1	REVISION 2
2	
3	Title: Sulfur speciation in dacitic melts using X-ray absorption near-edge structure
4	spectroscopy of the S K-edge (S-XANES): Consideration of radiation-induced
5	changes and the implications for sulfur in natural arc systems
6	
7	Word count: 9,922
8	Authors: Jackie M. Kleinsasser ¹ , Brian A. Konecke ² , Adam C. Simon ¹ , Paul Northrup ³ , Antonio
9	Lanzirotti ⁺ , Matthew Newville ⁺ , Camelia Borca ⁹ , Thomas Huthwelker ⁹ , Francois Holtz ⁶
10 11 12 13	¹ Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan ² Fathom Geophysics, LLC ³ Stony Brook University, Stony Brook, New York
14 15	⁴ University of Chicago, Argonne National Lab, Lemont, Illinois ⁵ Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
16	⁶ Institut für Mineralogie, Leibniz Universität, Hannover, Germany
17	
18 19	Keywords: Sulfur, S-XANES, oxidation states, sulfate, sulfide, beam damage
20 21	ABSTRACT
22	The synchrotron technique of micro X-ray absorption near-edge structure spectroscopy at the
23	sulfur <i>K</i> -edge (S-XANES) provides a unique opportunity to measure the proportion of different
24	oxidation states of sulfur (S) in silicate glasses. Although applied extensively in the analysis of
25	basaltic silicate glasses, few S-XANES studies have investigated variations in S oxidation states
26	with fO_2 in felsic silicate glasses. In addition, no study has systematically compared the S-
27	XANES results obtained from the same samples at different photon flux densities to quantify the
28	relationship between exposure time and changes in S speciation in silicate glass, as has been
29	done for Fe and V. This study evaluates observed differences in S speciation measured in
30	experimentally produced H2O-saturated dacitic glasses over a range of reducing to oxidizing
31	conditions (from log $fO_2 = \Delta FMQ$ -0.7 to ΔFMQ +3.3; FMQ is the fayalite-magnetite-quartz
32	mineral redox buffer) and equilibrated at 1000°C and 300 MPa.

33	S-XANES spectra were collected at three different photon flux densities using three
34	microspectroscopy beamlines. As is observed in S-XANES analyses of basaltic silicate glasses,
35	beam-induced changes to the $S^{6+}/\Sigma S$ are observed as a function of photon flux density and beam
36	exposure time. Our results demonstrate that silicate glasses of dacitic composition undergo
37	beam-induced photo-reduction in samples equilibrated at $\Delta FMQ > +1.75$ and photo-oxidation if
38	equilibrated at $\Delta FMQ < +1$. The time required to observe beam-induced changes in the spectra
39	varies as a function of flux density, and our study establishes an upper photon density limit at
40	${\sim}1.0 \ x \ 10^{12} \ photons/\mu m^2.$ The $S^{6+}\!/\Sigma S$ calculated from spectra collected below this absorbed
41	photon limit at intermediate flux densities (~1–4 x 10^9 photons/sec per μ m ²) are affected by
42	beam damage, as no conditions were found to be completely free of beam-induced changes.
43	However, the $S^{6+}/\Sigma S$ ratios calculated below the limit at intermediate flux densities are consistent
44	with thermodynamic constraints, demonstrating that $S^{6+}/\Sigma S$ ratios calculated from S-XANES
45	spectra can be considered reliable for estimating the oxygen fugacity.
46	Our results carry important implications for the S budget of felsic magmas and
47	dissolution mechanisms in evolved melts. While our results from all three flux densities show the
48	presence of S^{4+} dissolved in relatively oxidized ($\Delta FMQ>+1.75$) dacitic glass, even in the
49	spectra exposed to the lowest photon densities, we are unable to rule out the possibility that the
50	S ⁴⁺ signal is the result of instantaneous X-ray irradiation induced beam damage using S-XANES
51	alone. When our spectra are compared to S-XANES spectra from basaltic silicate glasses,
52	important differences exist in the solubility of S^{2-} and S^{6+} between dacitic silicate melts, pointing
53	to differences in solubility mechanisms as melt composition changes. This study highlights the
54	need for further investigation into beam damage systematics, presence of S ⁴⁺ , and the solubility
55	mechanisms of different oxidation states of S as silicate melt composition changes.
56	

Ū

57

58

59

60

INTRODUCTION

Understanding the solubility of sulfide (S^{2-}), sulfite (S^{4+}), and sulfate (S^{6+}) in silicate 61 62 melts has remained a challenge to geochemists despite more than half a century of study. The 63 complicated dependence of dissolution mechanisms on temperature, pressure, oxygen fugacity 64 (fO_2) , melt composition, and volatile content is compounded by difficulties in quantifying the 65 multiple oxidation states of sulfur (S) in quenched silicate melts (glasses). The advent of utilizing 66 X-ray absorption spectroscopy (XAS) to measure the proportions of multiple oxidation states of S present in non-crystalline silicate glasses was first presented by Paris et al. (2001). A non-67 destructive technique that offers high resolution and low detection limits (< 0.005 wt% S; Klimm 68 69 et al., 2012), micro X-ray absorption near-edge structure spectroscopy conducted at the S K-edge 70 (S-XANES) has since proven useful in determining the oxidation states and chemical environment of S in natural and synthetic silicate glasses due to the correlation between peak 71 72 intensity and concentration (Li et al., 1995; Fleet et al. 2005). Multiple S-XANES studies have confirmed that S²⁻ and S⁶⁺ are the dominant oxidation states of S dissolved in a variety of 73 compositions of silicate glasses (Paris et al., 2001; Bonnin-Mosbah et al., 2002; Metrich et al., 74 2002; 2009; Fleet 2005; Jugo et al. 2010; Lerner et al., 2021); however, the existence of S^{4+} as a 75 76 stable species soluble in silicate melts remains controversial. In the earliest studies, Paris et al. (2001) and Fleet et al. (2005) did not observe any spectral evidence for the presence of S^{4+} in 77 78 their synthetic basaltic to dacitic glasses, while the natural basaltic olivine-hosted melt inclusions 79 analyzed by Bonnin-Mosbah et al. (2002) and Metrich et al. (2002) did show evidence for the presence of S⁴⁺. Backnaes et al. (2008) investigated the dissolution mechanisms of S⁴⁺ in Na-rich 80 glasses (14–22.8 wt% Na) and reported no clear evidence for S^{4+} . 81

To investigate the possible stability of S^{4+} in silicate melt, Wilke et al. (2008) analyzed 82 83 five silicate glasses (two of basaltic and three of andesitic composition) at the European 84 Synchrotron Radiation Facility (ESRF; beamline ID21) in Grenoble, France, and one hydrous 85 soda-lime silicate glass at the Swiss Light Source (LUCIA beamline) in Villigen, Switzerland. 86 Experimental conditions ranged from 200–1000 MPa and 1000–1300°C. Those authors concluded that the presence of a S⁴⁺ peak in S-XANES spectra from silicate glasses is an 87 analytical artifact caused by irradiation with an electron beam (during prior EPMA analysis) or 88 89 an intense focused X-ray beam (during synchrotron S-XANES analysis). As the first study to systematically investigate beam damage in silicate glasses during S-XANES analyses, a focused 90 beam of $< 1 \mu m$ induced the photo-reduction of S⁶⁺ to S⁴⁺ with increased beam intensity and time 91 of exposure at the ESRF and the photo-oxidation of S^{2-} to S^{4+} in the soda-lime silicate glass at 92 the SLS (Wilke et al., 2008). Wilke et al. (2008) found that beam damage is accelerated when the 93 silicate glass contains H₂O and concluded that S²⁻ and S⁶⁺ are the only oxidation states of S 94 present in silicate glasses and that S⁴⁺ is not a stable species. Those authors reported that the 95 observance of S^{4+} was not immediate, but on the order of minutes depending on the beam 96 97 intensity and beam size, and that certain analytical protocols can be implemented to obtain 98 reliable, unaltered measurements (e.g., polishing samples before S-XANES analyses, using a larger beam size, moving the sample during analysis). Wilke et al. (2008) noted differences in the 99 type and magnitude of beam damage incurred in their comparison between results collected at 100 101 the SLS vs. ESRF. However, since the same samples were not analyzed at both beamlines, and 102 therefore at different flux densities and total exposures, the authors were only able to conclude 103 that beam damage may depend on the composition of the glass analyzed and that photon-induced

104 oxidation or reduction is a complex process that affects the local structural environment and is105 different between beamlines.

106 Metrich et al. (2009) also investigated the speciation of S in a variety of synthetic and natural silicate glasses at 1400°C and 1–15 kbar using S-XANES analyses conducted at the 107 ESRF beamline ID21. Focusing on basaltic to andesitic compositions, those authors concluded 108 that S⁴⁺ is a stable species in their anhydrite-saturated Fe-free experimental glasses synthesized 109 110 at pressures of 4-16 kbar. However, the fO_2 of their experiments was not well constrained and the authors were only able to conclude that there may be a window where S^{4+} is stable in Fe-free 111 112 or Fe-poor silicate glasses around the NNO (Ni-NiO) mineral redox buffer at higher pressures (Metrich et al., 2009). Klimm et al. (2012a, 2012b) conducted a study using a soda-lime glass, a 113 114 K₂Si₄O₉ glass, an albitic glass, and a trondhjemitic glass and tested various analytical methods 115 (including S-XANES) to determine the oxidation states of S present. Experiments were 116 equilibrated at 200 MPa and either 850°C or 1000°C. Those authors demonstrate that increasing 117 the Fe content of the melt renders the glass less susceptible to beam damage during S-XANES 118 analyses and suggest that S⁴⁺ is produced at the surface during beam-sample interaction. While these studies shed new light on the effect of Fe on the solubility of S²⁻ and the utility of different 119 120 methods of determining the oxidation states of S, the synthetic melt compositions are much 121 simplified from natural silicate melts. As one of the main conclusions from Klimm et al. (2012a, 2012b) is that melt composition plays a major role in the magnitude and character of beam 122 123 damage, major questions remain on how S oxidation states vary in natural melt compositions, 124 especially more felsic compositions, as a function of fO_2 . 125 Most recently, Lerner et al. (2021) conducted a study measuring Fe- and S-XANES in

126 natural glasses, melt inclusions, and synthetic glasses to improve identification of beam damage

and provide methods to correct for it. Those authors assumed all S^{4+} detected was an analytical 127 artifact as proposed by Wilke et al. (2008) and their sample set consisted of mostly basaltic melt 128 129 compositions: two synthetic basaltic glasses (1500 and 2000 MPa, 1300°C), three mid-ocean 130 ridge basalts, one basaltic glass and two melt inclusions from Kilauea, and one melt inclusion 131 from the Lassen cinder cone in the Cascades. However, their correction method is only valid for photo-reduction of S^{6+} to S^{4+} , and the effects and conditions of photo-oxidation of S^{2-} to S^{4+} or 132 S^{6+} remain unresolved. Therefore, to fully quantify the effects of beam damage at different levels 133 of photon flux density and understand the possible dissolution of S⁴⁺ in felsic silicate melts, more 134 135 work is required. 136 We present new experimental data to further test the conclusions presented in Wilke et al. (2008) for dacitic melts across a range of fO_2 using three different photon flux densities. Our 137 138 experiments were conducted using H_2O -saturated natural dacitic melts equilibrated at ΔFMQ -0.7, 139 ΔFMQ+0, ΔFMQ+0.5, ΔFMQ+1, ΔFMQ+1.48, ΔFMQ+1.54, ΔFMQ+1.75, ΔFMQ+2.08, and 140 Δ FMO+3.3, at 1000°C and 300 MPa (FMO - favalite-magnetite-quartz mineral redox buffer). The 141 bulk composition and experimental conditions were selected to represent an intermediate to 142 evolved silicate melt using a natural dacite from Quizapu Volcano, Chile, as starting material 143 (Ruprecht et al., 2012), at mid- to upper-crustal levels in an arc magmatic system across the fO_2 144 range where the melt changes from sulfide- to sulfate-dominant. In the first systematic study of its 145 kind, we compare the onset and magnitude of radiation-induced S-XANES beam damage on 146 hydrous dacitic silicate melts defined using three radiation levels. We also discuss the implications of the S species identified and the S⁶⁺/ Σ S variation as a function of fO_2 for natural arc magmas. 147 148 149

150

METHODS

- 151 **Experimental approach**
 - 6

152 Ten hydrous, apatite-doped (5 wt% Durango apatite) dacitic glasses were synthesized in 153 rapid-quench internally heated pressure vessels (IHPV) at Leibniz Universität in Hannover, 154 Germany, at 300 MPa, 1000°C, and at nine imposed oxidation states ranging from reducing to 155 oxidizing (fO_2 from -11.42 to -7.42 bars). All experiments were run for 72 hours (±10 minutes) 156 and contained 0.28 or 0.38 wt% S, which was sufficient to attain sulfide saturation in the more 157 reducing experiments (Δ FMQ-0.7, Δ FMQ+0, Δ FMQ+0.5, and Δ FMQ+1, Δ FMQ+1.48, 158 Δ FMO+1.54) and approach or achieve sulfate saturation in the more oxidizing experiments 159 $(\Delta FMQ+1.75, \Delta FMQ+2.08, and \Delta FMQ+3.3)$. Reduced S as pyrrhotite was added for experiments 160 conducted at Δ FMO-0.7, Δ FMO+0, Δ FMO+0.5, and Δ FMO+1 in the amount of 0.75 wt% 161 pyrrhotite (0.28 wt% S). Elemental S was added to the more oxidizing experiments at Δ FMQ+1.48, 162 Δ FMQ+1.54, Δ FMQ+1.75, Δ FMQ+2.08 and Δ FMQ+3.3, with the intent of adding a more 163 oxidized form of S to attain redox equilibrium faster. In these experiments 0.28 wt% S was added to the capsules run at Δ FMQ+1.75 and Δ FMQ+3.3, while 0.38 wt% S was added for those at 164 165 Δ FMO+1.48 and Δ FMO+1.54. Two capsules were run at the same time at Δ FMO+2.08, with 0.28 166 wt% and 0.38 wt% S. Furthermore, additional Fe was added to the oxidized charges as hematite 167 (Fe_2O_3) in the same proportion as that provided by pyrrhotite in the reduced experiments (1 wt%) 168 S to 2.4 wt% hem). Table 1 gives the experimental details. In order to more closely represent a 169 hydrous arc magma, all experiments were saturated with H₂O by the addition of ~ 6.75 wt% pure 170 H₂O to the dry starting material. VolatileCalc 2.0 (Newman and Lowenstern, 2002) was used to 171 estimate the amount of water required to reach H₂O-saturation.

