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ABSTRACT 23 

Halogens (Cl, Br, and I) are major complexing agents for metal ions, and their ratios 24 

(Br/Cl and I/Cl) have been used to determine the source and evolution of hydrothermal 25 

fluid. Halogen fractionation during hydrothermal fluid evolution, however, has been 26 

inferred from several studies, which poses problems in using halogen ratios as a fluid 27 

tracer. The Br/Cl and I/Cl ratios of scapolite are consistent with those ratios present in the 28 

coexisting fluid during the mineral’s formation, making scapolite particularly useful for 29 

understanding hydrothermal fluid evolution. In this paper, we present fluid inclusion 30 

microthermometry, major elements, and in situ halogens and Sr isotope analysis of 31 

scapolite formed from a high salinity hydrothermal fluid during the vapor-brine phase 32 

separation at the Yixingzhai gold deposit, North China Craton, to better understand 33 

halogen fractionation during vapor-brine phase separation. The studied scapolite has 34 

1.84–3.41 wt% Cl, 389–806 ppm Br, 8.4–24.4 ppm I, and significantly high Br/Cl (6.1–35 

14.7 × 10-3) and I/Cl (91–302 × 10-6) molar ratios that likely result from the preferential 36 

incorporation of Br and I into the brine phase compared to Cl entering the vapor phase 37 

during fluid phase separation. Based on fluid inclusion microthermometry results, the 38 

Rayleigh fractionation simulation shows that the Br/Cl and I/Cl ratios of the brine are 39 

estimated to be up to 18 × 10-3 and 500 × 10-6 during the formation of scapolite. These 40 

results reveal halogen fractionation during the vapor-brine phase separation of 41 

hydrothermal fluids. This view has implications for interpreting the halogen systematics 42 

of scapolite and other minerals formed in similar environments, particularly when they 43 

are used as a fluid tracer. 44 

Keywords: Scapolite; Halogen fractionation; Phase separation; Hydrothermal fluid 45 
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INTRODUCTION 46 

Halogens (Cl, Br, and I) are important agents for complexation and transportation of 47 

metals in hydrothermal fluid systems (Webster and Holloway 1988; Webster al. 2004). 48 

The Br/Cl and I/Cl ratios in hydrothermal fluids are commonly preserved during fluid 49 

migration (fluid buffered), and thus have been used as a fingerprint of the source and 50 

evolution of hydrothermal fluids (Böhlke and Irwin 1992; Heinrich et al. 1993; Irwin and 51 

Roedder 1995; Kendrick et al. 2002, 2013). Nonetheless, several studies have revealed 52 

halogen fractionation during hydrothermal fluid evolution processes, posing a big 53 

challenge in using halogen geochemistry to constrain fluid sources (Berndt and Seyfried 54 

1997; Lüders et al. 2002; Kurosawa et al. 2016). Possible factors or processes that cause 55 

halogen fractionation include low-pressure segregation of hydrothermal fluid from 56 

magma (Bureau et al. 2000, 2010, 2016; Kurosawa et al. 2016), precipitation of 57 

Cl-bearing minerals (e.g., biotite, amphibole, and halite; Markl and Bucher 1998; 58 

Svensen et al. 1999; Kusebauch et al. 2015), and vapor-brine phase separation of 59 

hydrothermal fluids (Ishibashi et al. 1994; Oosting and Von Damm 1996; Berndt and 60 

Seyfried 1997; Lüders et al. 2002). Experimental studies suggest that Br preferentially 61 

partitions into the vapor phase compared to Cl during phase separation of a hydrothermal 62 

fluid system (Foustoukos and Seyfried 2007; Seo and Zajacz 2016). In contrast, other 63 

studies indicate that the Br/Cl ratios in the vapor phase are lower than those in the brine 64 

phase (Oosting and Von Damm 1996; Liebscher et al. 2006). Seo and Zajacz (2016) 65 

proposed that the degree of Br/Cl fractionation between brine and vapor phases depends 66 

on the types of alkali-halide and alkali-OH complexes in the hydrothermal system. These 67 

discrepancies highlight that the mechanisms of halogen fractionation during vapor-brine 68 
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phase separation remain to be understood. 69 

Scapolite group minerals are volatile-rich and have a diverse range of compositions 70 

[(Ca,Na)4Al6Si6O24(SO4,CO3)–Na4Al3Si9O24Cl]. They can form in magmatic, 71 

metamorphic, and hydrothermal environments and are stable over a wide range of 72 

temperature and pressure (Shaw 1960; Evans et al. 1969; Goldsmith and Newton 1977; 73 

Dong 2005; Filiberto et al. 2014; Almeida and Jenkins 2017). Previous studies suggest 74 

that the Br/Cl and I/Cl ratios of scapolite are equivalent to those ratios of the coexisting 75 

fluids during the scapolite formation (Pan and Dong 2003; Kendrick and Phillips 2009). 76 

In addition, the chlorine contents of scapolite are correlated with the salinity of coexisting 77 

hydrothermal fluids (Ellis 1978; Oliver et al. 1992, Zhu et al. 2015). Thus, halogen 78 

chemistry of scapolite has been widely applied to understand the genesis of ore deposits 79 

and associated fluid evolution. For instance, the composition and Br/Cl ratios of scapolite 80 

have been used to quantify the assimilation of evaporites during iron skarn mineralization 81 

in the Daye district, South China (Zhu et al. 2015; Zeng et al. 2019) and to identify the 82 

mixing of metamorphic and magmatic fluids in the genesis of IOCG deposits in the 83 

Norrbotten district, Northern Sweden (Bernal et al. 2017). 84 

Skarn minerals in breccia pipes formed by the replacement of carbonate-bearing 85 

rocks are mainly related to fluid buffered metasomatic processes involving 86 

magmatic-hydrothermal fluids (Einaudi et al. 1981; Matthews et al. 1996). Geochemical 87 

and fluid inclusion features of skarn minerals provide important information on the 88 

evolution of hydrothermal fluids (Kwak 1986; Jamtveit et al. 1993; Baker et al. 2004). 89 

The Tietangdong Fe-Au skarn breccia pipe is located at the Yixingzhai gold deposit in the 90 

Taihangshan district, North China Craton (Zhang et al. 2019). Scapolite commonly 91 
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occurs in this breccia pipe and coexists with other skarn minerals. They contain 92 

heterogeneous fluid inclusions assemblages, which consist of vapor-rich and daughter 93 

crystal-bearing fluid inclusions (Zhang et al. 2020). This indicates that the scapolite 94 

formed from a hydrothermal fluid that underwent phase separation. Thus, scapolite from 95 

the Tietangdong breccia pipe can record the Br/Cl and I/Cl variation of the coexisting 96 

hydrothermal fluids. This provides an excellent opportunity to elucidate the halogen 97 

fractionation behavior during fluid phase separation. In this study, we conducted fluid 98 

inclusion microthermometry, halogen geochemistry (Cl, Br, and I), and Sr isotope 99 

analysis of scapolite to provide insights into the mechanisms of halogen fractionation 100 

during the phase separation of hydrothermal fluid. 101 

GEOLOGICAL BACKGROUND 102 

The Yixingzhai gold deposit is one of the largest gold deposits in the Taihangshan 103 

district, North China Craton (Fig. 1a). It includes four breccia pipes and several 104 

