr>
<td>Max</td>
<td>1593</td>
<td>50.5</td>
<td>406</td>
<td>2339</td>
<td>15.2</td>
<td>1982</td>
<td>13.6</td>
<td>386</td>
<td>7.59</td>
<td>9.59</td>
<td>1.86</td>
</tr>
<tr>
<td>Median</td>
<td>854</td>
<td>17.4</td>
<td>218</td>
<td>333</td>
<td>7.89</td>
<td>637</td>
<td>3.19</td>
<td>191</td>
<td>3.77</td>
<td>1.27</td>
<td>0.48</td>
</tr>
<tr>
<td>MAD</td>
<td>126</td>
<td>8.65</td>
<td>25.2</td>
<td>126</td>
<td>1.90</td>
<td>373</td>
<td>0.87</td>
<td>35.2</td>
<td>0.59</td>
<td>0.45</td>
<td>0.20</td>
</tr>
<tr>
<td>BQ2 (n=20)</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>600</td>
<td>8.57</td>
<td>174</td>
<td>62.3</td>
<td>3.09</td>
<td>45.9</td>
<td>1.95</td>
<td>110</td>
<td>3.11</td>
<td>0.91</td>
<td>0.41</td>
</tr>
<tr>
<td>Max</td>
<td>9138</td>
<td>35.6</td>
<td>449</td>
<td>673</td>
<td>21.5</td>
<td>13523</td>
<td>24.3</td>
<td>1505</td>
<td>13.3</td>
<td>13.5</td>
<td>5.28</td>
</tr>
<tr>
<td>Median</td>
<td>1132</td>
<td>22.7</td>
<td>292</td>
<td>183</td>
<td>8.39</td>
<td>678</td>
<td>4.51</td>
<td>268</td>
<td>5.08</td>
<td>3.10</td>
<td>1.03</td>
</tr>
<tr>
<td>MAD</td>
<td>172</td>
<td>7.16</td>
<td>67.8</td>
<td>76.5</td>
<td>2.85</td>
<td>279</td>
<td>0.97</td>
<td>73.3</td>
<td>0.76</td>
<td>1.45</td>
<td>0.48</td>
</tr>
<tr>
<td>BQ3 (n=20)</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>304</td>
<td>7.18</td>
<td>108</td>
<td>21.1</td>
<td>2.22</td>
<td>100</td>
<td>1.78</td>
<td>106</td>
<td>2.30</td>
<td>0.35</td>
<td>0.14</td>
</tr>
<tr>
<td>Max</td>
<td>1922</td>
<td>26.0</td>
<td>355</td>
<td>665</td>
<td>11.6</td>
<td>1207</td>
<td>65.7</td>
<td>3631</td>
<td>8.18</td>
<td>3.77</td>
<td>15.2</td>
</tr>
<tr>
<td>Median</td>
<td>526</td>
<td>13.1</td>
<td>174</td>
<td>73.6</td>
<td>4.70</td>
<td>443</td>
<td>3.55</td>
<td>214</td>
<td>4.27</td>
<td>0.64</td>
<td>0.37</td>
</tr>
<tr>
<td>MAD</td>
<td>82.1</td>
<td>3.59</td>
<td>29.2</td>
<td>32.5</td>
<td>1.08</td>
<td>219</td>
<td>1.52</td>
<td>77.3</td>
<td>1.45</td>
<td>0.18</td>
<td>0.13</td>
</tr>
<tr>
<td>CQ (n=10)</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>1537</td>
<td>58.8</td>
<td>1.33</td>
<td>145</td>
<td>2.25</td>
<td>5.68</td>
<td>2.52</td>
<td>141</td>
<td>2.41</td>
<td>1.03</td>
<td>1.62</td>
</tr>
<tr>
<td>Max</td>
<td>6985</td>
<td>201</td>
<td>22.8</td>
<td>1775</td>
<td>6.64</td>
<td>1975</td>
<td>26.8</td>
<td>751</td>
<td>12.7</td>
<td>16.0</td>
<td>27.0</td>
</tr>
<tr>
<td>Median</td>
<td>2888</td>
<td>146</td>
<td>8.54</td>
<td>270</td>
<td>3.96</td>
<td>446</td>
<td>5.72</td>
<td>289</td>
<td>3.65</td>
<td>1.95</td>
<td>13.2</td>
</tr>
<tr>
<td>MAD</td>
<td>641</td>
<td>26.2</td>
<td>6.45</td>
<td>49.4</td>
<td>0.45</td>
<td>355</td>
<td>2.61</td>
<td>132</td>
<td>1.24</td>
<td>0.34</td>
<td>10.8</td>
</tr>
</tbody>
</table>

Abbreviations: MAD = median absolute deviation, BQ = gray banded vein quartz, CQ = calcite-quartz vein quartz.
Figure 7

(a) Denritic quartz/Chondrite

(b) UST quartz/Chondrite

(c) BQ1, BQ2, BQ3

(d) CO/Chondrite
Figure 8

(a) Dendritic quartz

(b) Laser pits

TR (ppm) vs Distance (µm)

AI (ppm) vs Distance (µm)

K (ppm) vs Distance (µm)

Ca (ppm) vs Distance (µm)

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld