Nature and timing of Sn mineralization in southern Hunan, South China: Constraints from LA-ICP-MS cassiterite U-Pb geochronology and trace element composition

Tao Rena, Huan Lia,*, Thomas J. Algeob, c, d, Musa Bala Gireie, Jinghua Wua, Biao Liua

a Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China

b State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Resources, China University of Geosciences, Wuhan 430074, China

c State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China

d Department of Geosciences, University of Cincinnati, Cincinnati, OH 42221-0013 USA

e Department of Geology, Bayero University Kano, Kano State, Nigeria

*Corresponding author (H. Li): lihuan@csu.edu.cn

ABSTRACT

Accurately determining the timing and mechanism of metallogenesis of ore deposits is essential for developing a robust genetic model for their exploration. In this paper, we analyze the formation conditions of cassiterite in five major deposits of southern Hunan Province, one of the most important tungsten-tin (W-Sn) provinces in South China.
China, using a combination of cathodoluminescence imaging, in situ U-Pb geochronology, and trace-element concentration data. In situ cassiterite U-Pb geochronology constrains the main period of Sn mineralization to between 155.4 and 142.0 Ma, demonstrating a temporal and genetic relationship to silicic intrusive magmatism in the same area. Three stages of magmatic activity and metallogenic evolution are recognized: (1) Early Paleozoic and Triassic: the initial enrichment stage of tungsten and tin; (2) Jurassic: the metasomatic mineralization stage; and (3) Cretaceous: the magmatic-hydrothermal superposition stage. The cassiterite in these deposits takes four forms, i.e., quartz vein-type, greisen-skarn-type, greisen-type, and granite-type, representing a progression characterized by the increasing content and decreasing range of variation of high-field-strength elements (HFSEs), and reflecting a general increase in the degree of evolution of the associated granites. Rare earth element (REE) concentrations suggest that precipitation of cassiterite was insensitive to the redox state of the fluid, and that precipitation of cassiterite in the southern Hunan Sn deposits did not require a high-\(f_O^2\) environment. These findings provide new insights into tin mineralization processes and exploration strategies.

Keywords: tin; tungsten; U-Pb dating; geochemistry; metallogenesis; Nanling

INTRODUCTION

Cassiterite (SnO$_2$), the most economically important tin (Sn)-bearing mineral, is generally mined from primary magmatic-hydrothermal deposits that are spatially and temporally associated with highly differentiated granites (Heinrich 1990; Cheng et al. 2019; Zhu et al. 2021). Accurately determining the timing and duration of precipitation of cassiterite is essential to understanding Sn-ore mineralization processes and thus generating genetic models that can aid in prospecting for rare large...
tin deposits (Yuan et al. 2018). Given its tetragonal, rutile-type structure, cassiterite typically has a high U-Pb ratio as well as a high closure temperature (Zhang et al. 2011, 2017; Neymark et al. 2018). These characteristics give it high resistance to post-ore hydrothermal alteration (Plimer et al. 1991; Hu et al. 2021). Due to their similarities to Sn$^{4+}$ with respect to ionic charges, radii, and coordination numbers, trace elements such as Hf, Zr, Sc, Ta, Nb, Ti, Fe, Mn, In, U and W are able to substitute for Sn in cassiterite either directly or through a coupled substitution mechanism. These elements can be used to trace the cassiterite growth environment as well as the source of mineralizing fluids (Schmidt 2018; Cheng et al. 2019; Bennett et al. 2020; Lehmann et al. 2021; Wu et al. 2021).