NW-/NNW-trend auriferous quartz veins hosted in Archean tonalite-trondhjemite- 105 

granodiorite (TTG) and amphibolite rocks (Fig. 1b). The Tietangdong Fe-Au skarn 106 

breccia pipe (250 × 150 m at the surface) is roughly controlled by two sets of parallel 107 

NW- and NE-trend faults with steep boundaries and extends more than 1400 m in depth 108 

(Fig. 1c). The breccia clasts include numerous sub-angular to rounded polymictic clasts, 109 

with diameters ranging from a few millimeters to several meters. They are composed of 110 

prograde skarn (garnet, diopside, and scapolite), retrograde skarn (actinolite, tremolite, 111 

epidote, and chlorite), TTG, amphibolite, diabase, diorite porphyry, and felsite. The 112 

interstitial matrix and cement include debris, calc-silicate minerals, calcite, and quartz, 113 
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indicating a physical brecciation of the rocks followed by subsequent hydrothermal 114 

alteration. Some NS-trending quartz porphyry dikes cut the breccia pipe (Fig. 1b) with a 115 

zircon U-Pb age of 141 ± 1 Ma, indistinguishable from the skarn garnet U-Pb age (140 ± 116 

2 Ma; Zhang et al. 2020). 117 

Three hydrothermal alteration and mineralization stages in the Tietangdong breccia 118 

pipe have been recognized by detailed field and petrographic observations. These include 119 

the prograde skarn, retrograde skarn, and quartz-sulfide-calcite stages. The prograde 120 

skarn stage is characterized by the formation of garnet, diopside, scapolite, and minor 121 

magnetite (Figs. 2a-d). The retrograde skarn stage is represented by epidote, actinolite, 122 

magnetite, and sulfide minerals, with minor electrum and late-stage scapolite (Figs. 2e-g). 123 

They commonly replace or cement the prograde skarn minerals (Fig. 2a). Finally, the 124 

quartz-sulfide-calcite stage is characterized by pervasive quartz, sulfides, calcite, and 125 

adularia, which frequently occur in the open vugs of the breccia pipe. The mineral 126 

paragenesis sequences of Tietangdong are summarized in Fig. 3, showing that the 127 

scapolite coexisted with other skarn minerals in the prograde and retrograde skarn stages. 128 

SAMPLES AND METHODS 129 

Sample description 130 

Ten scapolite-rich samples were collected for petrographical, microthermometrical, 131 

geochemical, and Sr isotopic studies (Fig. 1c). Detailed sample descriptions are listed in 132 

Table S1, Supplementary Materials and are briefly described here. Samples TTD18, 133 

18Scp-3, and 18Scp-1 were taken from the open pit, with mineral associations of garnet, 134 

scapolite, and diopside. Samples 830Scp-5, 830Scp-13, 830Scp-15, 830Scp-18, and 135 
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T510-6 were taken from the 830 m and 510 m underground adits. Samples T601-152 and 136 

T601-181.3 were taken from drill core T510ZK601, with mineral associations of garnet, 137 

scapolite, diopside, epidote, actinolite, calcite, and quartz. Double-polished thin sections 138 

were examined under an optical microscope to investigate the mineralogy and textural 139 

features. Subsequently, scapolite grains with different mineral associations were extracted, 140 

handpicked, and mounted in 25 mm-diameter epoxy mounts. Then, carbon-coated 141 

sections and mounts were observed by back-scattered electron (BSE) and 142 

cathodoluminescence (CL) imaging on scanning electron microscopes. 143 

Fluid inclusion microthermometry 144 

Fluid inclusion microthermometry was performed on a Linkam 600 heating-freezing 145 

stage and a Linkam TS1400XY heating stage mounted on the Olympus BX53M 146 

microscopes at the State Key Laboratory of Geological Processes and Mineral Resources, 147 

China University of Geosciences (Wuhan). The Linkam 600 stage was calibrated at 148 

-56.6 °C, 0.0 °C, and 374.1 °C using pure H2O-CO2 and H2O synthetic fluid inclusion 149 

standards, and the Linkam TS1400XY stage was calibrated at 374.1 °C using a pure H2O 150 

synthetic fluid inclusion standard. Fluid inclusion assemblages (FIAs), which represent a 151 

group of petrographically constrained and contemporaneously entrapped fluid inclusions 152 

(Goldstein and Reynolds 1994), were chosen for microthermometric measurements. A 153 

cycling technique was undertaken to obtain homogenization and ice melting temperatures 154 

(Goldstein and Reynolds 1994). Total uncertainties range from 2–3 °C for the heating 155 

stage (temperature above 100 °C) and ± 0.2 °C for the freezing stage (-56.6 to 0.0 °C). 156 

The program HokieFlincs for the NaCl-H2O system (Steele-MacInnis et al. 2012) was 157 

used to calculate the salinity and pressure of fluid inclusions. 158 
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Electron probe microanalysis 159 

Electron probe microanalysis (EPMA) of scapolite was conducted using a JEOL 160 

JXA-8230 Superprobe at the Center for Material Research and Analysis, Wuhan 161 

University of Technology. Analyses were performed using a 15 kV accelerating voltage 162 

and a 20 nA beam current with a 5 μm beam to avoid potential diffusion of Na and Cl 163 

(Hammerli et al. 2013). The peak counting times were 20 seconds for Sr and S, and 10 164 

seconds for the other elements. The background was measured on both sides of the peak 165 

for half of the peak time. The Kα line was chosen for Na, Al, Si, Mg, Fe, K, Ca, Ti, Cl, F, 166 

Sr, and S. The Lα line was chosen for Mn. Natural mineral standards include albite (Na, 167 

Si, and Al), K-feldspar (K), plagioclase (Ca), tugtupite (Cl), celestite (Sr and S), pyrope 168 

(Mg), rutile (Ti), hematite (Fe), rhodonite (Mn), and fluorite (F). The USNM R6600-1 169 

scapolite (Cl: 1.43 wt%; Jarosewich et al. 1980) was used as a secondary standard. The 170 

raw data were corrected using the internal ZAF routine. The detection limits of all the 171 

elements were approximately 0.02 wt%. The measured value of USNM R6600-1 is 1.39 172 

± 0.05 wt% for Cl (n = 10, 2σ; Table S2). The mineral formula was calculated based on 173 

Si + Al = 12 atom per formula unit and Cl + S + C = 1 atom per formula unit (Evans et al. 174 

1969; Teertstra and Sherriff 1997). The detailed analytical method for EPMA of actinolite 175 

is listed in the Supplementary Materials. 176 

Halogen analysis of scapolite 177 

A femtosecond laser ablation (LA) instrument (J200, Applied Spectra, Inc., USA) 178 

coupled to the Thermo Element XR Sector-field ICP-MS was used to obtain halogen 179 

concentrations of scapolite at the Institute of Mineral Resource, Chinese Academy of 180 
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Geological Sciences, Beijing. A laser spot size of 50 µm was used throughout these 181 

measurements. A repetition rate of 8 Hz was used along with a carrier gas rate of helium 182 

of 0.70 L/min and the argon make-up gas rate of 1.20 L/min to introduce the ablated 183 

material into the ICP torch. The ICP-MS was tuned using a NIST SRM 610 glass to reach 184 

robust conditions and low oxide production which was monitored as ThO+/Th+ < 0.3%. 185 