- For all runs except the most oxidizing (Δ FMQ+3.3), the *f*O₂ in the IHPV was imposed by adding calculated amounts of H₂ gas before heating along with the Ar pressure medium (see *p*H₂ initial, Table 1) and monitored throughout the duration of the experiment using a Shaw-membrane
 - 7

175 (Berndt et al., 2002). Noble metal capsules are permeable to H_2 at high pressure. Thus, considering 176 the equilibrium reaction of water formation $(H_2 + \frac{1}{2}O_2 \leftrightarrow H_2O)$, increasing amounts of H₂ in the 177 pressure medium results in a decrease of fO_2 in water-saturated samples. Since all experiments 178 were volatile saturated, we assumed that $a_{H2O} = 1$, which allowed us to calculate the necessary pH_2 179 initial to achieve the target fO_2 (Table 1). In our experiments, the run duration was too short to 180 attain osmotic equilibrium between the Shaw membrane and the pressure vessel (the pH_2 in the 181 membrane was still increasing after 72 hours) so that the pH_2 prevailing in the experimental sample 182 at high temperature could not be measured accurately with the Shaw membrane. However, the 183 expected pH_2 was compared to the measured pH_2 values at osmotic equilibrium by Berndt et al. 184 (2002) in a series of tests performed on the same pressure vessel that was used for this study. The 185 difference between both values was low or even negligible and transfers to an fO_2 difference of 186 less than 0.1 log unit (Berndt et al., 2002), which confirmed previous observations made by Scaillet 187 et al. (1992) and agrees with more recent observations (Michaud et al., 2022). We acknowledge 188 that the presence of additional volatile species in significant amounts would lower the $a_{\rm H2O}$, which 189 is an additional source of uncertainty in the calculated fO_2 values. However, Zajacz et al. (2012; 190 2013) have shown that, for intermediate silicate melts, the S concentration in aqueous fluid in 191 equilibrium with sulfide- and anhydrite-saturated melts at similar pressures and temperatures is 192 only on the order of 3–5 mol%. Those results, taken together with the small spread of expected 193 values of the EPMA-derived water concentrations and the fact that the anhydrous starting glass 194 total is very close to 100 wt%, point to the $a_{\rm H2O}$ being very close to 1 for these experiments, which 195 would not affect significantly the resulting fO_2 . Considering that the activity of H₂O was slightly 196 below 1 and that pH_2 at high temperature was calculated from initial, we estimate that the

197 uncertainty of fO_2 is lower than ± 0.25 log units. Reported temperatures are accurate to $\pm 5^{\circ}C$ and 198 reported pressures to ± 1 MPa.

199 An isobaric rapid quench terminated each experiment and a small pressure increase of $\sim 3-$ 200 5 bars related to the capsule drop from the hot end to the cold bottom of the vessel confirmed the 201 success of this technique. The recovered capsules were then cleaned with ethanol and weighed to 202 verify capsule integrity; any capsules that showed weight loss after quenching were discarded. A 203 total of 10 experimental run products were extracted, mounted in epoxy and polished for analysis. 204 The quenched glasses were first analyzed using EPMA at the University of Michigan on a 205 CAMECA SX-100 to measure major (Si, Al, Ca, Mg, Fe, Na, K) and minor element (Ti, P, Mn, 206 Cl, S) concentrations (Table 2). Two beam conditions were used for each analyzed spot, both with 207 an accelerating voltage of 15 keV and beam size of 10 µm but with distinct beam currents. Silicon, 208 Al, Ti, Ca, Mg, Fe, Mn, P, K, and Na were measured first using a beam current of 6 nA, followed 209 by measurement of S and Cl using a beam current of 40 nA to achieve low detection limits for 210 these latter elements (0.005 wt% for S and 0.014 wt% for Cl). See Supplementary Table S1 for 211 EPMA details. Every attempt was made to perform analyses on crystal-free glass areas, and care 212 was taken to monitor the contribution of other phases within the electron beam activation volume. 213 Calcium and P were used as a proxy for apatite, and analyses with elevated concentrations of both 214 CaO and P₂O₅ together with a decrease in Al₂O₃, K₂O, or Cl were discarded.

215

216 Assessment of equilibrium

Equilibrium was assessed by measuring the compositional homogeneity of the run product glasses and performing an additional experiment to verify that the imposed fH_2 of the vessel was equilibrated with that inside the capsule. Low standard errors for all elements measured in the

220 silicate glasses (i.e., quenched dacitic melts) as reported in Table 2 evince that the melts were 221 compositionally homogenous, given that the EPMA spot analyses were conducted across the entire 222 exposed surface of each sample. Synchrotron X-ray fluorescence maps confirmed homogeneity of 223 S as well as P, Si, Al, and Mg across the glass areas of each mapped sample. Achieving 224 homogeneity of Fe and S is especially important in this test as these elements were initially 225 mechanically mixed and added to the capsules. One additional experiment (QD-305) that 226 contained 1.5 wt% pyrrhotite as the source of 0.57 wt% S was performed under oxidizing 227 conditions (Δ FMQ+3.3) to test if the melt reached redox equilibrium within the run duration. 228 Importantly, the test resulted in the same phase assemblage as the experiment conducted at 229 Δ FMQ+3.3 (QD2-5; Table 1) that started with 0.28 wt% elemental S at Δ FMQ+3.3, indicating that 230 72 hours was sufficient to oxidize the reduced S and Fe initially present. This result is consistent 231 with previous experiments involving S under the same temperature and pressure conditions using 232 the same experimental vessels that demonstrated that redox equilibrium was reached in <10 hours 233 (Fiege et al., 2014).

234

235 Micro X-ray absorption near-edge structure spectroscopy

236 To measure the S oxidation states of the quenched glasses, fluorescence mode S-XANES 237 was conducted at the Advanced Photon Source (the APS) of Argonne National Laboratory, 238 Chicago, IL, USA (see Sutton et al. 2017 for beamline specifications), the Swiss Light Source 239 (the SLS; https://www.psi.ch/en/sls/phoenix.com) of the Paul Scherrer Institute, Villigen, 240 Switzerland, and the National Synchrotron Light Source-II (the NSLS-II) of Brookhaven 241 National Laboratory, Upton, NY, USA (see Northrup, 2019 for beamline specifications). Details 242 on the beamline setup parameters used for this study can be found in Table 3. All three beamlines 243 employ double crystal (silicon 111) monochromators to generate monochromatic radiation

focused with a Kirkpatrick-Baez mirror system. Following the protocol suggested in Wilke et al.
(2008), all sample surfaces were freshly polished prior to S-XANES analyses at each beamline to
remove any altered regions from previous EPMA or S-XANES analyses. Due to the presence of
apatite and other crystals in the dacitic glass, a focused microbeam was used for mapping and
spot XAS analyses. All samples were held stationary during XAS acquisition.

249 Freshly polished sample surfaces were positioned at 45° from the incoming beam and 250 fluorescence detectors at 90° to minimize scattering contributions. We followed the collection 251 and processing procedures described in Konecke et al. (2017) and Konecke et al. (2017; 2019). 252 X-ray fluorescence (XRF) maps were acquired at all beamlines immediately preceding spectra 253 collection to select clean areas of glass for analyses, which we acknowledge exposed the sample 254 surface to the beam prior to spectra acquisition. Table 3 documents the scan parameters used at 255 each beamline and Supplementary Figure S1 shows examples of how the XRF maps were used 256 for point selection. At the SLS and the APS beamlines S fluorescence spectra were collected 257 using energy dispersive four-element silicon drift diode detector arrays and corrected for detector 258 and electronics dead time. A single ultra-low energy Ge fluorescence detector was used at the 259 NSLS-II. Fixed analog signal processing was used at NSLS-II, Xspress3 adaptive digital signal 260 process at the APS, and the XMAP digital processing system at the SLS. The S-XANES spectra 261 were collected by scanning the incident beam energy from 2440 to 2550 eV using a slightly 262 different setup at each beamline (see Table 3). While step scanning was used at the SLS and the 263 APS, measurement at the NSLS-II which consisted of 15–100 on-the-fly-scans (e.g., quick, 264 continuous motion scans). Wilke et al. (2008) also used this method for spectra collected at 265 ESRF beamline ID21. All scans were divided into the same three energy regions: i) a pre-edge 266 background region from 2440–2460 eV, ii) the edge region from 2460–2500 eV, and iii) a post-

267	edge region from 2500–2550 eV. The European Synchrotron Radiation Facility S K-edge
268	XANES spectra database was used to identify the S^{6+} (~2482 eV; anhydrite), S^{4+} (~2478 eV;
269	sodium sulfite), and S^{2-} (~2470 eV; pyrrhotite) peak energy position for the unknowns. As noted
270	in Table 3, the monochromator calibration for sulfate-containing standards at each beamline is
271	slightly different, with the S ⁶⁺ peak occurring at similar but distinct energies. This causes the
272	peak positions of the various S species to be shifted to slightly different energies for each
273	beamline. For this reason we shifted the energy scales in the figures so that the S^{6+} peak of all
274	spectra was centered at 2482 eV to facilitate direct comparison of peak positions.
275	Three different photon flux densities were used, one at each beamline, and converted to
276	three levels of absorbed radiation per μm^2 by calculating the product of photon flux density and
277	data acquisition time. Casting our results in terms of the three radiation levels enables the
278	comparison of the effects of different radiation levels on changes in the S speciation (i.e., beam
279	damage) and allows for the results to be generalized and utilized at beamlines with different
280	configurations, as has been done for Fe- and V-XANES (see Cottrell et al., 2018; Lanzirotti et
281	al., 2022). The starting point for the radiation level estimates is the photon flux density
282	(photons/second per μ m ²), which is detailed for each beamline in Table 3. At the APS, the photon
283	flux density was estimated and recorded for each measurement and can be found in the raw data
284	files of the APS spectra in the Supplementary material. For our purposes the photon flux
285	densities at each fO ₂ were averaged for the APS points. The photon flux density for the NSLS-II
286	and the SLS measurements were estimated to be similar across all analyses: $\sim 2.0 \text{ x } 10^7$
287	photons/sec per μ m ² at the NSLS-II and 1.0–4.5 x 10 ¹⁰ photons/sec per μ m ² at the SLS. The flux

288 density and absorbed radiation estimates for each point are detailed in Supplementary Table S2.

289 Care was taken to analyze large pockets of glass that were both bubble- and crystal-free, even

below the surface as XRF has a significant sampling depth as compared to, e.g., SEM. Spectra
that showed a small peak at ~2483 eV were discarded, as that peak is characteristic of an apatite
S-XANES spectra (Fleet et al., 2005). S-XANES spectra were also monitored for contribution
from S-bearing epoxy, which was not observed (see Fig. 1 in Konecke et al. 2019).

294 For data analysis, S-XANES spectra were normalized against the incident flux (I_0) , the 295 pre- and post-edge set to 0 and 1, respectively, and, if applicable, spectra from the same glass 296 spot were merged using the XAS analysis software Athena (Ravel and Newville, 2005). For 297 spectra collected using the fly-scan method at the NSLS-II, merged spectra were also rebinned to 298 match the step sizes from the APS and SLS measurements and to reduce noise resulting from 299 over-sampling in energy. Peak positions and areas were then fitted using the Fityk software 300 version 1.3.1 (Wojdyr, 2010). First, an exponentially modified Gaussian (EMG) cumulative 301 distribution function was fit to subtract the background. Gaussian area curves were then fit to each peak, from which the integrated $S^{6+}/\Sigma S$ peak area ratios were calculated and compared 302 303 following Konecke et al. (2019). Peak area ratios calculated from different samples at the same fO_2 and incident flux were averaged to obtain the reported S⁶⁺/ Σ S and standard errors. The 304 305 original, raw spectra files collected at each beamline and the peak area ratios used to calculate the S⁶⁺/ Σ S of all spectra included in this study are available as a zipped folder in the Supplement 306 307 and in Supplementary Table S3, respectively.

308

RESULTS

309 Run products

All run products contain quenched dacite glass, apatite, a spinel-group mineral, and an
exsolved volatile phase (Fig. 1). Table 1 presents the glass compositions and phase assemblages.

The glasses equilibrated at Δ FMQ-0.7, Δ FMQ+0, Δ FMQ+0.5, Δ FMQ+1, Δ FMQ+1.48, and Δ FMQ+1.54 are sulfide-saturated and contain 0.0191–0.0505 wt% S. The glasses equilibrated at Δ FMQ+1.75 and Δ FMQ+2.08 are both sulfide- and sulfate-undersaturated and contain 0.0551 and 0.0307–0.1045 wt% S, respectively, while the glass equilibrated at Δ FMQ+3.3 contains 0.1138 wt% S and reached sulfate-saturation (i.e., contains anhydrite). The main sulfur-bearing phase (if present) observed at each *f*O₂ is expected given the imposed redox conditions and provide evidence that redox equilibrium was attained during the 72 hour experimental duration.