For each analysis cycle, a 30 seconds background signal was collected before the laser 186 

was switched on for 20 seconds of ablation of the sample material. Then a washout 187 

period of 70–100 seconds was set after measurements to ensure low and stable halogen 188 

backgrounds. Only 29Si, 35Cl, 79Br, 81Br, and 127I were determined to provide optimal 189 

counting time for halogen concentrations. Furthermore, the reference materials (see 190 

below) were repeatedly analyzed every 10 analyses of the studied scapolite and 191 

monitored throughout the session for drift. Raw data were reduced via the software 192 

package ICPMSDataCal (Liu et al. 2010). Silicon concentrations quantified by EPMA 193 

were used as the internal standard for data reduction. The scapolite standards ON70 (1.94 194 

wt% Cl, 1877 ppm Br; Evans et al. 1969; Teertstra and Sherriff 1997; Zhang et al. 2017a) 195 

and AF8 (7.16 wt% Cl, 148 ppm Br, and 28.4 ppm I determined by bulk analysis) were 196 

used as the external standard for Cl, Br, and I data reduction. AF5 (7.12 wt% Cl, 661 197 

ppm Br, and 106 ppm I, bulk analysis) was used as a secondary standard. The measured 198 

values of AF5 are 7.11 ± 0.59 wt% for Cl, 658 ± 56 ppm for Br, and 102 ± 10 ppm for I 199 

(n = 12, 2σ; Table S3). The scapolite Cl contents detected by LA-ICPMS are consistent 200 

with the Cl concentrations obtained from EPMA within 2σ uncertainty (Fig. S1c). The 201 

details on the LA-ICPMS and bulk halogen analyses on the reference materials are listed 202 

in the Supplementary Materials. 203 
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Strontium isotope analysis of scapolite 204 

Sr isotopes of scapolite were measured by a Neptune Plus MC-ICP-MS (Thermo 205 

Fisher Scientific, Bremen, Germany) in combination with a Geolas HD excimer ArF laser 206 

ablation system (Coherent, Göttingen, Germany) at the Wuhan Sample Solution 207 

Analytical Technology Co., Ltd, Hubei, China. The Neptune Plus was equipped with nine 208 

Faraday cups fitted with 1011 Ω resistors. The Faraday collector configuration of the mass 209 

system was composed of an array from L4 to H3 to monitor Kr, Rb, Er, Yb and Sr. The 210 

combination of the high-sensitivity X-skimmer cone and Jet-sample cone was employed. 211 

In the laser ablation system, helium was used as the carrier gas for the ablation cell. Laser 212 

conditions included spot diameter (120 μm), pulse frequency (8 Hz), and fluence (~8 213 

J/cm2). A signal smoothing device (Hu et al. 2012) was used downstream from the sample 214 

cell to eliminate the short-term variation of the signal. The data reduction for 215 

LA-MC-ICPMS analysis was conducted using ICPMSDataCal (Liu et al. 2010). The 216 

interference correction strategy was the same as the one reported by Tong et al. (2016) 217 

and Zhang et al. (2018). One natural feldspar megacryst (anorthite YG4301) was used as 218 

the secondary standard to verify the accuracy of the calibration method for in situ Sr 219 

isotope analysis. Measured 87Sr/86Sr values of YG4301 are 0.70343 ± 0.00021 (n = 4, 2σ), 220 

which are consistent with the recommended 87Sr/86Sr values of 0.70343 ± 0.00002 221 

(Zhang et al. 2018).  222 
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RESULTS 223 

Textures and geochemistry of scapolite 224 

Two different types of scapolite (Scp I and Scp II) are distinguished by their mineral 225 

associations. Scp I grains occur at 1300, 830, 510, and 328.7 m above sea level (a.s.l.) in 226 

the Tietangdong breccia pipe (Fig. 1c). They are coarse-grained and euhedral crystals 227 

(0.2–1.5 cm), which are intergrown with garnet, diopside, and magnetite at the prograde 228 

skarn stage (Figs. 2a-d, 3). Some Scp I grains have been formed by the replacement of 229 

plagioclase phenocrysts in the diorite fragments, with a grain size of 0.2–0.5 cm (Figs. 2b, 230 

c). Scp II crystals (0.5–2 cm) filling in the voids of breccia clasts are commonly 231 

associated with actinolite, epidote, and pyrite at the retrograde skarn stage (Figs. 2 e-g, 3). 232 

Scp II mainly occurs at 830, 510, and 358 m a.s.l. in the Tietangdong breccia pipe (Fig. 233 

1c). 234 

Most scapolite grains have relatively homogeneous textures in CL and BSE images 235 

(Figs. 4a-c). A few scapolite grains have overgrowth textures, such as CL-dark irregular 236 

zoning rims and CL-bright homogeneous cores (Fig. 4d). The cores are considered as Scp 237 

I, whereas the rims are generally associated with actinolite and epidote (Figs. 2e, f) and 238 

represent Scp II. 239 

Results of EPMA analyses on the scapolite are tabulated in Tables 1 and S2. All 240 

analyzed scapolite grains have meionite equivalent (Me) of 27.5–49.8% (n = 136), with 241 

FeO, MnO, TiO2, MgO, and F generally being below the detection limits (Table S2). All 242 

samples follow the [Na4Cl]Si2-[NaCa3CO3]Al2 substitution mechanism (Fig. 5a; Hassan 243 

and Buseck 1988) and show a negative correlation between Cl and equivalent anorthite 244 
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(Eq. An) (Figs. 5b, c). Scp I crystals have Me of 27.5–40.3% and Eq. An of 26.0–38.8% 245 

(Table 1, Figs. 5a-c). They contain 22.08–23.80 wt% Al2O3, 52.38–57.52 wt% SiO2, 246 

7.16–9.17 wt% Na2O, and 6.59–9.75 wt% CaO, with minor amounts of K2O (0.83–2.02 247 

wt%) and SrO (0.20–0.35 wt%). The contents of Cl, SO3, and CO3 in Scp I range from 248 

2.53–3.48 wt%, 0.04–0.33 wt%, and 0.82–2.36 wt%, respectively (Table 1, Fig. 5d). Scp 249 

II grains have 34.4–49.8% Me and 31.5–42.9% Eq. An (Table 1, Figs. 5a-c), and contain 250 

22.56–24.46 wt% Al2O3, 51.39–54.92 wt% SiO2, 5.76–8.16 wt% Na2O, and 8.39–12.27 251 

wt% CaO. The contents of Cl, SO3, and CO3 in Scp II crystals vary from 2.19–2.90 wt%, 252 

0.06–0.50 wt%, and 1.52–2.85 wt%, respectively (Table 1, Fig. 5d). 253 

Fluid inclusions 254 

Three types of primary fluid inclusion are distinguished by their textural and phase 255 

proportion features at room temperature. These types include daughter mineral-bearing 256 

three phases (S-type), vapor-rich aqueous (V-type), and liquid-rich aqueous (L-type) fluid 257 

inclusions. For each type, fluid inclusions have constant phase proportions (Fig. 6b) and 258 

commonly occur in mineral growth zones (Fig. 6c). The fluid inclusions (5–15 μm 259 

diameter) often display rounded or negative crystal shapes (Figs. 6a, b), but some show 260 

irregular boundaries (Figs. 6c, d). S-type fluid inclusions are composed of liquid, vapor, 261 

halite, sylvite, and/or other unidentified daughter crystal phases at room temperature. 262 

They commonly occur in scapolite, diopside, and epidote (Figs. 6a-d). V-type fluid 263 

inclusions are dominated by a vapor phase generally higher than 65% of the total volume 264 

and typically coexist with S-type varieties (Figs. 6a-d). The coexistence of S- and V-type 265 

fluid inclusions is interpreted as boiling FIAs in the skarn minerals (Audétat 2022; Figs. 266 

6a-d). L-type fluid inclusions are commonly present in epidote and calcite, with 15–30% 267 
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vapor phase. A few irregularly shaped fluid inclusions with inconsistent phase 268 

proportions are observed in the studied scapolite (Fig. 6d), indicating the reequilibration 269 

of fluid inclusions (Bodnar, 2003). In this case, fluid inclusion microthermometry results 270 

from scapolite are not presented. Therefore, the fluid inclusion microthermometry results 271 

from diopside and epidote which are associated with two stages scapolite, are used to 272 

determine the salinity, temperature, and pressure of hydrothermal fluids during the 273 

scapolite formation. 274 

The microthermometry results are summarized in Table 2 and illustrated in Fig. 7. 275 

All S-type inclusions are characterized by the final disappearance of the vapor phase after 276 

the dissolution of daughter crystals. L-type inclusions homogenize into the liquid phase. 277 

S-type inclusions in diopside have a final homogenization temperature of 544–586 °C 278 

and calculated salinities of 37.0–54.8 wt% NaCl eq. (Fig. 7). Homogenization 279 

temperatures of S- and L-type inclusions in the epidote are 441–470 °C and 413–433 °C, 280 

respectively (Fig. 7). The calculated salinities of S- and L-type inclusions are 32.5–38.7 281 

wt% NaCl eq. and 7.9–10.5 wt% NaCl eq., respectively (Fig. 7). L-type inclusions in 282 

calcite have total Homogenization temperatures of 146 to 169 °C and calculated salinity 283 

of 5.4–9.9 wt% eq. (Fig. 7). Due to the unclear boundaries of the vapor phase, the V-type 284 

fluid inclusions were not measured. 285 

Halogen geochemistry of scapolite 286 

Halogen contents of scapolite determined by LA-ICPMS are summarized in Table 1 287 

and listed in Table S3. The Scp I crystals have 2.07–3.41 wt% Cl, 389–659 ppm Br, and 288 

10.1–17.9 ppm I. The Br/Cl, I/Cl, and Br/I molar ratios range from 6.1–11.9 × 10-3, 91–289 

191 × 10-6, and 49.9–75.5, respectively. The Scp II grains have 1.84–3.10 wt% Cl, 395–290 
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806 ppm Br, and 8.4–24.4 ppm I, with Br/Cl, I/Cl, and Br/I molar ratios ranging from 291 

7.4–14.7 × 10-3, 105–302 × 10-6, and 42.0–94.1 respectively. Zoned scapolite grains in 292 

sample T510-6 show variable halogen ratios between the core and rim. The CL-bright 293 

core (Scp I) has lower Br/Cl (8.6–8.9 × 10-3) and I/Cl (137–140 × 10-6) values, whereas 294 

the CL-dark rim (Scp II) has higher Br/Cl (11.9–14.4 × 10-3) and I/Cl (205–302 × 10-6) 295 

values (Fig. 4d). The Br and I contents of the studied scapolite grains show no correlation 296 

with Cl (Figs. 8a, b), whereas Br is correlates positively with I (Figs. 8c, d). 297 

Strontium isotopes of scapolite 298 

In situ Sr isotope results of five representative scapolite samples are listed in Table 3. 299 

All scapolite grains have significantly low Rb/Sr ratios (< 0.03), implying negligible 300 

radiogenic Sr. Thus, the measured 87Sr/86Sr values can be considered as the initial 301 

87Sr/86Sr ratios of scapolite. Scp I and Scp II grains have 87Sr/86Sr values ranging from 302 

0.7099 to 0.7112 and 0.7104 to 0.7116, respectively. The 87Sr/86Sr values of all the 303 

scapolite increase with increasing Br/Cl and I/Cl values (Fig. 9). 304 

DISCUSSION 305 

Formation conditions of scapolite 306 

In the Tietangdong Fe-Au skarn breccia pipe, Scp I grains are closely associated 307 

with the prograde skarn minerals (Figs. 2a-d, 3, Table S1), and Scp II grains are 308 

commonly intergrown with the retrograde skarn minerals (Figs. 2e-g, 3, Table S1). The 309 

mineral association and fluid inclusion features of the studied samples (Fig. 6) indicate 310 

the hydrothermal origin of scapolite. The high SO3 contents of the scapolite (0.18 wt% on 311 
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average) imply that the sulfur species in the hydrothermal fluid include sulfate (e.g., 312 SOସଶି, Qiu et al. 2021), suggesting an oxidized ore-forming fluid. This view is also 313 

confirmed by the occurrence of hematite and magnetite in these samples. The relatively 314 

high Cl contents (2.19–3.48 wt%) and marialite proportions (Me = 27.5–49.8; Figs. 5b-d) 315 

in scapolite suggest elevated Cl and Na concentrations in the coexisting hydrothermal 316 

fluid (Ellis 1978; Oliver et al. 1994). This view is confirmed by the presence of high 317 

salinities of S-type fluid inclusions in diopside and epidote (32.5–54.8 wt% NaCl eq.; 318 

Table 2). The microthermometry results show that Scp I and II grains have formed from 319 

high temperature (544–586 °C for Scp I, 441–470 °C for Scp II; Table 2) hydrothermal 320 

fluids under low-pressure conditions (44.1–58.8 MPa for Scp I, 30.2–33.5 MPa for Scp II; 321 

Table 2). The coexisting S-type and V-type fluid inclusions in diopside, scapolite, and 322 

epidote imply that they form under fluid phase separation. 323 

Scapolite from the Tietangdong breccia pipe has relatively high Cl and low Eq. An 324 

values (Fig. 5b). These chemical characters are similar to hydrothermal scapolite from the 325 

Tieshan iron skarn deposit in Hubei Province, China, the Nickel plate Au deposit in 326 

British Columbia, Canada (Pan and Dong 2003), the Jinshandian iron skarn deposit in 327 

Hubei Province, China (Zeng et al. 2019), and the Clarke Head metasomatic syenite in 328 

Nova Scotia, Canada (Pe-Piper et al. 2019). In contrast, they are significantly distinct 329 

from the metamorphic scapolite in amphibolite-facies calc-silicates at Mary Kathleen, 330 

Australia (Oliver et al. 1992) and Idaho, America (Rebbert and Rice 1997). The studied 331 

scapolite has relatively low CO3/ (SO3 + CO3 + Cl) ratios and high Cl contents, similar to 332 

the magmatic-hydrothermal origin scapolite from the Norrbotten district, Sweden (Fig. 5d, 333 