319

320 Beam damage assessment

With the results of Wilke et al. (2008) in mind, we implemented two analytical protocols to monitor beam damage when analyzing the hydrous dacitic glasses: (1) collecting 2–3 spectra per point at the APS and the SLS and 1–100 spectra at the NSLS-II to monitor changes in the spectra from the first to subsequent scans, and (2) performing time scans at the SLS and the APS on fresh spots to inspect for systematic changes in S²⁻, S⁴⁺, and S⁶⁺ counts over time (as in Metrich et al., 2009). Due to the lower flux density and fluorescence signal for S at the NSLS-II

327 beamline, only samples containing higher melt S contents were able to be analyzed

328 (ΔFMQ+1.48, ΔFMQ+1.54, ΔFMQ+1.75, ΔFMQ+2.08, and ΔFMQ+3.3).

By casting the results in terms of photon flux density or absorbed radiation per μ m², S-XANES data from different beamlines can be directly compared even though differences in the sample chamber environment, scan durations, and type of scan exist among the three beamlines used in this study (see Table 3). The data are presented in three radiation levels that were calculated from the photon flux densities. The highest radiation level was analyzed using a photon flux density of 1.0–4.5 x 10¹⁰ photons/sec per μ m². A total of 7.2 x 10¹² to 3.24 x 10¹³

335	photons/ μ m ² was acquired by the sample after each ~12 minute scan. The intermediate radiation
336	level was analyzed using a photon flux density of 1.4–5.7 x 10^9 photons/sec per μ m ² ,
337	corresponding to a total of 7.63 x 10^{11} to 3.07 x 10^{12} photons/ μ m ² after each ~9 minute scan. The
338	lowest radiation level was analyzed using a photon flux density of 2.0 x 10^7 photons/sec per μ m ² ,
339	which corresponds to 3.15 x 10^{10} to 2.10 x 10^{11} photons/ μ m ² for 15 to 100 fly-scans,
340	respectively.
341	Experiments conducted at ΔFMQ +1.75 and ΔFMQ +3.3 were analyzed at all three
342	radiation levels, so the comparison of spectra at each level enables the most direct assessment of
343	the effects of different photon flux densities. Figure 2 presents normalized spectra of the
344	experiments conducted at $\Delta FMQ+3.3$ and $\Delta FMQ+1.75$. Notations and colors are consistent for
345	Figure 2 and subsequent figures showing spectra. The peak heights are not directly comparable
346	between beamlines, but a semi-quantitative comparison can be made. In Figure 2a-b, the average
347	of the first 15 fly-scans from the lowest level has the highest S^{6+} peak, the lowest S^{4+} peak, and
348	no S ²⁻ peaks. The spectra from the highest level and scan 2 from the intermediate level are very
349	similar overall in Figure 2a-b. The general progression from the highest S^{6+} peak and lowest S^{4+}
350	and S^{2-} peaks to the lowest S^{6+} peak and the most prominent S^{4+} and S^{2-} peaks is as follows:
351	average of the first 15 scans from the lowest level, the average of the last 15 scans from the
352	lowest level, scan 1 from the intermediate level, and then scan 2 of the intermediate level and all
353	three scans from the highest level. The pattern precisely follows an increasing quantity of
354	photons absorbed per μ m ² over time, as would be expected.
355	Figure 3 presents normalized spectra from the high and intermediate radiation levels for
356	the more reduced samples at Δ FMQ-0.7, Δ FMQ+0, Δ FMQ+0.5, and Δ FMQ+1. The spectra are

357 normalized but not merged to show multiple scans collected on the same point. One of the first

358 evident differences between the spectra collected at the highest and intermediate levels is that the 359 highest level spectra are less noisy, as a result of a higher count rate. The more jagged spectra 360 produced at the intermediate level are due to relatively lower fluorescence signal because of a 361 lower incident photon flux. The highest level spectra show some change in peak height over time 362 (Fig. 3a-b and 3g), but the magnitude is generally less than the changes observed in the intermediate level spectra. The sharp S²⁻ peak at 2470.3 eV increases slightly in Fig. 3b and 363 decreases slightly in Figure 3a, 3d, and 3f. The broad S²⁻ peak at 2475.5 eV consistently shrinks 364 with subsequent scans and at both the highest and intermediate levels in Figure 3a-c, 3e-f, and 365 3h. No S^{4+} peak is detected in the more reduced spectra in Figure 3. The S^{6+} peak grows in a 366 367 number of spectra from both the radiation levels in Figure 3a-b and 3g-h. Figure 4 shows a comparison between the normalized average of the first 20 (Fig. 4a-b) 368 369 or three (Fig. 4c) scans vs the average of the final 20 or three scans collected at the lowest 370 radiation level. From Figure 4 we observe the largest changes in the spectra in Figure 4b, which 371 had the highest number of fly-scans collected (94) and therefore the longest beam interaction 372 time (164.5 minutes). Figure 4c, the sample with the fewest fly-scans (15) and shortest beam interaction time (26.25 minutes), shows a modest decrease in the S^{6+} peak over time, however, 373 no great change in peak heights of S^{4+} or S^{2-} . The lower S content of Figure 4a makes spectra 374 375 comparison difficult due to the lower signal/noise and consequent uncertainty in edge-step 376 normalization. A step scan was also tested on one experiment conducted at Δ FMQ+2.08 (QD9-4) 377 at the lowest radiation level. Each step scan took ~ 48 minutes to complete (5.76 x 10^{10} photons/µm² per scan) and a total of 14 step scans were taken on a single point of QD9-4, the 378 379 same sample as in Fig. 4c. The first step scan is comparable to the sum of the first 15 fly-scans. Figure 5 compares the first, second, and 14th step scan. Beam damage is noted already by the 380

381	second scan, evidenced by the growth of a broad peak centered at 2477.3 eV in the second scan
382	and the rise of the region between 2473–2476 eV by the 14th scan. The S^{6+} peak also decreases
383	with each subsequent scan, consistent with what is observed in Figure 2.

Figure 6 shows the results of the second beam damage assessment technique, where time 384 scans document the intensity changes in S counts for the experiment conducted at Δ FMQ+3.3 at 385 386 the intermediate and highest radiation levels at a single energy over time. Time scans are 387 conducted at a single energy and therefore only monitor a single S oxidation state over time and 388 are plotted as the relative fractional change in measured change intensity over time, as has been 389 used for Fe in Cottrell et al. (2018) and for V in Lanzirotti et al. (2022). In Figure 6a, both radiation levels show an initial maximum value for S^{6+} intensity that decays and reaches a 390 steady-state after ~60 seconds at the highest level and ~120 sec at the intermediate level. 391 392 However, the rate of decay is much higher at the highest level, where an intensity change of ~40% occurs within the first ~20 seconds compared to an intensity change of ~35% over 120 393 seconds of analysis time at the intermediate level. In Figure 6b, contrasting behavior is observed 394 for S⁴⁺ intensity. At the highest level, two separate time scans reveal the same behavior for S⁴⁺ as 395 S^{6+} : a maximum value followed by a decrease of ~50% starting intensity within ~30 seconds. In 396 the time scan from the intermediate level, the S^{4+} intensity instead increased by ~175% over 397 time, leveling off after ~ 60 seconds. The time scans of the S²⁻ intensity (Fig. 6c) show mixed 398 results. The intermediate level and one of the highest level scans show the S²⁻ intensity 399 400 increasing over time without truly leveling off, with the rate of increase being higher at the 401 intermediate level (>250% increase) compared to the highest level (~225% increase) over the total scan duration. The other time scan at the highest level shows similar behavior to the S⁶⁺ and 402 S^{4+} scans, where the S^{2-} intensity decays by ~60% within the first seconds of the scan. 403

17

- - .

404 S-XANES spectra

405	Figure 7 summarizes the results of S-XANES analyses from the highest radiation level
406	for six glasses at Δ FMQ+3.3, Δ FMQ+1.75, Δ FMQ+1, Δ FMQ+0.5, Δ FMQ+0, and Δ FMQ-0.7.
407	The spectra shown are the result of 5–7 step scan spectra from different spots that have been
408	merged. At the highest level, the most oxidizing experiments at $\Delta FMQ+3.3$ and $\Delta FMQ+1.75$
409	both contain dominantly S ⁶⁺ , with intense peaks at 2482 eV, but the spectra also show low-
410	intensity humps at the positions for S^{2-} (2470 and 2475 eV) and S^{4+} (2477 eV). At intermediate
411	fO_2 ($\Delta FMQ+1$, $\Delta FMQ+0.5$) the S ⁶⁺ peak intensity of the highest radiation level spectra is greatly
412	reduced compared to the Δ FMQ+1.75 and Δ FMQ+3.3 spectra, and is accompanied by more
413	intense S ²⁻ peaks and the disappearance of the S ⁴⁺ peak. The spectra from the most reducing
414	experiments at $\Delta FMQ+0$ and $\Delta FMQ-0.7$ are dominated by the S ²⁻ peaks and have the lowest-
415	intensity S ⁶⁺ peak.

Figure 8 summarizes the 1st scan collected at the intermediate radiation level for nine 416 glasses at ΔFMQ+3.3, ΔFMQ+2.08, ΔFMQ+1.75, ΔFMQ+1.54, ΔFMQ+1.48, ΔFMQ+1, 417 Δ FMQ+0.5, Δ FMQ+0, and Δ FMQ-0.7. The spectra shown are the result of 2–5 step scan spectra 418 from different spots that have been merged. The Δ FMQ+3.3 experiment shows exclusively S⁴⁺ 419 and S⁶⁺, with no evidence for S²⁻ species. Dacitic glass from the Δ FMQ+2.08 experiment (QD9-420 4) is dominated by S^{6+} and S^{4+} , with a minor contribution of the broad S^{2-} peak at 2475 eV. 421 Spectra from the Δ FMQ+1.75 experiment reveal a relatively smaller peak for S⁴⁺ compared to 422 the more oxidized spectra at Δ FMQ+3.3 and Δ FMQ+2.08 and the possible presence of a S²⁻ 423 424 peak. Dacitic glasses at Δ FMQ+1.54 and Δ FMQ+1.48, which are at the middle of the sulfidesulfate transition, show prominent S^{6+} and S^{2-} peaks (both sharp and broad S^{2-}) and only a minor 425 S^{4+} peak that is discernable from the broad S^{2-} peak. Spectra for the more reduced glasses are 426

427	similar to spectra collected at the highest radiation level, with an abrupt decrease in the S^{6+} peak
428	starting at $\Delta FMQ+1$ and then a gradual decrease in S ⁶⁺ peak height with a decrease in fO_2 of the
429	experiments as the S ²⁻ peaks become more dominant.
430	Figure 9 summarizes the S-XANES results for five of the glasses measured using the
431	lowest radiation level (Δ FMQ+1.48, Δ FMQ+1.54, Δ FMQ+1.75, Δ FMQ+2.08, and Δ FMQ+3.3).
432	The spectra shown are the result of 15–20 fly-scan spectra from different spots that have been
433	merged. Similar to the intermediate and highest levels, the experiments conducted at
434	Δ FMQ+1.75, Δ FMQ+2.08, and Δ FMQ+3.3 all show a dominant S ⁶⁺ peak and minor to no S ⁴⁺
435	peak. The intermediate fO_2 experiments at $\Delta FMQ+1.54$ and $\Delta FMQ+1.48$ have markedly lower
436	intensity S^{6+} peaks and the appearance of intermediate to reduced S species at 2477.3 eV (S ⁴⁺)
437	and ~2471 eV (S ¹⁻), although they are more difficult to resolve given the lower signal/noise.
438 439 440	Estimated S ⁶⁺ /ΣS ratios
441	The ratio of oxidized S to total S (S ⁶⁺ / Σ S) was calculated for spectra from all three
442	radiation levels, reported in Tables 4, 5, and 6 and summarized in Figure 10. The highest
443	radiation level S ⁶⁺ / Σ S ratios ranged from 0.72–0.74 at Δ FMQ+3.3, 0.75–0.84 at Δ FMQ+1.75,
444	0.25–0.27 at Δ FMQ+1, 0.20–0.46 at Δ FMQ+0.5, 0.17–0.22 at Δ FMQ+0, and 0.03–0.15 at
445	Δ FMQ-0.7 (Table 4). The lowest level S ⁶⁺ / Σ S ratios were calculated to be 0.98 from the first 15
446	fly-scans at Δ FMQ+3.3, 0.98 from the first 3 fly-scans at Δ FMQ+2.08, 0.87 from the first 15 fly-
447	scans at Δ FMQ+1.75, 0.52–0.54 from the first 20 fly-scans at Δ FMQ+1.54, and 0.38–0.52 from
448	the first 20 fly-scans at Δ FMQ+1.48 (Table 5). The calculated S ⁶⁺ / Σ S ratios from the
449	intermediate level varied from scan 1 to scan 2 and are plotted separately in Fig. 10. $S^{6+}\!/\Sigma S$
450	ranged from 0.82–0.92 and 0.73–0.76 for scans 1 and 2, respectively, at Δ FMQ+3.3, 0.74–0.77
451	for both scans 1 and 2 at Δ FMQ+1.75, from 0.13–0.16 and 0.16–0.21 for scans 1 and 2,

452 respectively, at Δ FMQ+1, 0.11–0.13 and 0.17–0.22 for scans 1 and 2, respectively, at

453 Δ FMQ+0.5, from 0.07–0.08 and 0.08–0.09 for scans 1 and 2, respectively, at Δ FMQ+0, and

- 454 0.07–0.08 and 0.13 for scans 1 and 2, respectively, at Δ FMQ-0.7 (Table 6).
- 455
- 456