Bernal et al. 2017). Furthermore, the 87Sr/86Sr ratios of scapolite (0.7099–0.7116; Table 3) 334 
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are slightly higher than the coeval granite porphyry related to the breccia pipe (0.7091–335 

0.7092; Zhang et al. 2017b), but they are much lower than the 87Sr/86Sr values of the 336 

metamorphic rocks in this region (0.7130–0.7180; Jahn et al. 1999). The Sr isotope data 337 

suggest that the studied scapolite formed from a magmatic-hydrothermal fluid that 338 

interacted slightly with the Archean wall rocks (Figs. 9a, b). Taken together, we propose 339 

that the studied scapolite grains formed from an oxidized, high-salinity fluid resulting 340 

from the fluid phase separation of magmatic-hydrothermal fluid at high-temperature and 341 

low-pressure conditions. However, the Br/Cl and I/Cl values of all the studied scapolite 342 

are significantly higher than those values of the magmatic-hydrothermal fluid (Fig. 10), 343 

for reasons that will be discussed later. 344 

Origin of the high Br/Cl and I/Cl fluid 345 

The significantly high Br/Cl and I/Cl values of the scapolite from the Tietangdong 346 

breccia pipe may be explained by (1) large Br/Cl and I/Cl partition coefficients (>1) 347 

between scapolite and fluids in Cl-poor (< 0.03 wt% Cl) meionitic scapolite groups, (2) 348 

mixing of magmatic-hydrothermal fluid with external high Br/Cl and I/Cl fluids, or (3) 349 

halogen fractionation during hydrothermal fluid evolution. Previous studies have shown 350 

that Cl-poor meionitic scapolite (0.02–0.03 wt% Cl, Me = 76.7%) from Laurence-McGill 351 

Farm (LM-Q) in the Grenville Province has unusually high Br/Cl (39.1–54 × 10-3) and 352 

I/Cl (226–284 × 10-6) ratios (Kendrick and Phillips 2009; Fig. 10). These high halogen 353 

ratios may result from the high Br/Cl and I/Cl partition coefficients (> 1) between 354 

Cl-poor meionitic scapolite and fluids (Kendrick and Phillips 2009). However, high Br/Cl 355 

and I/Cl ratios do not occur in the scapolite (1.79–4.13 wt% Cl, Me = 7.1–48.8%) from 356 

Haliburton Highway (HAL-O), Tory Hills, Bancroft (TB-O), and Bear Lake (BL-Q) in 357 
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the Grenville Province (Kendrick and Phillips 2009; Fig. 10). In this study, all scapolite 358 

grains from the Tietangdong breccia pipe are high Cl scapolite (2.19–3.48 wt% Cl; Me = 359 

27.5–49.8%), which precludes the first hypothesis. In the second case, 360 

magmatic-hydrothermal fluid mixing with high Br/Cl sources (marine evaporites or 361 

organic-rich sediment) may cause significantly high Br/Cl values of the scapolite, but 362 

those mixing fluids have significantly lower or higher I/Cl ratios than the studied 363 

scapolite (Zherebtsova and Volkova 1966; Polya et al. 2000; Sekimoto and Ebihara 2013; 364 

Hanley and Koga 2018; mixing trend 1 and 3, Fig. 10). This precludes the second 365 

hypothesis. We therefore suggest that these high Br/Cl and I/Cl values of the studied 366 

scapolite most likely resulted from halogen fractionation during hydrothermal fluid 367 

evolution. In this case, three processes may cause such halogen fractionation, including 368 

(1) low-pressure devolatilization of a cooling magma (Bureau et al. 2000, 2010, 2016; 369 

Kurosawa et al. 2016), (2) precipitation of Cl-bearing minerals (Markl and Bucher 1998; 370 

Svensen et al. 1999; Kusebauch et al. 2015), and (3) phase separation of hydrothermal 371 

fluid (Ishibashi et al. 1994; Oosting and Von Damm 1996; Berndt and Seyfried 1997; 372 

Lüders et al. 2002). 373 

Halogen fractionation may result from fluid exsolution from a cooling magma at low 374 

pressure, because Br/Cl and I/Cl partition coefficients between the fluid and its parental 375 

magma are negatively related to the pressure (Bureau et al. 2000; Bureau et al. 2010; 376 

Lukanin 2015; Bureau et al. 2016; Kurosawa et al. 2016; Hsu et al. 2019). However, 377 

fluids exsolved from volcanoes under very low-pressure conditions have Br/Cl and I/Cl 378 

values of 0.17–4.15 × 10-3 and 0.84–703.20 × 10-6, respectively (Webster et al. 2018; Fig. 379 

10). These halogen ratios are much lower than the Br/Cl values of the studied scapolite 380 
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(Fig. 10). Therefore, we propose that the significantly high halogen ratios in the studied 381 

scapolite are not controlled by the segregation of hydrothermal fluids from the magma at 382 

low pressure. 383 

Halogen fractionation in hydrothermal fluids may be attributed to the precipitation of 384 

Cl-bearing minerals (such as halite, biotite, and amphibole). Several studies propose that 385 

most Cl-bearing minerals (halite, biotite, and amphibole) preferentially incorporate Cl 386 

into their structures rather than Br and I (Svensen et al. 2001; Mark et al. 2005; 387 

Kusebauch et al. 2015). For example, the precipitation of halite possibly increases the 388 

Br/Cl and I/Cl ratios of hydrothermal fluids (Andersson 2019, Michallik et al. 2021; Fig. 389 

10). However, S-type fluid inclusions in the studied minerals were finally homogenized 390 

by vapor disappearance after the dissolution of salt crystals (Table 2), indicating the 391 

scapolite formed from a salt unsaturated fluid (Goldstein and Reynolds 1994; Driesner 392 

and Heinrich 2007; Fig. 7). Precipitation of massive Cl-bearing actinolite (Cl: 0.01–0.12 393 

wt%, Fig. S2, Table S4) may also elevate the Br/Cl and I/Cl ratios of the hydrothermal 394 

fluids, because Cl preferentially partitions into the actinolite than Br and I (Svensen et al. 395 

1999, 2001; Kusebauch et al. 2015). This view is confirmed by the higher Br/Cl and I/Cl 396 

values of Scp II than Scp I (Fig. 8d). However, the Scp I grains are not intergrown with 397 

any Cl-bearing minerals and have extremely high Br/Cl and I/Cl values. Thus, we 398 

proposed that the precipitation of Cl-bearing minerals may not be the predominant factor 399 

causing halogen fractionation in the scapolite-forming fluid. 400 

Halogen fractionation observed for the Tietangdong scapolite is most likely related 401 

to the phase separation of the hydrothermal fluids. An experimental study (Liebscher et al. 402 

2006) shows that Br preferentially partitions into the brine phase compared to Cl (380–403 



19 
 

450 °C, 22.9–41.7 MPa). Other experimental studies, however, show that Br/Cl values in 404 

the vapor phase are higher than the brine (388–550 °C, 25–35 MPa, Foustoukos and 405 