DISCUSSION

457 Quantifying beam damage

458 Analyzing the same S-bearing dacitic glasses using three different radiation levels allows 459 us to compare the beam damage incurred at each level and estimate the exposure/time conditions for S-XANES analyses. Starting with the highest level, spectra collected do not visibly change 460 much from scan 1 to 2 to 3, save for some growth in the S^{6+} peak in the more reduced spectra 461 (Fig. 3). This indicates that at or above photon flux densities of $1.0-4.5 \times 10^{10}$ photons/sec per 462 463 μ m², beam damage has reached a maximum after just a few minutes and does not continue to 464 alter the S speciation in the silicate glass to an observable degree. Given that a single ~ 12 minute 465 scan at the highest level is virtually indistinguishable from subsequent scans at that level and that 466 all but one time scan in Fig. 6 reach a constant intensity within one minute, we estimate that 467 within two minutes of analyses beam damage has occurred and significantly altered the S 468 oxidation states in the glass. Therefore, the threshold for beam damage at the highest radiation level is estimated to be at least $1.2-5.4 \times 10^{12}$ photons/µm². Importantly, any S-XANES 469 measurements on silicate glasses above this threshold will not show evidence for beam damage 470 471 even though it has occurred. 472 The intermediate radiation level considered in this study had a photon flux density that

ranged from 1.4–5.7 x 10^9 photons/sec per μ m². In contrast to the highest level, spectra from

scans 1 and 2 collected at the intermediate level reveal significant changes in peak heights and

20

473

the appearance of peaks at intermediate S oxidation states over the time frame of ~9 minutes of 475 beam exposure. The consistent differences between the calculated $S^{6+}/\Sigma S$ ratios between scans 1 476 477 and 2 at the intermediate level are direct evidence of beam damage and allow us to semi-478 quantitatively assess the amount of absorbed photons required to cause damage. To visualize the difference in S⁶⁺/ Σ S between scan 1 and 2 at the intermediate level. Figure 11 compares the 479 $S^{6+}/\Sigma S$ at each fO₂. Figure 11a shows that the $S^{6+}/\Sigma S$ of scan 1 is always lower than that of scan 2 480 481 for the more reduced experiments (Δ FMQ-0.7, Δ FMQ+0, Δ FMQ+0.5, Δ FMQ+1), while Figure 11b shows that the S⁶⁺/ Σ S of scan 1 are higher than scan 2 for the more oxidized experiments 482 483 $(\Delta FMO+2.08 \text{ and } \Delta FMO+3.3)$. The intermediate fO_2 experiments ($\Delta FMO+1.54$, Fig. 11a; 484 Δ FMQ+1.75, Fig. 11b) do not show consistent increases or decreases from scan 1 to scan 2. 485 Figure 11 demonstrates that beam damage induces both oxidation and reduction of S over time in 486 the dacitic glass depending on the starting fO_2 of the experiment – for glasses that are relatively reduced, beam exposure causes photo-oxidation; for glasses that are relatively oxidized, beam 487 488 exposure causes photo-reduction. However, at intermediate fO_2 ($\Delta FMO+1.54$ and $\Delta FMO+1.75$), the direction of the change in $S^{6+}/\Sigma S$ is not consistent. For the most oxidized glasses the $S^{6+}/\Sigma S$ 489 490 of scan 2 is an average of 13.5% lower than scan 1 at Δ FMQ+3.3 and an average of 8.9% lower 491 at Δ FMQ+2.08 (Table 6). For the more reduced glasses (at Δ FMQ-0.7, Δ FMQ+0, Δ FMQ+0.5, and Δ FMO+1) the average S⁶⁺/ Σ S for scan 2 is 22–75% higher than scan 2 (Table 6). No 492 493 systematic increase or decrease in the percent difference between scans 1 and 2 exists for the 494 glasses analyzed in this study, pointing to a relatively unpredictable magnitude of change from 495 scan 1 to scan 2 of the intermediate level spectra. From Figures 2, 3, 10, and 11 it is evident that the S⁶⁺/ Σ S is significantly altered within 9 minutes of beam exposure using a photon flux density 496 497 of 1.41–5.69 x 10^9 photons/sec per μ m².

However, understanding if scan 1 from the intermediate level represents the original, 498 unaltered S⁶⁺/ Σ S of the glass is a separate question. From the time scans shown in Figure 6 we 499 observe the S^{6+} intensity decreasing while the S^{4+} and S^{2-} intensity increase over time on the 500 most oxidized sample (Δ FMO+3.3). This is evidence that the S⁶⁺/ Σ S is altered during the first 501 502 minutes of measurement at the intermediate level. We also observe a significant overlap in the 503 total radiation received during scan 1 vs. scan 2 at the intermediate level: the average absorbed photons for scan 1 ranges from 7.63 x 10^{11} to 3.07 x 10^{12} photons/ μ m² after ~9 minutes and the 504 average for scan 2 ranges from 1.53 x 10^{12} to 6.15 x 10^{12} photons/ μ m² after ~18 minutes 505 506 (Supplementary Table S2). Therefore, we can estimate the beam damage threshold at the intermediate level to be 7.63 x 10^{11} to ~1.0 x 10^{12} photons/µm². This range is considered the least 507 altered at the intermediate level since it represents the amount of absorbed photons that is 508 between scan 1 and the lowest value of scan 2 at the intermediate level, as well as below the 509 510 threshold estimated from the highest radiation level. 511 Finally, we consider the lowest radiation level: the spectra collected with a photon flux density of 2.0 x 10^7 photons/sec per μ m². The nature of the fly-scan collection method made it 512 easier to observe and quantify beam damage, although the lower flux density/higher S detection 513 514 limit compared to the intermediate and highest levels made interpreting the lower-concentration intermediate to reduced spectra difficult. The S⁶⁺/ Σ S calculated from oxidized (Δ FMO+3.3, 515 Δ FMQ+1.75) spectra collected using the lowest level are consistently higher than the S⁶⁺/ Σ S 516 517 calculated from the highest and intermediate levels (Fig. 10). The fact that we observe changes in 518 the spectra from the averages of the first ≤ 15 scans compared to the last 3–20 scans (Figs. 2, 4,

and 5) proves that beam damage alters the spectra collected at the lowest radiation level. Figure

520 4c compares the first 3 scans to the final 3 scans of 15 total and shows that after \sim 20 minutes of

22

beam exposure (12+ scans) the S^{6+} peak height has decreased relative to the first 3 scans.

However, it is important to note that both spectra from Figure 4c yielded similar S⁶⁺/ Σ S because neither the S⁴⁺ or S²⁻ peaks increased greatly within that time: 0.983 for the first 3 scans vs. 0.965 for the last 3 scans. We determine the absorbed photon threshold to be estimated at 1.44 x 10¹⁰ photons/ μ m² for the lowest radiation level, which corresponds to 12 fly-scans or ~20 minutes of beam interaction.

527 Similar to the intermediate radiation level, beam damage at the lowest level manifests as a decrease in the S⁶⁺/ Σ S for intermediate to oxidized experiments (Δ FMO+1.48, Δ FMO+1.54, 528 529 Δ FMO+1.75, Δ FMO+2.08, and Δ FMO+3.3). Since the number of fly-scans can be grouped and merged over time to represent snapshots of the $S^{6+}/\Sigma S$ as a function of beam exposure, we plot 530 the beam exposure time vs. the calculated $S^{6+}/\Sigma S$ for the glasses analyzed using fly-scans in 531 532 Figure 12. While no systematic oxidation/reduction trend exists, evidenced by the differences in slopes between points, beam damage begins to affect the S⁶⁺/ Σ S after < 25 minutes of beam 533 534 exposure, consistent with observations described in the previous paragraph. The most oxidized experiment at Δ FMQ+3.3 showed the least change in the S⁶⁺/ Σ S over time, while the experiment 535 536 at Δ FMQ+1.75 showed the largest change over a shorter time frame (Fig. 12). Comparison of the 537 fly-scans with a set of step scans collected at the lowest level showed a similar result: as one 48 538 minute step scan equals >27 fly-scans, the manifestation of beam damage already between scans 539 1 and 2 in Figure 5 is consistent with beam damage being observed after the absorption of > 1.44x 10^{10} photons/ μ m². 540

Given all these observations, we conclude that the spectra that recorded the least amount of beam damage during this study were the first < 15 fly-scans from the lowest radiation level, as would be expected. At the photon flux density of 2.0 x 10^7 photons/second per μ m², the photons

544	absorbed after 20 minutes (3–12 fly-scans) was between 6.3 x 10^9 to 1.44 x 10^{10} photons/ μ m ²
545	(Supplementary Table S2). This range represents the amount of absorbed radiation the dacitic
546	glass can take before the $S^{6+}/\Sigma S$ is altered significantly from its original value at the lowest
547	radiation level. However, the lower signal at lower flux limits measurements of lower
548	concentration samples such as the more reduced glasses in our experiments (< 0.025 wt\% S).
549	Therefore, at a beamline with a photon flux density comparable to 2.0×10^7 photons/second per
550	μ m ² , reduced samples (Δ FMQ < +1.5) cannot be measured reliably. Those measurements need to
551	be performed at a beamline with a higher photon flux density and consequently a higher S
552	fluorescence signal, as photon density limits permit. Another important result from this study is
553	that beam damage appears to level off after reaching a maximum. The S-XANES spectra from
554	scan 2 at the intermediate level and the scans from the highest level are overall similar (Figs. 2
555	and 3).

556

557 Mechanisms of photo-oxidation and photo-reduction

558 The existence of two types of radiation-induced changes, photo-oxidation of more 559 reduced glasses and photo-reduction of more oxidized glasses, complicates the conclusions 560 reached by previous authors investigating S-XANES beam damage on basaltic silicate glasses (e.g., Wilke et al. 2008; Lerner et al., 2021). These mechanisms operate independently, or even 561 compete, and therefore likely differ in what photon flux density and time are necessary to impact 562 measured results in hydrous dacitic silicate glasses. The reduction of S^{6+} to S^{4+} shows the fastest 563 564 and largest magnitude change and is well documented in basaltic silicate glasses that are both oxidized ($S^{6+}/\Sigma S = 1.0$) and reduced ($S^{6+}/\Sigma S = 0.04-0.08$; see Fig. 10 in Lerner et al., 2021). The 565 oxidation of S²⁻ to S⁶⁺ in more reduced silicate glasses ($\Delta FMQ \leq 1$) recognized in Figures 3 and 566

567	11, however, has not been documented for anhydrous or hydrous basaltic or andesitic silicate
568	glasses. Understanding photo-oxidation processes are important because even a small amount of
569	oxidation of S ²⁻ to S ⁶⁺ will impact the S ⁶⁺ / Σ S ratio owing to the small initial amount of S ⁶⁺ in the
570	more reduced samples. Wilke et al. (2008) report photo-oxidation of S ²⁻ during S-XANES
571	measurements taken on their hydrous soda-lime silicate glass (SiO ₂ = 67.3 wt%, CaO = 7.7 wt%,
572	$Na_2O = 22.5 \text{ wt\%}, H_2O = 5 \text{ wt\%}, S = 2 \text{ wt\%}$) equilibrated at $\Delta FMQ+0$ conducted at the SLS
573	LUCIA beamline. Because those authors did not observe photo-oxidation during analyses of
574	their andesitic and basaltic silicate glasses at the ESRF, Wilke et al. (2008) attribute the oxidation
575	to differences in beam intensity and/or the glass chemistry and stress that photon irradiation
576	produces complex interactions and reorganizations in the local structural environment
577	Reaction of dissolved H ₂ O molecules in the silicate glass during Fe-XANES analysis has
578	been shown to play a major role in the oxidation of Fe^{2+} to Fe^{3+} in basaltic silicate melts. Cottrell
579	et al. (2018) detected photo-oxidation of Fe ²⁺ and an increase in the Fe ²⁺ / Σ Fe in their hydrous
580	basaltic silicate glasses and not in their anhydrous basaltic silicate glasses. Those authors'
581	evidence points to the following photo-oxidation mechanism: 1) breaking of O-H bonds by
582	incident ionizing radiation, 2) the loss of hydrogen, and 3) concomitant oxidation of Fe^{2+} to Fe^{3+} .
583	Cottrell et al. (2018) tested the viability of that mechanism by subjecting one of their hydrous
584	basaltic glasses (2.43 wt% H ₂ O) to a 2 x 2 μ m beam of high photon flux (~1 x 10 ¹² photons/sec)
585	for 12 min. Subsequent mapping of the H ₂ O content of the area surrounding that spot via Fourier
586	transform infrared spectroscopy show that the irradiated spot contained 900 ppm lower H_2O than
587	a spot away from the damage zone (Fig. 10 in Cottrell et al., 2018). The test supports the photo-
588	oxidation mechanism described above because it proved that water loss occurred during X-ray
589	beam irradiation. While the energy range used for Fe-XANES is higher than that used for S-

590 XANES, it is important to note that beam size, total analysis time, and photon flux used in the 591 test by Cottrell et al. (2018) are comparable to those used in this study, particularly to the high 592 radiation level measurements.