Seyfried 2007; 900 °C, 90–150 MPa, Seo and Zajacz 2016). These differences may be 406 

attributed to the interference of different ionic compositions in various experimental 407 

sequences (Seo and Zajacz 2016). Fluid inclusions in quartz from the Tsushima granite 408 

system, Japan (Kurosawa et al. 2016) have higher Br/Cl values in brine compared to the 409 

coexisting vapor phase. This view is consistent with the significantly high Br/Cl ratios of 410 

the studied scapolite grains, which are in equilibrium with the high-salinity fluid from 411 

phase separation of magmatic-hydrothermal fluid. Therefore, we propose that Br 412 

preferentially partitioned into the brine phase relative to Cl during fluid phase separation. 413 

In addition, I and Br may have similar behavior during the phase separation of 414 

hydrothermal fluids. This conclusion is supported by (1) Br and I have similar ionic sizes 415 

(0.196 Å for Br; 0.220 Å for I; Shannon 1976), (2) Br/I values are overall constant during 416 

seawater evaporation (Fig. 10), and (3) Br and I contents have a positive correlation in 417 

the studied scapolite (Fig. 8c). Collectively, the significantly high Br/Cl and I/Cl values 418 

of the studied scapolite can be explained by the phase separation of hydrothermal fluids. 419 

A halogen fractionation model associated with fluid phase separation is proposed to test 420 

this hypothesis (see below and Supplementary Materials). 421 

Halogen fractionation model 422 

As summarized above, the high Br/Cl and I/Cl values of scapolite from the 423 

Tietangdong breccia pipe can be interpreted in terms of halogen fractionation due to 424 

phase separation of the magmatic-hydrothermal fluid. Based on Drummond and Ohmoto 425 

(1985), elements partition during phase separation of hydrothermal fluids is similar to 426 
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Rayleigh distillation. Thus, the Br/Cl and I/Cl values in separated brine phases can be 427 

quantitatively described as a simple Rayleigh fractionation model: 428 

C(Br/Cl)
Brine = C(Br/Cl)

Initial × (1 - FVapor)(1/K
D(Br/Cl)

Brine-vapor - 1)                     (1) 429 

C(I/Cl)
Brine = C(I/Cl)

Initial × (1 - FVapor)(1/K
D(I/Cl)

Brine-vapor - 1)                        (2) 430 

where C(Br/Cl)
Brine and C(I/Cl)

Brine represent the Br/Cl and I/Cl molar ratios of the brine, 431 

respectively; C(Br/Cl)
Initial and C(I/Cl)

Initial refer to the Br/Cl and I/Cl molar ratios of the 432 

initial hydrothermal fluids, respectively; FVapor is the mass ratio between vapor and initial 433 

fluids. FVapor represents the vapor loss ratio during the phase separation of initial fluids. 434 

KD(Br/Cl)
Brine-Vapor and KD(I/Cl)

Brine-Vapor represent the Br/Cl and I/Cl exchange coefficients 435 

between the brine and vapor phases. The C(Br/Cl)
Initial (1.5/1.8/2.0 × 10-3) and C(I/Cl)

Initial 436 

(16/30/55 × 10-6) values were estimated from hydrothermal fluids degassed from magmas 437 

(Johnson et al. 2000; Burgess et al. 2002; Burgess et al. 2009; Kendrick et al. 2017; Table 438 

S6). The KD(Br/Cl)
Brine-Vapor is calculated from the equation proposed by Liebscher et al. 439 

(2006): 440 

KD(Br/Cl)
Brine-Vapor = 0.349 × ln[1.697 × (DCl

Brine-Vapor - 1) + e (1/0.394)]               (3) 441 

Based on the temperature, pressure, and salinity conditions under which the Tietangdong 442 

scapolite precipitated (Table 2), the KD(Br/Cl)
Brine-Vapor values are calculated to be 2.26 and 443 

2.27 at 580 °C/45 MPa and 450 °C/30 MPa respectively (Fig. S3). The KD(I/Cl)
Brine-Vapor is 444 

assumed to be the same as KD(Br/Cl)
Brine-Vapor, because Br and I have similar behavior 445 

during phase separation of hydrothermal fluids. 446 

The Br/Cl and I/Cl ratios of brines are estimated to increase gradually with the 447 

progressive vapor loss (represented by FVapor) in the Tietangdong breccia pipe during the 448 

phase separation of initial hydrothermal fluids. They can be up to 18 × 10-3 of Br/Cl and 449 
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500 × 10-6 of I/Cl at 98% vapor loss (Fig. S3, Table S6). Based on the fluid inclusion 450 

microthermometry results and mass balance calculation, the brine inclusions in the Scp I 451 

can be formed from 90–93% vapor loss of the initial hydrothermal fluids (Table S7). This 452 

result is consistent with our simulation result that 90–95% vapor loss can cause the high 453 

halogen ratios of the studied scapolite (Fig. 10). Hence, the simulation results confirm 454 

that the significantly high Br/Cl and I/Cl values of the studied scapolite can be attributed 455 

to extensive fluid phase separation. 456 

IMPLICATIONS 457 

The integrated study of fluid inclusion microthermometry, halogen geochemistry, and 458 

Sr isotope suggests that scapolite grains from the Tietangdong breccia pipe formed from 459 

an oxidized, high-temperature (544–586 °C for Scp I and 441–470 °C for Scp II), high 460 

salinity (37.0–54.8 wt% NaCl eq. for Scp I and 32.5–38.7 wt% NaCl eq. for Scp II), and 461 

low pressure (44.1–58.8 MPa for Scp I and 30.2–33.5 Mpa for Scp II) 462 

magmatic-hydrothermal fluid at prograde and retrograde skarn stages. The studied 463 

scapolite grains have significantly high Br/Cl (6.1–14.7 × 10-3) and I/Cl (91–302 × 10-6) 464 

values, which can be interpreted as the phase separation of magmatic-hydrothermal fluids. 465 

The phase separation could trigger halogen fractionation characterized by the preferential 466 

partitioning of Br and I into the brine compared to Cl. This study highlights the role of 467 

fluid phase separation in causing halogen fractionation, thus providing new insights into 468 

using halogens as a fluid tracer to determine the source and evolution of hydrothermal 469 

fluids under complex geological environments. 470 

 471 
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FIGURE CAPTIONS 738 

Figure 1. (a) A sketch map showing the tectonic divisions of the North China craton 739 

(NCC) and the location of the Taihangshan district (modified from Li et al. 2012). 740 

Geological map (b) and A-A’ cross-section (c) of the Tietangdong breccia pipe showing 741 

the sample locations (modified from Jing 1985) 742 

 743 

Figure 2. Photographs and microphotographs showing the mineralogy and texture of the 744 

scapolite samples. (a) Scp I coexisting with garnet which is cemented by actinolite and 745 

epidote. (b) Plagioclase phenocrysts in diorite breccia replaced by Scp I grains. (c) 746 

Magnetite intergrown with Scp I. (d) Euhedral Scp I intergrown with garnet. (e-f) Scp II 747 

grains intergrown with massive actinolite, epidote, and pyrite. (g) Scp II intergrown with 748 

actinolite. Act-actinolite, Ep-epidote, Grt-garnet, Di-diopside, Mag-magnetite, Py-pyrite.  749 

 750 

Figure 3. Paragenetic sequence of the Tietangdong breccia pipe. The thickness of the 751 

lines represents the relative contents of minerals. 752 

 753 

Figure 4. CL and BSE images showing scapolite textures (Scp I and Scp II). (a) 754 

Homogenous Scp I grain. (b) Homogenous Br/Cl and I/Cl values in Scp I grain. (c) Scp II 755 

grain. (d) Zoned Scp II grain overgrown on homogenous Scp I. The bright core has low 756 

Br/Cl and I/Cl values, whereas the dark rim displays high halogen ratios. 757 

 758 

Figure 5. Distribution of major elements in Scp I and Scp II. (a) Al/ (Al + Si) vs. Me of 759 

the scapolite. The solid line showing [Na4Cl]Si2-[NaCa3CO3]Al2 and 760 
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[NaCa3CO3]Si-[Ca4CO3]Al non-linear substitutions. Scapolite samples plot between 27.5% 761 

and 49.8% Me. (b, c) The Cl vs. Eq. An of the Scp I and Scp II. Data of hydrothermal 762 

scapolite from Pan and Dong (2003), Pe-Piper et al. (2019), and Zeng et al. (2019). Data 763 

of metamorphic scapolite are from Oliver et al. (1992) and Rebbert and Rice (1997). (d) 764 

Ternary diagram CO3-10 × SO3-Cl showing volatile components in the Scp I and Scp II 765 

(modified from Bernal et al. 2017 and Gajdošová et al. 2019). Apfu-atom per formula 766 

unit. 767 

 768 

Figure 6. Microphotographs showing fluid inclusion assemblages in diopside, epidote, 769 

and scapolite from the Tietangdong breccia pipe. (a) Vapor-rich (V-type) and daughter 770 

mineral-bearing (S-type) fluid inclusions in diopside. (b) S-type fluid inclusions with 771 

constant phase proportions coexisting with V-type fluids in diopside. (c) S-type fluid 772 

inclusions coexisting with V-type fluids within the growth zone of epidote. (d) V-type 773 

fluid inclusions coexisting with S-type fluid inclusions in the Scp I grain. V-vapor phase, 774 

L-liquid phase, H-halite, S-sylvite, X-unidentified phase, Di-diopside, Ep-epidote. 775 

 776 

Figure 7. Homogenization temperature vs. salinity diagram of fluid inclusion 777 

assemblages. Isobars and critical curves based on Atkinson (2002). Di-diopside, 778 

Ep-epidote, Cal-calcite. 779 

 780 

Figure 8. Distribution of halogens in Scp I and Scp II. (a, b) Br and I vs. Cl diagrams 781 

showing that Br and I have no correlation with Cl. (c) Positive correlation between I vs. 782 

Br. (d) I/Cl vs. Br/Cl molar ratios of the scapolite. Note that the halogen ratios of Scp I 783 
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and Scp II show two trends. 784 

 785 

Figure 9. 87Sr/86Sr vs. molar ratios of Br/Cl (a) and I/Cl (b) diagrams. The density graph 786 

of 87Sr/86Sr values of Scp I and Scp II is illustrated in (a). 87Sr/86Sr values of the Hewan 787 

granite porphyry and metamorphic rocks from Zhang et al. (2017b) and Jahn et al. (1999) 788 

respectively. 789 

 790 

Figure 10. I/Cl vs. Br/Cl diagram (molar ratios) for scapolite in the Tietangdong breccia 791 

pipe. The blue (brine trend) and gray dotted (vapor trend) lines represent the Rayleigh 792 

fractionation modeling of halogens fractionation during hydrothermal fluid phase 793 

separation. Halogen reservoirs include seawater1 (Riley and Chester 1971); seawater 794 

evaporation trajectory2 (Zherebtsova and Volkova 1966); sylvite3 (Holser, 1979); 795 

evaporite4 and organic matter5 (Kendrick and Burnard 2013); marine pore fluids6 and 796 

basin pore fluids13 (Kendrick et al. 2011); mantle: OIB and MORB glasses7 (Kendrick et 797 

al. 2017), coated diamond8 (Johnson et al. 2000; Burgess et al. 2002; Burgess et al. 2009); 798 

porphyry copper deposits9 (Böhlke and Irwin 1992; Irwin and Roedder 1995; Kendrick et 799 

al. 2001ab); mixing trend 1: sedimentary assimilation with magmatic-hydrothermal 800 

fluids10 (Polya et al. 2000); mixing trend 2: evaporite assimilation with 801 

magmatic-hydrothermal fluids 11 (Campbell et al. 1995); mixing trend 3: evaporated and 802 

seawater assimilation12 (Richard et al. 2014); sedimentary14, 15, 16: dolomite, limestone, 803 

sandstone, shale, chert, and fluvial lacustrine sediments (Mason 1966; Sekimoto and 804 

Ebihara 2013; Hanley and Koga 2018); scapolite17 (Kendrick and Phillips 2009); 805 

magmatic-hydrothermal related REE phosphate deposits18 in Sweden (Andersson 2019); 806 
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and fluids and gases from volcanic magma19 (Webster et al. 2018) are shown for 807 

comparison.  808 
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TABLES 809 

Table 1. A summary of major and halogen elements results determined by EPMA and LA-ICPMS in scapolite. 810 
 811 
EPMA (wt%) 

1300m (N = 61) 830 m (N = 10) 510 m (N = 42) 358 m (N = 11) 328.7 m (N = 12) 

Scp I Scp I Scp II Scp I Scp II Scp II Scp I 
Range Mean Range Mean Range Mean Range Mean Range Mean Range Mean Range Mean 

SiO2 52.76–57.52 54.94 52.38–52.82 52.66 51.39–52.64 52.01 53.31–53.46 53.38 51.84–54.9 53.23 53.26–54.92 54.04 53.04–54.87 53.73 

Al2O3 22.08–23.80 22.86 23.27–23.60 23.47 23.79–24.46 24.11 23.33–23.60 23.47 23.12–24.43 23.75 22.56–23.27 22.98 22.94–23.58 23.32 

CaO 6.59–9.68 7.92 8.50–8.61 8.54 9.87–10.93 10.42 8.43–8.77 8.60 9.01–12.27 10.92 8.39–9.72 8.98 8.40–9.75 9.19 

SrO 0.20–0.35 0.26 0.24–0.34 0.29 0.20–0.30 0.25 0.22–0.25 0.24 0.20–0.31 0.25 0.21–0.29 0.25 0.20–0.29 0.25 

Na2O 7.36–9.17 8.43 7.78–8.01 7.91 6.45–7.06 6.70 7.44–7.55 7.49 5.76–7.62 6.41 7.35–8.16 7.74 7.16–8.47 7.59 

K2O 0.97–2.02 1.61 1.52–1.60 1.56 1.55–1.79 1.68 1.58–1.63 1.61 1.28–1.66 1.44 1.12–1.36 1.25 0.83–1.58 1.35 

Cl 2.53–3.48 3.15 2.91–3.02 2.95 2.39–2.68 2.49 3.05–3.08 3.07 2.19–2.90 2.45 2.49–2.83 2.66 2.56–2.94 2.75 