593 Given that photo-oxidation involving the breaking of O–H bonds of dissolved H₂O has been shown to be the underlying mechanism responsible for the oxidation of Fe^{2+} to Fe^{3+} in 594 595 hydrous basaltic silicate glasses, it is reasonable to assume that the same mechanism acts in 596 hydrous dacitic glasses. We propose that the described photo-oxidation mechanism operates 597 more efficiently in our hydrous dacitic silicate glass than in basaltic silicate glass for a number of 598 reasons. First, even though Fe-XANES is conducted at three times higher energy than S-599 XANES, the absorbed radiation per unit volume is \sim 15.5 times smaller using lower energy Xrays (calculated absorption length of 4.8 µm at 2475 eV for S-XANES vs. 74.6 µm at 7100 eV 600 601 for Fe-XANES using dacitic glass composition from the Δ FMQ+1 experiment). Second, the irradiation of lower energy X-rays tends to create more photo-electrons capable of damaging 602 603 regions within and outside the illuminated beam volume than higher energy X-rays, which are 604 more likely to be absorbed by heavier atoms that can fluoresce a portion of that energy out of the 605 sample. Third, the absorption cross-section of H_2O (i.e., the probability of ionization by a 606 photon) is 23.3 times larger at 2475 eV than at 7100 eV. Taken together, for the same flux 607 density, radiation-induced changes are much more likely at the S K-edge than at the Fe K-edge. A reason photo-oxidation of S²⁻ has not been detected in basaltic silicate glasses could be due to the 608 609 higher FeO^{tot} content, which may be preferentially oxidized and more easily detected because it requires only a single electron to oxidize Fe^{2+} instead of eight electrons to oxidize S^{2-} . The Fe-610 free soda-lime silicate glass of Wilke et al. (2008) that showed photo-oxidation of S^{2-} to S^{6+} is 611

- 612 further evidence that the Fe content of the silicate melt is the main parameter influencing the
- 613 detection of photo-oxidation of S^{2-} in silicate glasses.
- 614

615 Comparing the measured sulfide-sulfate transition to thermodynamic predictions

- 616 The transition from a sulfide- to sulfate-dominated silicate melt has been the focus of a
- 617 plethora of studies, and this study provides a unique opportunity to observe this change. As
- 618 discussed in Wallace and Carmichael (1994), Matthews et al. (1999), Metrich et al. (2009), Jugo
- 619 et al. (2010), Klimm et al. 2012, and Nash et al. (2019), the transition is defined by the following
- 620 redox reaction:

621
$$S^{2-} + 2O_2 = SO_4^{2-}$$
 (1)

622 Oxygen plays the role of the electron acceptor during the oxidation of S^{2-} to S^{6+} and the 623 equilibrium constant expression of Eq. 1 is written as

$$K_1 = \frac{[a_{SO42-}] 624}{[a_{S2-}] [fO_2]^2}$$

(2)

625

626 where K₁ is the equilibrium constant of Eq. 1 and a_i is the activity of component *i* in the silicate 627 melt. The form of Eq. 2 defines the functional shape of the sulfide-sulfate transition curve and 628 therefore the width of the transition in terms of fO_2 . Assuming that the activities of S⁶⁺ and S²⁻ 629 can be described by their concentrations (*c*), the equilibrium constant expression can be 630 rearranged as:

631
$$\log(cSO_4^{2-}/cS^{2-}) = 2\log fO_2 + \log K_1$$
 (3)

From Eq. 3, the sulfide-sulfate transition is defined by a straight line, y = 2x + b, therefore the ideal slope of the S⁶⁺/ Σ S within the *f*O₂ range of the sulfide-sulfate transition is 2. It follows that the log(S⁶⁺/ Σ S) calculated from the dacitic glasses of this study should have a slope of 2 when

635	plotted against Δ FMQ (log f O ₂ in Eq. 3) if the S ⁶⁺ / Σ S at run conditions was preserved during
636	quench and has not been altered by beam damage. Figure 13a plots the log(S ⁶⁺ / Σ S) vs Δ FMQ for
637	the three radiation levels and demonstrates that the $log(S^{6+}/\Sigma S)$ for scan 1 at the intermediate
638	level falls closest to the ideal slope predicted by thermodynamics in Eq. 3 ($m = 2$, black solid line
639	in Fig. 13a). Linear regressions applied to each set of points in the range of the sulfide-sulfate
640	transition (Δ FMQ+1 to Δ FMQ+2; gray box in Fig. 13) in Table 7 show that scan 1 points from
641	the intermediate level have a slope of 1.87, merged points from the highest level have a slope of
642	1.50, and the average of the first < 25 fly-scans at the lowest level have a slope of 2.49. In a
643	comparable study on S speciation in experimentally produced basaltic melts at 1050°C and 200
644	MPa and a range of fO_2 (Δ FMQ-1.4 to Δ FMQ+2.7), Jugo et al. (2010) reports that log(S ⁶⁺ / Σ S)
645	measured with S-XANES vs Δ FMQ for their samples produced a slope of 2.16. As argued in
646	Jugo et al. (2010), we interpret the close agreement between the slope of $log(S^{6+}/\Sigma S)$ vs ΔFMQ
647	of scan 1 from the intermediate level and the ideal slope predicted from thermodynamics to
648	indicate that the S oxidation states in our dacitic melts at run conditions were preserved during
649	rapid-quenching through the glass transition. Beam damage during S-XANES analyses only
650	minimally affected the calculated $S^{6+}/\Sigma S$ of the glasses, even though the beam damage has likely
651	altered the spectra slightly from scan 1 as discussed in section 4.1. The slope of the lowest level
652	points is higher than that predicted by thermodynamics, but we suggest that the lack of data at
653	lower fO_2 ($\Delta FMQ+1$) is the main cause of this discrepancy since these spectra are the least
654	altered from beam damage.

655

Since Fe is the only major element that is redox sensitive in silicate melts, oxidationreduction reactions involving Fe and S are also important to consider. The relationship between S 656

and Fe oxidation states in silicate glasses can be described by the following electron-exchangereaction:

659
$$S^{2-} + 8Fe^{3+} = S^{6+} + 8Fe^{2+}$$
 (4)

Equation 4 demonstrates that eight moles of Fe^{3+} are required to oxidize one mole of S^{2-} in the 660 melt, or that one mole of S^{6+} can oxidize eight moles of Fe^{2+} , which implies a linear relationship 661 between the logarithms of the activities of S^{6+}/S^{2-} and Fe^{3+}/Fe^{2+} with a gradient of 8 (e.g., 662 Metrich et al., 2009; Nash et al. 2019). Figure 13b plots the $log(S^{6+}/S^{2-})$ estimated using the 663 Gaussian areas of the of S^{6+} and S^{2-} peaks obtained via S-XANES and the log(Fe³⁺/Fe²⁺) 664 665 calculated with the model of Kress and Carmichael (1991) using the spreadsheet of Iacovino (2021). The Kress and Carmichael (1991) model uses as input the T, P, fO₂, and major-element 666 composition of the melt. The black solid line in Fig. 13b shows the ideal slope of 8 predicted by 667 Eq. 4 and fits closely the points of scan 1 from the intermediate level within the sulfide-sulfate 668 transition, as in Fig. 13a. We interpret the close fit to scan 1 from the intermediate level (m = 669 8.37) as further evidence that the S^{6+}/S^{2-} and Fe^{3+}/Fe^{2+} at run conditions were preserved during 670 rapid-quench and that the S⁶⁺/ Σ S measured during scan 1 at the intermediate level are not 671 strongly affected by beam damage. 672

673

674 Solubility of S⁴⁺ in oxidized dacitic melts

675 Previous studies have focused almost entirely on mafic-intermediate silicate melt 676 compositions and concluded that S^{4+} is not a stable species in those melt compositions (Wilke et 677 al., 2008; Lerner et al., 2021). Our results indicate the presence of a S^{4+} peak in dacitic glasses at 678 more oxidizing conditions ($\Delta FMQ > +1.75$) at 300 MPa at all three radiation levels (Figs. 7–9). 679 We note the S^{4+} spectral feature is present as a small peak in even the first scan conducted at the

lowest radiation level (Figs. 2, 9) in the more oxidized samples. In more reducing samples, 680 however, the S^{4+} peak is overwhelmed by the broad S^{2-} peak when sulfide becomes the dominant 681 682 oxidation state of S and is difficult to resolve absolutely. In Figure 6b, time scans performed at the energy of the S^{4+} peak show that the S^{4+} intensity decays over time for the highest radiation 683 level while the S⁴⁺ intensity increases over time for the intermediate radiation level. This 684 difference in S^{4+} intensity behavior could be pointing to differences in when or how quickly S^{4+} 685 686 is produced during X-ray irradiation induced beam damage based on the photon flux density and 687 exposure time.

We acknowledge that the acquisition of the XRF maps before S-XANES measurements 688 and/or the pre-edge region of the spectra could have produced S⁴⁺ via the photo-reduction of S⁶⁺ 689 by the time the X-ray reached the S⁴⁺ region of the spectra. However, the current measurement 690 method of S-XANES cannot determine whether the S⁴⁺ peak feature was solely produced via 691 692 instantaneous X-ray irradiation induced beam damage or if it is a true constituent dissolved in the 693 dacitic glass that is highly sensitive to X-ray exposure. Since this discrepancy cannot be resolved 694 using current S-XANES techniques, this study highlights the need for further investigation of 695 beam damage systematics in silicate glasses using additional techniques.

696

697

IMPLICATIONS

698Important differences in the solubility of different oxidation states of S are observed699between dacitic silicate glasses and basaltic silicate glasses. The presence of an unmistakable S⁶⁺700peak (corresponding to 5–15% sulfate) in scan 1 spectra from the intermediate level at Δ FMQ-7010.7, Δ FMQ+0, Δ FMQ+0.5, and Δ FMQ+1 distinguishes the S-XANES spectra in dacitic melts in702this study from spectra collected on similarly reduced basaltic glasses. In Wilke et al. (2008),

703 Metrich et al. (2009), and Jugo et al. (2010), synthetic basaltic glass spectra only show peaks that 704 correspond to S^{2-} in their reduced experiments, with no S^{6+} peak. The natural basaltic glasses analyzed by Jugo et al. (2010) at Δ FMQ-0.1 and Δ FMQ-1.4 also show no S⁶⁺ peak under 705 reducing conditions. Metrich et al. (2009) took this as evidence that minor surface oxidation 706 707 during sample preparation or measurement, as suggested by Fleet (2005), did not occur for their samples. However, the presence of significant amounts of sulfate $(8-9\% \text{ S}^{6+})$ in some mid-ocean 708 709 ridge basaltic glasses around Δ FMO+0 was confirmed after correcting for beam damage in 710 Lerner et al. (2021), supporting our finding that silicate glasses synthesized under reducing 711 conditions can contain non-trivial amounts of sulfate dissolved in the melt. 712 Comparing moderately oxidizing spectra from dacitic glasses and basaltic glasses, we find that in our dacitic glasses S^{2-} is soluble at higher fO_2 compared to basaltic melts. In the Jugo 713 714 et al. (2010) study, there are no sulfide peaks in basaltic glasses at Δ FMQ+1.6, while in our 715 dacitic glasses ~40–60% of the S is present as sulfide at Δ FMO+1.48 and Δ FMO+1.54 in scan 1 from the intermediate level (Fig. 8) and the first 20 fly-scans from the lowest level (Fig. 9). The 716 717 implications for this difference include the increased solubility of elements that bond with sulfide in the melt to higher fO₂ in dacitic melts (i.e., Au, Cu) and differences in the oxidation states of S 718 719 available to partition into an exsolved volatile phase (e.g., Zajacz et al., 2018; Jégo et al., 2016). 720 Therefore, dacitic melts can dissolve more sulfide at higher fO_2 and slightly more sulfate at lower fO₂ than basaltic melts. The higher degree of melt polymerization and lower Fe content 721 in felsic silicate melts could play a role in the reactions governing the dissolution of S^{2-} and S^{6+} . 722 as the lower proportion of non-bridging oxygens in felsic silicate melts may cause major element 723 cations with a 2+ charge (e.g., Ca, Mg, Mn) to bond with S^{2-} instead of with O^{2-} . Essentially, this 724 process could stabilize S^{2-} in felsic silicate melts to higher fO_2 compared to mafic silicate melts 725

which have a higher proportion of O^{2-} available for complexation. More work is required to fully understand the complex interactions of elements in silicate melts as a function of melt

728 composition.

Figure 14 plots the regions of fO_2 estimated from mineral equilibria from a variety of 729 730 calc-alkaline, arc-related magmas (Lascar Volcano, Pinatubo, El Chichón, St. Helens) with the least altered S⁶⁺/ Σ S from scan 1 collected at the intermediate radiation level and the first ≤ 20 731 732 fly-scans collected at the lowest level. The blue and dark yellow lines are model non-linear least 733 squares fits of the intermediate and lowest level data, respectively. Table 8 contains the equations 734 and model estimates. Figure 14 shows that arc magmas can lie along the entire range of the 735 sulfide-sulfate transition. Matthews et al. (1994) note that Lascar Volcano, which spans a large 736 range of fO_2 , had both Cu-Fe sulfide inclusions in ilmenite and anhydrite inclusions in magnetite. 737 The Pinatubo and El Chichón eruptive products both contain anhydrite, attesting to their oxidized character (e.g., Bernard et al. 1991; Luhr 1990). This study demonstrates that the melt $S^{6+}/\Sigma S$ of 738 739 H₂O-saturated dacitic melts at 1000°C and 300 MPa can record the fO₂ of the system if the melt 740 was quenched rapidly through its glass transition temperature, and that observations from natural 741 arc magmas are broadly consistent with the variation in $S^{6+}/\Sigma S$ vs. fO_2 . However, it is important 742 to note that more work is required to directly compare these experimental results with natural silicate melts, as the effects of slow rate of cooling on the $S^{6+}/\Sigma S$ of the melt are not yet 743 744 understood.

Finally, the presented results underline the importance to carefully evaluate and address the issues of radiation damage for each sample analyzed. Radiation damage can occur early even at a very low radiation levels, rendering the onset of beam damage difficult to detect using higher radiation levels. Unfortunately, minimizing the radiation dose is a trade-off with spectral quality.

749	One approach to overcome this would be to increase fluorescence photon detection through
750	systems such as multielement detectors that cover a large solid angle. Another approach is to
751	increase analysis speed, requiring faster detectors, in particular for glasses with low S
752	concentrations and high levels of background scattering or fluorescence. In the interim,
753	measurements of susceptible samples at conditions to minimize radiation damage require greater
754	care and investment of time to obtain good results. Ultimately, much more work is needed to
755	fully understand the onset and effects of beam damage caused by S-XANES analyses on silicate
756	glasses and to understand and constrain the existence of the S ⁴⁺ peak.
757	
758	ACKNOWLEDGEMENTS
759	This research used resources of the Advanced Photon Source, a U.S. Department of
760	Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by
761	Argonne National Laboratory under contract no. DE-AC02-06CH11357. We acknowledge the
762	support of GeoSoilEnviroCARS (Sector 13), which is supported by the National Science
763	Foundation-Earth Sciences (EAR-1128799), and the Department of Energy, Geosciences (DE-
764	FG02-94ER14466). We acknowledge the Swiss Light Source at the Paul Scherrer Institut in
765	Villigen, Switzerland, and the PHOENIX X07MB beamline for provision of synchrotron
766	radiation beamtime. This research also used resources of the 8-BM TES beamline of the National
767	Synchrotron Light Source II, a U.S. DOE Office of Science User Facility operated by
768	Brookhaven National Laboratory under Contract No. DE-SC0012704, and support from the
769	Tender Energy Microspectroscopy Consortium. We thank Owen K. Neill of the Electron
770	Microanalysis Laboratory of the University of Michigan for assistance in obtaining high quality
771	data from the EPMA. Financial support in the form of an International Institute Grant, a

772	Department of Earth and Environmental Sciences Turner Award, and Rackham Graduate Student
773	Research Grant from the University of Michigan are gratefully acknowledged as well as a
774	National Science Foundation Graduate Research Fellowship and Society of Economic Geologists
775	Fellowship awarded to J.M.K. The experimental work was supported by DFG (German Science
776	Foundation) project HO 1337/43 to F.H. A.C.S acknowledges support from NSF EAR 1924142
777	and 2214119. We thank editor Don Baker for his patience and help along with Kalotina Geraki
778	and an anonymous reviewer for providing feedback and suggestions that greatly improved the
779	work presented here.
780	
781	REFERENCES CITED
782	Backnaes, L., Stelling, J., Behrens, H., Goettlicher, J., Mangold, S., Verheijen, O., Beerkens,
783	R.G., and Deubener, J. (2008). Dissolution mechanisms of tetravalent sulphur in silicate
784	melts: Evidences from sulphur K-edge XANES studies on glasses. Journal of the
785	American Ceramics Society, 91, 721–727.
786	Bernard, A., Demaiffe, D., Mattielli, N., and Punongbayan, R.S. (1991). Anhydrite-bearing
787	pumices from Mount Pinatubo: Further evidence for the existence of sulphur-rich silicic
788	magmas. Nature, 354, 139–140.
789	Berndt, J., Liebske, C., Holtz, F., Freise, M., Nowak, M., Ziegenbein, D., Hurkuck, W., and
790	Koepke, J. (2002). A combined rapid-quench and H ₂ -membrane setup for internally
791	heated pressure vessels: Description and application for water solubility in basaltic melts.
792	American Mineralogist, 87, 1717–1726.
793	Berry, A.J., O'Neill H.S.C., Scott D.R., Foran G.J., and Shelley J.M.G. (2006). The effect of
794	composition on Cr^{2+}/Cr^{3+} in silicate melts. American Mineralogist, 91, 1901–1908.

- Bonnin-Mosbah, M., Metrich, N., Susini, J., Salome, M., Massare, D., and Menez, B. (2002).
- 796 Micro X-ray absorption near edge structure at the sulfur and iron *K*-edges in natural
- silicate glasses. Spectrochimica Acta Part B: Atomic Spectroscopy, 57(4), 711-725.
- 798 Cottrell, E., Lanzirotti, A., Mysen, B., Birner, S., Kelley, K., Botcharnikov, R.E., David, F., and
- 799 Newville, M. (2018). A Mössbauer-based XANES calibration for hydrous basalt glasses
- reveals radiation-induced oxidation of Fe. American Mineralogist, 103, 489–501.
- 801 Evans, B., and Scaillet, B. (1997). The redox state of Pinatubo dacite and the ilmenite-hematite
- solvus. American Mineralogist, 82(5-6), 625–629.
- 803 Fiege, A., Behrens, H., Holtz, F., and Adams, F. (2014). Kinetic vs. thermodynamic control of
- 804 degassing of $H_2O-S \pm Cl$ -bearing and esitic melts. Geochimica et Cosmochimica Acta,
- 805 125, 241–264.
- 806 Fleet, M.E. (2005). XANES spectroscopy of sulfur in earth materials. The Canadian
- 807 Mineralogist, 43, 1811–1838.
- 808 Fleet, M.E., Liu, X., Harmer, S.L., and King, P.L. (2005). Sulfur K-edge XANES spectroscopy:
- 809 Chemical state and content of sulfur in silicate glasses. The Canadian Mineralogist, 43,
 810 1605–1618.
- 811 Iacovino, K. (2021). Ferric/Ferrous, Fe³⁺/FeT, *f*O₂ Converter (Kress and Carmichael, 1991) (3.2).
- 812 Zenodo. https://doi.org/10.5281/zenodo.5907844, accessed February 23, 2022.
- 813 Jégo S., Nakamura, M., Kimura, J.-I., Iizuka, Y., Chang, Q., and Zellmer, G.F. (2016). Is gold
- 814 solubility subject to pressure variations in ascending arc magmas? Geochimica et
- 815 Cosmochimica Acta, 188, 224–243.

- 816 Jugo P.J., Wilke M., and Botcharnikov R.E. (2010). Sulfur K-edge XANES analysis of natural
- and synthetic basaltic glasses: Implications for S speciation and S content as function of
- 818 oxygen fugacity. Geochimica et Cosmochimica Acta, 74, 5926–5938.
- 819 Klimm K., Kohn S., and Botcharnikov R.E. (2012a). The dissolution mechanism of sulphur in
- 820 hydrous silicate melts I: Assessment of analytical techniques in determining the sulphur
- speciation in iron-free to iron-poor glasses. Chemical Geology, 322–323, 237–249.
- 822 Klimm K., Kohn S., and Botcharnikov R.E. (2012b). The dissolution mechanism of sulphur in
- 823 hydrous silicate melts II: Solubility and speciation of sulphur in hydrous silicate melts as
- 824 a function of *f*O₂. Chemical Geology, 322–323, 250–267.
- 825 Konecke, B.A., Fiege, A., Simon, A.C., Linsler, S., and Holtz, F. (2019). An experimental
- 826 calibration of a sulfur-in-apatite oxybarometer for mafic systems. Geochimica et
- 827 Cosmochimica Acta, 265, 242–258.
- 828 Konecke, B.A., Fiege, A., Simon, A.C., Parat, F., and Stechern, A. (2017). Co-variability of S⁶⁺,
- 829 S^{4+} , and S^{2-} in apatite as a function of oxidation state: Implications for a new
- 830 oxybarometer. American Mineralogist, 102, 548–557.
- 831 Kress, V., and Carmichael, I. (1991). The compressibility of silicate liquids containing Fe₂O₃ and
- the effect of composition, temperature, oxygen fugacity, and pressure on their redox

states. Contributions to Mineralogy and Petrology, 108, 82–92.

- 834 Lanzirotti, A., Sutton, S., Newville, M., and Head, E. (2022). Radiation-induced changes in
- 835 vanadium speciation in basaltic glasses: Implications for oxybarometry measurements
- using vanadium *K*-edge X-ray absorption spectroscopy. American Mineralogist, 107,
- **837** 729–738.

- 838 Li, D., Bancroft, G.M., Kasrai, M., Fleet, M.E., Feng, X., and Tan, K. (1995). S K- and L-edge
- X-ray absorption spectroscopy of metal sulfides and sulfates: Applications in mineralogy
 and geochemistry. The Canadian Mineralogist, 33, 949–960.
- 841 Luhr, J. (1990). Experimental phase relations of water- and sulfur-saturated arc magmas and the
- 842 1982 eruptions of El Chichón Volcano. Journal of Petrology, 31(5), 1071–1114.
- 843 Matthews, S.J., Jones, A.P., and Beard, A.D. (1994). Buffering of melt oxygen fugacity by
- 844 sulphur redox reactions in calc-alkaline magmas. Journal of the Geological Society of
 845 London, 151, 815–823.
- 846 Metrich, N., Berry, A., O'Neill, H.S.C., and Susini, J. (2009). The oxidation state of sulfur in
- 847 synthetic and natural glasses determined by X-ray absorption spectroscopy. Geochimica
 848 et Cosmochimica Acta, 73, 2382–2399.
- 849 Metrich, N., Bonnin-Mosbah, M., Susini, J., Menez, B., and Galoisy, L. (2002). Presence of

850 sulfite (S^{IV}) in arc magmas: Implications for volcanic sulfur emissions. Geophysical
851 Research Letters, 29(11), 4.

- 852 Michaud, J.A-S., Pichavant, M., and Villaros, A. (2021). Rare elements enrichment in crustal
- 853 peraluminous magmas: insights from partial melting experiments. Contributions to854 Mineralogy and Petrology, 176, 96.
- Nash, W.M., Smythe, D.J., and Wood, B.J. (2019). Compositional and temperature effects on
 sulfur speciation and solubility in silicate melts. Earth and Planetary Science Letters, 507,
 187–198.
- Newman, S., and Lowenstern, J.B. (2002). VolatileCalc: A silicate melt–H₂O–CO₂ solution
 model written in Visual Basic for Excel. Computational Geosciences, 28, 597–604.

- 860 Northrup, P. (2019). The TES beamline (8-BM) at the NSLS-II: Tender-energy spatially resolved
- X-ray absorption spectroscopy and X-ray fluorescence imaging. Journal of Synchrotron
 Radiation, 26, 11.
- 863 Paris, E., Giuli, G., Carroll, M., and Davoli, I. (2001). The valence and speciation of sulfur in
- glasses by X-ray absorption spectroscopy. The Canadian Mineralogist, 39(2), 331–339.
- 865 Ravel, B., and Newville, M. (2005). ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-
- ray absorption spectroscopy using IFEFFIT. Journal of Synchrotron Radiation, 12, 537541.
- 868 Ruprecht, P., Bergantz, G.W., Cooper, K.M., and Hildreth, W. (2012). The crustal magma storage
- 869 system of Volcán Quizapu, Chile, and the effects of magma mixing on magma diversity.
 870 Journal of Petrology, 53, 801–840.
- Scaillet, B., Pichavant, M., Roux, J., Humbert, G., and Lefevre, A. (1992). Improvements of the
 Shaw membrane technique for measurement and control of *f*H₂ at high temperatures and
- 873 pressures. American Mineralogist, 77, 647–655.
- 874 Sutton, S.R., Lanzirotti, A., Newville, M., Rivers, M.L., Eng, P., and Lefticariu, L. (2017).
- 875 Spatially Resolved Elemental Analysis, Spectroscopy and Diffraction at the GSECARS
- 876 Sector at the Advanced Photon Source. Journal of Environmental Quality, 46, 1158–1165.
- 877 Wallace P.J., and Carmichael I.S.E. (1994). S speciation in submarine basaltic glasses as
- determined by measurements of S *K*α X-ray wavelength shifts. American Mineralogist,
 79, 161–167.
- 880 Wilke, M., Jugo, P.J., Klimm, K., Susini, J., Botcharnikov, R., Kohn, S.C. and Janousch, M.
- 881 (2008). The origin of S⁴⁺ detected in silicate glasses by XANES. American Mineralogist,
 882 93, 235–240.

- 883 Wojdyr, M. (2010). Fityk: a general-purpose peak fitting program. Journal of Applied
- 884 Crystallography, 43, 1126–1128.
- 885 Zajacz, Z., Candela, P.A., Piccoli, P.M., and Sanchez-Valle, C. (2012). The partitioning of sulfur
- and chlorine between andesite melts and magmatic volatiles and the exchange
- 887 coefficients of major cations. Geochimica et Cosmochimica Acta, 89, 81–101.
- 888 Zajacz, Z., Candela, P.A., Piccoli, P.M., Sanchez-Valle, C., and Walle, M. (2013). Solubility and
- 889 partitioning behavior of Au, Cu, Ag and reduced S in magmas. Geochimica et
- 890 Cosmochimica Acta, 112, 288–304.

891

TABLES

892 Table 1. Experimental conditions

logfO ₂ ^a	Sample ID	Initial bulk S content	<i>p</i> H2 in- itial ^b	SCSS/SCAS reached? ^c	Phase assemblage ^d
$\Delta FMQ-0.7$	QD7-3	0.28 wt%	11.9	SCSS	gl - ap - fl - spl - FeS
$\Delta FMQ+0$	QD4-6	0.28 wt%	5.39	SCSS	gl - ap - fl - spl - FeS
$\Delta FMQ+0.5$	QD3-5	0.28 wt%	3.03	SCSS	gl - ap - fl - spl - FeS
$\Delta FMQ+1$	QD1-4	0.28 wt%	1.82	SCSS	gl - ap - fl - spl - FeS
$\Delta FMQ+1.48$	QD8-4	0.38 wt%	1.03	SCSS	gl - ap - fl - spl - FeS
Δ FMQ+1.54	QD10-1	0.38 wt%	0.71	SCSS	gl - ap - fl - spl - FeS
Δ FMQ+1.75	QD6-4	0.28 wt%	0.81	no	gl - ap - fl - spl
$\Delta FMQ+2.08$	QD9-3	0.28 wt%	0.53	no	gl - ap - fl - spl
$\Delta FMQ+2.08$	QD9-4	0.38 wt%	0.53	no	gl - ap - fl - spl
$\Delta FMQ+3.3$	QD2-5	0.28 wt%	0	SCAS	gl - ap - fl - mag - anh
$\Delta FMQ+3.3$	QD-305*	0.57 wt%	0	SCAS	gl - ap - fl - mag - anh

 $a \log fO_2$ reported relative to the FMQ mineral redox buffer.

^b Partial pressure of hydrogen (pH_2) in bars added to the vessel before bringing the experiments up to run temperature and pressure. Calculated assuming a water activity of one inside the capsule as all experiments were H₂O-saturated.