SO3 b.d.l.–0.28 0.13 0.18–0.22 0.20 0.15–0.27 0.20 0.29–0.33 0.31 0.13–0.50 0.24 0.06–0.14 0.10 0.09–0.32 0.24 

Sub total 97.68–102.00 99.36 97.60–97.62 97.61 96.75–98.81 97.89 98.07–98.25 98.16 96.84–100.50 98.74 97.31–98.54 98.03 97.68–99.42 98.52 

- Cl = O 0.57–0.78 0.71 0.66–0.68 0.67 0.54–0.60 0.56 0.69–0.70 0.69 0.49–0.65 0.55 0.56–0.64 0.60 0.58–0.66 0.62 

CO2 (calc)a 0.82–2.36 1.38 1.40–1.63 1.55 2.01–2.58 2.32 1.32–1.33 1.32 1.52–2.85 2.44 1.97–2.45 2.18 1.65–2.35 1.92 

Total 97.88–103.00 99.93 98.32–98.58 98.49 98.57–100.48 99.65 98.69–98.89 98.79 98.74–101.91 100.70 99.04–100.00 99.62 98.83–100.52 99.82 

Meb 27.5–39.2 32.0 34.6–35.2 35.0 40.4–44.7 42.8 35.5–36.7 36.1 37.2–49.8 45.4 34.4–40.2 37.0 34.2–40.3 37.8 

Eq. Anc 26.0–38.8 31.6 36.8–38.7 37.8 40.4–42.9 41.3 35.9–37.2 36.5 33.6–42.8 37.9 31.5–35.5 33.5 33.2–37.3 35.4 

Al/(Al+Si) 0.32–0.35 0.33 0.34–0.35 0.34 0.35–0.36 0.35 0.34–0.34 0.34 0.33–0.36 0.34 0.33–0.34 0.33 0.33–0.34 0.34 

Cl/(Cl+CO3) 0.64–0.88 0.79 0.75–0.78 0.76 0.61–0.69 0.65 0.80–0.80 0.80 0.56–0.76 0.63 0.63–0.71 0.67 0.65–0.75 0.71 

LA-ICPMS 1300m (N = 30) 830 m (N = 19) 510 m (N = 25) 358 m (N = 16) 328.7 m (N = 14) 

Cl (wt%) 2.45–3.41 2.91 2.07–2.72 2.52 1.84–2.47 2.10 3.03–3.10 3.07 1.94–3.04 2.48 2.03–2.83 2.42 2.20–2.75 2.55 
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Br (ppm) 389–650 512 402–488 448 522–623 586 585–620 602 503–806 597 395–663 539 476–659 565 

I (ppm) 10.8–17.9 13.6 10.1–12.0 10.8 18.5–23.2 20.1 14.1–15.2 14.6 13.3–24.4 17.6 8.4–19.3 13.3 11.4–16.1 13.3 

Molar Br/Cl ×10-3 6.1–9.1 7.9 6.9–9.6 7.9 10.7–14.7 12.5 8.6–8.9 8.7 7.4–14.4 10.8 8.0–12.1 9.9 8.2–11.9 9.9 

Molar I/Cl ×10-6 91–156 132 109–140 120 235–302 269 127–140 134 124–302 201 105–214 153 118–191 147 

FeO, MgO, MnO, TiO2, and F are generally below the detection limit (b.d.l.). Atomic formula based on Si + Al = 12 (Evans et al. 1969; Teertstra and 812 
Sherriff 1997). 813 
aCO2 contents are recalculated by assuming a full anion site occupancy and H2O-free compositions (Cl + S + C = 1; Evans et al. 1969; Teertstra and 814 
Sherriff 1997). 815 
bMe (meionite equivalent) = 100 × (Ca + Mg + Fe + Mn + Sr)/(Na + K + Ca + Mg + Fe + Mn + Sr). 816 
cEq. An (equivalent anorthite) = 100 × (Al - 3)/3. 817 
  818 
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Table 2. Microthermometry results of skarn minerals from the Tietangdong breccia pipe. 819 
 820 

Prograde skarn stage (diopside) 
FIA Type N Homogenization (°C) SD (°C) Halite dissolution (°C) SD (°C) Salinity (wt% NaCl eq.) SD (wt% NaCl eq.) Pressure (MPa) SD (MPa) 

596.5c S 7 584 44 376 10 44.4 0.9 47.0 3.4 
596.5d S 2 544 74 341 4 41.1 0.1 46.9 16.1 
596.5e S 6 571 35 467 5 54.8 0.3 44.1 7.8 
596.5f S 5 582 17 288 2 37.0 0.1 58.8 4.6 
596.5h S 9 571 36 343 4 41.3 0.4 54.4 0 
596.5i S 3 586 102 348 45 42.0 4.4 51.5 30.4 

Retrograde skarn stage (epidote) 
T601-537.7a S 2 461 2 304 71 38.7 5.5 30.3 1.3 
T601-537.7b S 2 457 3 213 11 32.5 0.6 31.7 0.4 
T601-537.7c S 3 450 5 217 2 32.7 0.1 30.4 1.0 
T601-537.7d S 14 470 3 277 3 36.4 0.2 32.8 0.6 
T601-537.7e S 10 462 3 252 1 34.7 0.1 32.3 0.2 
T18-2a S 8 441 27 237 - 33.8 - 33.5 0 
494.7a S 7 457 28 288 5 37.1 0.4 30.2 6.6 
FIA Type N Homogenization (°C) SD (°C) Ice dissolution (°C) SD (°C) Salinity (wt% NaCl eq.) SD (wt% NaCl eq.)   

03a L 7 420 8 -6.0 1.0 9.2 1.9 
Quartz-sulfide and calcite stage (calcite) 

512.1c L 8 160 9 -4.9 2.3 7.6 3.1 
 821 
 822 
 823 
 824 
 825 
 826 
 827 
  828 
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Table 3. Sr isotope data of the scapolite grains from the Tietangdong breccia pipe. 829 
 830 
Sample no. Comment Rb/Sr 87Sr/86Sr 2SE 
18S1-01 Scp I 0.02  0.7100  0.0001  
18S1-02 Scp I 0.02  0.7101  0.0001  
18S1-03 Scp I 0.02  0.7100  0.0001  
18S1-04 Scp I 0.02  0.7101  0.0002  
18S1-05 Scp I 0.01  0.7102  0.0002  
83013-01 Scp I 0.01  0.7100  0.0002  
83013-02 Scp I 0.01  0.7099  0.0002  
83013-03 Scp I 0.02  0.7103  0.0002  
83013-04 Scp I 0.01  0.7104  0.0002  
181.3-01 Scp I 0.03  0.7103  0.0003  
181.3-02 Scp I 0.03  0.7109  0.0002  
181.3-03 Scp I 0.03  0.7112  0.0002  
181.3-04 Scp I 0.03  0.7112  0.0003  
83015-01 Scp II 0.03  0.7113  0.0002  
83015-02 Scp II 0.03  0.7114  0.0003  
83015-03 Scp II 0.05  0.7107  0.0003  
510-6-01 Scp II 0.03  0.7110  0.0003  
510-6-02 Scp II 0.04  0.7116  0.0003  
510-6-03 Scp II 0.03  0.7110  0.0003  
510-6-04 Scp II 0.03  0.7104  0.0002  
 831 
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