^c Fe-sulfide indicates melt reached SCSS (S content at sulfide-saturation); anhydrite indicates melt reached SCAS (S content at anhydrite-saturation). 'No' indicates melt was both sulfideand sulfate-undersaturated.

^d gl – silicate glass; ap – apatite; fl – fluid phase; FeS – Fe-sulfide melt; spl – spinel; mag – magnetite; anh – anhydrite.

* Redox equilibrium test described in text.

893

895 Table 2. Composition of dacitic glasses

Sample	QD7-3	QD4-6	QD3-5	QD1-4	QD8-4	QD10-1	QD6-4	QD9-3	QD9-4	QD2-5
nª	39	14	15	18	13	11	28	14	15	24
SiO_2	62.2±0.10	63.04±0.13	63.04±0.10	62.82±0.21	62.95±0.07	62.78±0.11	62.13±0.11	63.27±0.12	62.47±0.13	63.26±0.17
Al_2O_3	15.79 ± 0.04	15.93 ± 0.07	16.00 ± 0.04	15.74 ± 0.06	15.32±0.04	15.46 ± 0.07	15.60 ± 0.03	15.64±0.06	15.33±0.06	15.64 ± 0.05
TiO ₂	$0.50{\pm}0.01$	0.51 ± 0.01	$0.50{\pm}0.01$	$0.49{\pm}0.01$	$0.50{\pm}0.01$	0.51 ± 0.02	$0.50{\pm}0.01$	$0.49{\pm}0.01$	$0.50{\pm}0.01$	$0.48{\pm}0.01$
FeOtot	2.35±0.01	2.68 ± 0.02	$2.79{\pm}0.02$	3.03 ± 0.02	$3.54{\pm}0.02$	$3.50{\pm}0.03$	3.33 ± 0.02	$3.39{\pm}0.02$	$3.52{\pm}0.02$	3.31 ± 0.01
MgO	$0.79{\pm}0.01$	0.81 ± 0.01	$0.81 {\pm} 0.00$	$0.80{\pm}0.01$	$0.80{\pm}0.01$	$0.80{\pm}0.00$	$0.80{\pm}0.01$	$0.78{\pm}0.01$	$0.79{\pm}0.01$	0.77 ± 0.00
CaO	2.61±0.01	2.65 ± 0.02	2.62 ± 0.02	2.65 ± 0.02	$2.74{\pm}0.02$	2.73 ± 0.03	2.73 ± 0.02	2.76 ± 0.03	$2.84{\pm}0.02$	2.71 ± 0.01
Na ₂ O	4.56±0.03	4.69 ± 0.04	4.67 ± 0.04	4.57 ± 0.04	4.36±0.09	4.38 ± 0.11	4.52 ± 0.02	4.46 ± 0.04	4.38 ± 0.03	4.55±0.03
K ₂ O	3.26 ± 0.01	3.22 ± 0.02	3.27 ± 0.02	3.26 ± 0.02	$3.20{\pm}0.02$	$3.20{\pm}0.02$	3.26±0.01	3.23 ± 0.02	3.17 ± 0.01	3.22 ± 0.02
P_2O_5	$0.38{\pm}0.01$	$0.36{\pm}0.01$	$0.37{\pm}0.01$	$0.40{\pm}0.01$	$0.52{\pm}0.01$	$0.46{\pm}0.02$	0.48 ± 0.01	$0.48{\pm}0.02$	$0.52{\pm}0.01$	$0.58{\pm}0.01$
MnO	$0.08{\pm}0.01$	0.08 ± 0.01	$0.08 {\pm} 0.01$	$0.08 {\pm} 0.00$	0.07 ± 0.01	0.07 ± 0.01	0.08 ± 0.00	0.07 ± 0.01	$0.09{\pm}0.01$	$0.08 {\pm} 0.00$
S	$0.02303 {\pm} 0.0005$	$0.02083 {\pm} 0.0003$	$0.0191{\pm}0.0003$	$0.0244 {\pm} 0.0005$	0.0196 ± 0.0025	$0.0505 {\pm} 0.0037$	0.0551 ± 0.0024	$0.0307 {\pm} 0.0024$	0.1045 ± 0.0059	$0.1138 {\pm} 0.0005$
Cl	0.068 ± 0.001	0.070 ± 0.001	$0.068 {\pm} 0.001$	$0.068 {\pm} 0.001$	$0.071 {\pm} 0.001$	$0.071 {\pm} 0.001$	$0.068 {\pm} 0.001$	0.069 ± 0.001	$0.070 {\pm} 0.001$	0.067 ± 0.001
Total ^b	92.63±0.12	94.073±0.19	94.273±0.15	$93.953{\pm}0.28$	$94.093{\pm}0.12$	$94.083{\pm}0.15$	93.563±0.13	94.713±0.15	$93.893{\pm}0.17$	$94.893 {\pm} 0.23$
${\rm H_2O^c}$	7.37	5.93	5.73	6.05	5.91	5.92	6.44	5.29	6.11	5.11

^a Number of EPMA analyses.

^b Totals calculated as the sum of all major and minor oxides and elements.

 $^{\rm c}\,{\rm H}_2O$ content estimated by difference.

896 897

		Advanced Photon Source (APS)	Swiss Light Source (SLS)	National Synchrotron Light Source II (NSLS- II)	
	Beamline	GSECARS 13-ID-E	PHOENIX X07MA/B	8-BM TES	
E	Energy range	2.3–28 keV	0.35–8.0 keV	2.0–5.5 keV	
Σ	K-ray source	undulator	undulator	bend magnet	
	Beam size	2 x 2 µm	3–4 µm diameter	$4 \ x \ 8$ to $7 \ x \ 14 \ \mu m$	
Cali	bration energy ^a	2481.8 eV	2482 eV	2481 eV	
F maps	Detector dwell time & pixel size	0.02 sec per 2 x 2 μm pixel	1 sec per 3 x 3 µm pixel	0.1–0.3 sec per 2.8–12 μm pixel	
XR	Energy ^b	2482 eV	2482 eV	2700 eV	
Sing	le scan duration	~9 min	~12 min	~1.75 min fly-scan / ~48 min step scan	
Ra	adiation level	intermediate	high	low	
Photon to	flux density (pho- ons/sec/µm ²) ^c	1.4–5.7 x 10 ⁹	1.0–4.5 x 10 ¹⁰	2.0 x 10 ⁷	
Samj	ple environment	He gas (1 atm)	vacuum	He gas (1 atm)	
ime	Pre-edge	3 sec per 1 eV step	1 sec per 2 eV step	1.2 sec per 1 eV	
rell t step :	Edge	3 sec per 0.3 eV step	2 sec per 0.3 eV step	0.3 sec per 0.25 eV	
Dw & s	Post-edge	3 sec per 2 eV step	1 sec per 2 eV step	1.2 sec per 1.0 eV	

898 Table 3. Beamline and S-XANES measurement details

^a The energy at the beamlines was calibrated to the \sim 2482 eV white line of sulfate using clear double-sided sticky tape at the APS, powdered CaSO₄ at the SLS, and Durango apatite at the NSLS-II.

^b Energy at which the X-ray fluorescence (XRF) maps were collected.

^c See section 2.3 and Supplementary Table S2 for more information.

899

901 **Table 4.** $S^{6+}/\Sigma S$ from the highest photon flux density

Point*	fO ₂	$S^{6+}/\Sigma S$
QD2-5r 1 01	$\Delta FMQ+3.3$	0.74
QD2-5r 1 02	$\Delta FMQ + 3.3$	0.73
QD2-5r 1 03	$\Delta FMQ + 3.3$	0.72
QD2-5r 2 01	$\Delta FMQ+3.3$	0.74
QD2-5r 2 02	$\Delta FMQ+3.3$	0.74
QD2-5r 2 03	$\Delta FMQ + 3.3$	0.72
QD6-4_1_01	ΔFMQ+1.75	0.79
QD6-4_1_02	$\Delta FMQ+1.75$	0.81
QD6-4_1_03	$\Delta FMQ+1.75$	0.81
QD6-4_2_01	$\Delta FMQ+1.75$	0.82
QD6-4_2_03	$\Delta FMQ+1.75$	0.76
QD6-4_2_04	$\Delta FMQ+1.75$	0.84
QD6-4_2_05	$\Delta FMQ+1.75$	0.75
QD1-4_1_01	$\Delta FMQ+1$	0.26
QD1-4_1_03	$\Delta FMQ+1$	0.27
QD1-4_1_04	$\Delta FMQ+1$	0.26
QD1-4_1_05	$\Delta FMQ+1$	0.26
QD1-4_1_06	$\Delta FMQ+1$	0.25
QD3-5_1_01	$\Delta FMQ+0.5$	0.20
QD3-5_1_02	$\Delta FMQ+0.5$	0.22
QD3-5_1_04	$\Delta FMQ+0.5$	0.22
QD3-5_2_06	$\Delta FMQ+0.5$	0.46
QD3-5_2_08	$\Delta FMQ+0.5$	0.29
QD4-6_1_01	$\Delta FMQ+0$	0.22
QD4-6_1_02	$\Delta FMQ+0$	0.20
QD4-6_1_03	$\Delta FMQ+0$	0.19
QD4-6_1_04	$\Delta FMQ+0$	0.17
QD4-6_1_05	$\Delta FMQ+0$	0.18
QD4-6_1_07	$\Delta FMQ+0$	0.20
QD7-3_1_01	$\Delta FMQ-0.7$	0.12
QD7-3_1_02	$\Delta FMQ-0.7$	0.13
QD7-3_1_03	$\Delta FMQ-0.7$	0.15
QD7-3_2_04	$\Delta FMQ-0.7$	0.13
QD7-3_2_05	$\Delta FMQ-0.7$	0.10
QD7-3_2_06	$\Delta FMQ-0.7$	0.04
QD7-3_2_07	$\Delta FMQ-0.7$	0.03
* All points we	re analyzed usir	ng 3
step scans exce	pt for the QD4-	5 and
QD7-3 series, v	which used 2 for	each
point. Each scar	n was $\sim 12 \text{ min.}$	

902

904	Table 5.	$S^{6+}/\Sigma S$	from	the	lowest	photon	flux	density
-----	----------	-------------------	------	-----	--------	--------	------	---------

		Beam	Total	first scans ^b				last scans ^b			Percent	
Point	fO ₂	size (µm)	scans ^a	n	t (min)	S ⁶⁺ / S	n	t (min)	$\mathrm{S}^{6+}/\mathrm{\Sigma}\mathrm{S}$	ence	differ- ence	
QD2-5	$\Delta FMQ+3.3$	4 x 8	100	50	75	0.96	50	150	0.94	0.03	2.63	
QD9-4_1	$\Delta FMQ+2.08$	5 x 10	15	3	4.5	0.98	_	_	_	_	_	
QD9-4_2step	$\Delta FMQ+2.08$	5 x 10	14	1	48	0.98	1	672	0.82	0.16	16.34	
QD6-4_12	$\Delta FMQ+1.75$	4 x 8	63	15	26.3	0.87	15	110	0.87	0.00	0.41	
QD10-1_1	$\Delta FMQ+1.54$	5 x 10	94	20	30	0.52	20	141	0.48	0.04	8.21	
QD10-1_2	$\Delta FMQ+1.54$	5 x 10	41	20	30	0.54	20	61.5	0.53	0.01	1.73	
QD8-4_1	$\Delta FMQ+1.48$	5 x 10	44	20	30	0.52	20	66	0.46	0.06	11.37	
QD8-4_2	$\Delta FMQ+1.48$	7 x 14	25	20	30	0.38	_	_	_	_	_	

^a Total number of scans taken. All points were analyzed by fly-scans (\sim 1.75 min/scan) except for QD9-4_2step, which was analyzed using step scans that were \sim 48 min/scan.

^b Scans are divided into 'first scans', where the S⁶⁺/ Σ S was calculated from the first *n* merged spectra, and 'last scans', which were calculated from the final *n* merged spectra. Points with total scans \leq 30 were not split into first and last scans as beam damage is observed after > 30 fly-scans.

905

⁹⁰⁷ **Table 6.** $S^{6+}/\Sigma S$ from the intermediate photon flux density

Doint ^a	fO.	S ⁶⁺	/ΣS	Differ-	Percent
FUIIt	<i>J</i> O ₂	Scan 1	Scan 2	ence	difference ^b
QD2-5_1_gl05	$\Delta FMQ+3.3$	0.92	0.76	0.16	17.12
QD2-5_3_gl01	$\Delta FMQ+3.3$	0.83	0.73	0.10	11.74
QD2-5_3_gl02	$\Delta FMQ+3.3$	0.88	0.74	0.13	15.18
QD2-5_3_gl06	$\Delta FMQ+3.3$	0.87	0.76	0.11	12.85
QD2-5_3_gl07	$\Delta FMQ+3.3$	0.83	0.74	0.09	10.49
QD9-3_gl01	$\Delta FMQ+2.08$	0.88	0.78	0.10	11.26
QD9-3_gl02	$\Delta FMQ+2.08$	0.85	0.78	0.08	8.95
QD9-3_gl03	$\Delta FMQ+2.08$	0.82	0.77	0.05	6.08
QD9-3_gl04	$\Delta FMQ+2.08$	0.90	0.81	0.09	9.99
QD9-3_gl05	$\Delta FMQ+2.08$	0.81	0.74	0.07	8.63
QD6-4_gl01	$\Delta FMQ+1.75$	0.77	0.74	0.03	3.41
QD6-4_gl06	$\Delta FMQ+1.75$	0.74	0.74	0.00	-0.16
QD10-1_gl01	$\Delta FMQ+1.54$	0.61	0.55	0.06	9.41
QD10-1_gl02	$\Delta FMQ+1.54$	0.36	0.40	-0.04	-11.48
QD10-1_gl03	$\Delta FMQ+1.54$	0.42	0.47	-0.05	-11.88
QD10-1_gl04	$\Delta FMQ+1.54$	0.38	0.34	0.03	8.74
QD10-1_gl05	$\Delta FMQ+1.54$	0.37	0.36	0.01	2.57
QD8-4_gl01	$\Delta FMQ+1.48$	0.44	-	-	_
QD8-4_gl02	$\Delta FMQ+1.48$	0.40	-	-	-
QD8-4_gl03	$\Delta FMQ+1.48$	0.48	_	_	_
QD8-4_gl04	$\Delta FMQ+1.48$	0.41	_	_	_
QD8-4_gl05	$\Delta FMQ+1.48$	0.48	_	-	-
QD1-4_gl01	$\Delta FMQ+1$	0.17	0.21	-0.04	-26.58
QD1-4_gl05	$\Delta FMQ+1$	0.13	0.16	-0.03	-23.80
QD3-5_gl01	$\Delta FMQ+0.5$	0.12	0.22	-0.10	-79.45
QD3-5_gl06	$\Delta FMQ+0.5$	0.12	0.17	-0.05	-44.24
QD3-5_gl07	$\Delta FMQ+0.5$	0.13	0.20	-0.07	-57.12
QD4-6_gl01	$\Delta FMQ+0$	0.07	0.09	-0.02	-20.62
QD4-6_gl06	$\Delta FMQ+0$	0.07	0.09	-0.02	-24.53
QD7-3_gl01	$\Delta FMQ-0.7$	0.07	0.13	-0.06	-88.70
QD7-3_gl06	$\Delta FMQ-0.7$	0.08	0.13	-0.05	-62.94

^a Two scans were collected at each point except for the QD8-4 series, where only one scan was taken per point. Each scan was ~9 min.

^b Where positive, scan 1 had a higher $S^{6+}/\Sigma S$ than scan 2; where negative, scan 1 had a lower $S^{6+}/\Sigma S$ than scan 2.

908

910 Table 7. Linear regressions of data to assess fit to thermodynamic predictions

Relation- Radia-		adia- Slope]	Ad- iusted	Residual				
ship	level	п	m	SE	t value ^b	Pr(> t) ^c	b	SE	t value ^b	Pr(> t) ^c	$R^{2 d}$	SE ^e
$\log(S^{6+}/\Sigma S)$	int.	#	1.87	0.21	8.74	1.50E-06	-3.64	0.32	-11.46	8.04E-08	0.853	0.169
vs. ΔFMQ	high	#	1.50	0.03	50.73	2.14E-13	-2.85	0.04	-64.97	1.82E-14	0.996	0.038
(Fig. 12a)	low	6	3.80	0.40	9.42	2.54E-03	-6.56	0.59	-11.07	1.58E-03	0.956	0.222
$\log(S^{6+}/S^{2-})$	int.	#	8.37	1.05	8.01	3.72E-06	7.21	0.93	7.71	5.46E-06	0.829	0.365
vs. $\log(Fe^{3+}/Fe^{2+})$	high	#	3.33	0.07	50.73	2.14E-13	2.28	0.06	38.22	3.59E-12	0.996	0.038
(Fig. 12b)	low	6	14.08	1.45	9.73	2.31E-03	12.44	1.31	9.51	2.46E-03	0.959	0.353

^a number of data points included in regression.

^b Estimate divided by standard error (SE).

^c Probability of exceeding that observed.

^d R² value adjusted for the number of predictors.

^e Standard deviation of the residuals.

911

912

Table 8. Model estimates for the sigmoid function fits of $S^{6+}/\Sigma S$ vs. ΔFMQ 914

915

	S^{6+}		с	
Equation	$\Sigma S = (1)$	$+ \exp(-a$	$fO_2 + b)) + d$	-
	$d = 0.085^{a}$			
	Estimate	SE	t value	Pr(> t)
а	6.46	1.35	4.80	3.01E-03
b	9.91	2.04	4.85	2.86E-03
с	0.79	0.03	24.92	2.75E-07
Lowest leve	el first ≤ 20 sca	ns fit (da	rk yellow line	e in Fig. 13)
	S ⁶⁺		c	
Equation	$\Sigma S = (1)$	$+ \exp(-a$	$fO_2 + b)) + d$	-
	1 0 00 53			
	$d = 0.085^{a}$			
	$d = 0.085^{\circ}$ Estimate	SE	t value	Pr(> t)
а	d = 0.085 ^a Estimate 7.31	SE 2.15	t value 3.40	Pr(> t) 7.68E-02
a b	d = 0.085 ^a Estimate 7.31 11.10	SE 2.15 3.26	t value 3.40 3.41	Pr(> t) 7.68E-02 7.64E-02

916

918

FIGURE CAPTIONS

919	Figure 1. Backscattered electron (BSE) image of a representative run product, QD9-4
920	equilibrated at Δ FMQ+2.08. All run products contained glass (gl), apatite (ap), a micrometer-
921	sized spinel mineral (not pictured), and an exsolved volatile phase (bub) at run conditions. Fe-
922	sulfide and anhydrite were present in reducing ($\Delta FMQ < 1.6$) and oxidizing ($\Delta FMQ+3.3$)
923	conditions, respectively.
924	
925	Figure 2. Comparison of normalized spectra from all three radiation levels for samples at
926	Δ FMQ+3.3 (a) and Δ FMQ+1.75 (b). Spectra are color-coded for each radiation level, with the
927	darkest color for each being the first scan and lighter colors being subsequent scans. The lowest
928	level spectra were acquired using fly-scans (~1.75 min/scan); the intermediate and highest levels
929	using step scans (~9 and ~12 min/scan, respectively). The peak positions for S^{6+} (2482 eV), S^{4+}
930	(2477.6 eV), and S ²⁻ (2476.5 eV and 2470.3 eV) are shown as the solid, dashed, and dotted
931	vertical lines, respectively, and labeled in (b).
932	
933	Figure 3. Normalized spectra of S-XANES step scan measurements on dacitic glass from the
934	highest radiation level (a , c , e , g ; ~12 min/scan) and the intermediate radiation level (b , d , f , h ;
935	~9 min/scan) for the more reducing experiments (Δ FMQ-0.7 to Δ FMQ+1). Two or three scans
936	were taken per point to monitor for changes in peak intensity over time. Colors are the same as in
937	Fig. 1, with the darkest color being scan 1 and the lighter colors being subsequent scans. Vertical
938	lines are the same as in Fig. 1. Spectra from the highest level show minor changes in peak
939	intensities from scan to scan, while spectra from the intermediate level show greater peak
940	intensity differences between the first and second scan. Arrows illustrate the direction of change

941 for certain peaks from scan 1 to later scans.

942

943 **Figure 4.** Normalized spectra collected on experiments conducted at Δ FMO+1.48 (a), Δ FMQ+1.54 (b), and Δ FMQ+2.08 (QD9-4; c) dacitic glasses at the lowest radiation level using 944 945 fly-scans of ~ 1.75 minutes/scan. Dark yellow line is the average of the first 20 (**a-b**) or 3 (**c**) 946 scans collected at a single point while the light yellow line is the average of the last 20 (**a-b**) or 3 947 (c) scans collected at that same point. Vertical lines and arrows are the same as in Figs. 1 and 2; n948 shows the total number of scans collected for each spot. 949 950 Figure 5. Normalized spectra collected using step scans (~48 minutes/scan) at the lowest 951 radiation level at Δ FMQ+2.08 (QD9-4, the same sample as Fig. 4c). Darkest yellow line is step 952 scan 1, medium yellow line is step scan 2, and lightest yellow line is step scan #14. Lines and 953 arrows are as described in Figs. 1 and 2. 954 955 **Figure 6.** Time scans on experiments conducted at Δ FMQ+3.3 comparing the S intensity changes over time for $S^{6+}(a)$, $S^{4+}(b)$, and $S^{2-}(c)$ between the highest (red) and intermediate 956 957 (blue) levels. Energy for (a) was 2482 eV, energy for (b) was 2477 eV, and energy for (c) was 958 2470 eV. The vertical axis shows the relative change in the intensity for each S oxidation state 959 over time; the intensity of the first analysis point plots at a value of 1.0. The values above or 960 below each line in 6b show the range of the total photons absorbed over the 5 minute duration of 961 the scan, with colors corresponding to the radiation level. The values are the same in 6a and c. 962 963 Figure 7. Normalized and merged spectra from five samples (Δ FMQ-0.7, Δ FMQ+0, Δ FMQ+0.5, 964 Δ FMQ+1, Δ FMQ+1.75, and Δ FMQ+3.3) measured at the highest radiation level. The number of

965	spectra merged for each fO_2 is indicated by n on the left side of the figure; acquisition time for
966	each spectra is ~ 12 min. Vertical lines show peak positions as described in Fig. 1.
967	
968	Figure 8. Normalized and merged spectra from nine samples (Δ FMQ-0.7, Δ FMQ+0,
969	Δ FMQ+0.5, Δ FMQ+1, Δ FMQ+1.48, Δ FMQ+1.54, Δ FMQ+1.75, Δ FMQ+2.08, and Δ FMQ+3.3)
970	measured at the intermediate radiation level. Note that only spectra from scan 1 are plotted here;
971	<i>n</i> indicates the number of ~9 min scans merged for each fO_2 . Vertical lines show peak positions
972	as described in Fig. 1.
973	
974	Figure 9. Normalized and merged spectra from five samples (Δ FMQ+1.48, Δ FMQ+1.54,
975	Δ FMQ+1.75, Δ FMQ+2.08, and Δ FMQ+3.3) measured at the lowest radiation level. Note that
976	only results from the fly-scans (~1.75 min/scan) are shown here, with n indicating the number of
977	fly-scans merged for each fO_2 . Vertical lines show peak positions as described in Fig. 1.
978	
979	Figure 10. $S^{6+}/\Sigma S$ ratios for all beamlines against ΔFMQ . The data for the highest level consist
980	of all merged spectra collected at the same point and same Δ FMQ. Spectra collected at the
981	intermediate level are split into the average $S^{6+}/\sum S$ for scan 1 (dark blue, up-pointing triangles)
982	and scan 2 (light blue, down-pointing triangles). The lowest level estimates include only results
983	from the first \leq 20 fly-scans. Standard error bars are smaller than the symbol size except where
984	visible and were calculated using multiple $S^{6+}/\sum S$ determined by fitting spectra from different
985	spot analyses at each fO_2 and radiation level (see Tables 4, 5, and 6).
986	

987	Figure 11. Plots showing the effect of beam damage on the S ⁶⁺ / Σ S ratios vs. Δ FMQ collected at
988	the intermediate level. In (a), five of the most reducing samples are shown (Δ FMQ+1.54,
989	Δ FMQ+1, Δ FMQ+0.5, Δ FMQ+0, Δ FMQ-0.7); in (b), the three most oxidizing samples
990	(Δ FMQ+1.75, Δ FMQ+2.08, Δ FMQ+3.3). As the Δ FMQ+1.48 experiment had only one scan
991	taken at each point, it is not plotted here. Note that in (a) beam damage generally manifests as an
992	increase in the S ⁶⁺ / Σ S ratio while in (b) it manifests as a decrease. In both panels curved lines
993	connect scans made on the same point. Points are spread out at a single fO_2 to improve
994	readability; red numbers above points depict the average photon density for scan 1 in
995	photons/µm ² .

996

Figure 12. Minutes of beam exposure vs. the S⁶⁺/ Σ S ratio for fly-scans collected at the lowest 997 radiation level. The points represent a number of fly-scans converted to time in minutes to 998 999 quantify the beam damage incurred at each fO_2 . Lines connect measurements from the same point at the same fO_2 , with the first point(s) being the average $S^{6+}/\Sigma S$ of all scans from time = 0 1000 1001 to the time of the point; the second and third points show the average of scans from the time of the subsequent connected point to the next point. The photon flux density for all points was ~2.0 1002 x 10⁷ photons/sec per μ m² and the beam size was 4 x 8 μ m for all points except for those at 1003 Δ FMQ+1.48, Δ FMQ+1.54, and Δ FMQ+2.08, which had a beam size of 5 x 10 μ m. 1004 1005 Figure 13. Comparison of data to the thermodynamic predictions within the sulfide-sulfate 1006 transition. In (a), the log(S⁶⁺/ Σ S) vs Δ FMQ, in (b), the log(S⁶⁺/S²⁻) vs log(Fe³⁺/Fe²⁺) for all 1007

- 1008 experiments. The gray box in both (a) and (b) shows the fO_2 range of sulfide-sulfate transition
- 1009 (Δ FMQ+1 to Δ FMQ+2); only the points inside the box were included in the regressions (see text

- 1010 for discussion and Table 7). Black line has a slope of 2 in (a) and of 8 in (b), which are the ideal 1011 slopes predicted by thermodynamics for the sulfide-sulfate transition (Eq. 3) and the relationship 1012 between S and Fe oxidation states (Eq. 4) as a function of fO_2 , respectively. Data plotted are the 1013 results of scan 1 at the intermediate level, the merged results of all scans from the highest level, 1014 and the merged results of the first ≤ 20 fly-scans from the lowest level. Dotted red and yellow 1015 lines are linear regressions through the highest and lowest level points, respectively, and the 1016 dashed blue lines are linear regressions through scan 1 points at the intermediate level. Text 1017 above or below each line is the slope of that line. 1018
- **1019** Figure 14. The S⁶⁺/ Σ S estimated from scan 1 at the intermediate level and first ≤ 20 scans at the
- 1020 lowest level vs Δ FMQ. Black line represents the non-linear least squares fit to the data; see Table
- 1021 8 for all model estimates. Colored boxes show the fO_2 of various arc-derived magmas estimated
- 1022 from mineral equilibria from Matthews et al. (1994) and Evans and Scaillet (1997).

Figure 2

Figure 7