The southern Hunan Province, located within the western Nanling metallogenic belt, is one of the most important W-Sn metallogenic regions in China (Mao et al. 2007; Hu et al. 2017; Jiang et al. 2020). This province consists of several major Sn-polymetallic deposits including the Hehuaping, Bailashui, and Xitian deposits (SnO$_2$ reserves of 140 metric kilotons [Kt], 420 Kt, and 178 Kt respectively; Yao et al. 2014; Wang et al. 2014; Li et al. 2019). Also located within this province are the Dengfuxian (quartz vein-type), Dayishan (greisen-type), Shizhuyuan (greisen-skarn-type), Xianghualing (granite-type), and Jiuyishan (greisen-type) deposits that are the focus of this study. These deposits are spatially and temporally related to highly differentiated granites of mid-Mesozoic (165-150 Ma) age that have experienced pervasive hydrothermal alteration (Sun et al. 2018; Li et al. 2018a, b; Yang et al. 2018; Xiong et al. 2020; Liao et al. 2021; Wu et al. 2021, Zhu et al. 2021). Despite extensive geochronological research, the relative timings of magma emplacement and Sn-polymetallic mineralization in this province are still poorly known—partly because earlier studies used conventional radiometric dating systems.
that are readily disturbed in mineralized granite systems (e.g., mica Ar-Ar) (Yin et al. 2002; Cai et al. 2012; Wu et al. 2018; Liu et al. 2019; Liao et al. 2021), and partly because few studies analyzed cassiterite to establish constraints on the timing of tin mineralization. Here, we address this issue by providing new U-Pb dates (i.e., for the Dengfuxian Dayishan, and Xianghualing deposits) as well as the first U-Pb ages for cassiterite (i.e., for the Shizhuyuan and Jiuyishan deposits) for these deposits. Moreover, differences in initial fluid composition and fluid evolution between various types of tin deposits are not clear owing to a paucity of geochemical studies targeting the main tin-bearing phase (i.e., cassiterite).

In this contribution, we undertook a study of cassiterite in five major W-Sn deposits of southern Hunan Province, using a combination of cathodoluminescence, LA-ICP-MS U-Pb ages, and trace-element concentrations. Our objectives were: (1) to better constrain the timing of Sn-polymetallic mineralization; (2) to determine genetic links between Sn-polymetallic mineralization and the associated granitic rocks; and (3) to constraint differences in geochemical characteristics and evolution of ore-forming fluids among the different types of Sn deposits by analyzing cassiterite trace-element compositions.

REGIONAL GEOLOGY

The South China Craton is composed of the Yangtze Block and the Cathaysia Block, sutured along the Pingxiang-Jiangshan-Shaoxing Fault Zone (Fig. 1a and 1b; Li and McCulloch 1996; Zhang et al. 2017). These two blocks were amalgamated during the mid-Neoproterozoic Jiangnan Orogeny (Zhang et al. 2017; Song et al. 2020). The South China Craton experienced multiple tectonic events between the Early Paleozoic and Mesozoic, triggering the emplacement of numerous magmatic rocks that are associated with economically significant hydrothermal W-Sn ore
Southern Hunan Province is located in the western portion of the Nanling metallogenic belt of South China, which is a world-class tungsten-tin mineral district. This province consists of several W-Sn-Pb-Zn-Cu polymetallic deposits, including the Dengfuxian, Dayishan, Shizhuyuan, Xianghualing, and Jiuyishan deposits (Fig. 1c; Li et al. 2018b; Wu et al. 2018, 2021; Yuan et al. 2018; Jiang et al. 2020; Liao et al. 2021; Zhu et al. 2021), most of which are distributed along major NW-SE- and NE-SW-trending faults (Li and Sasaki 2007). Magmatic rocks in this area were emplaced during three discrete stages, i.e., the Early Paleozoic (542-360 Ma), the Triassic (251-200 Ma), and the Jurassic (195-146 Ma; Hu et al. 2017). Of these magmatic episodes, the Jurassic granites are the most closely associated with W-Sn-Pb-Zn-Cu polymetallic deposits and, hence, have attracted considerable scientific and commercial interest (Mao et al. 2007; Hu et al. 2017; Yan et al. 2018).

DEPOSIT GEOLOGY

Southern Hunan Province contains several Sn-polymetallic deposits located in proximity to the Chenzhou-Linwu Fault (Fig. 1c). These bodies are often spatially associated with highly differentiated granites.

Dengfuxian deposit

The Dengfuxian (DFX) deposit, located in Chaling County, is a W-Sn-Nb-Ta-Pb-Zn polymetallic deposit hosted by the Dengfuxian Granite Complex. The ore occurs in a series of quartz veins that are controlled by a network of closely spaced NEE-oriented fractures. The main ore minerals include cassiterite, wolframite, molybdenite, arsenopyrite, pyrite, chalcopyrite, pyrrhotite, galena, sphalerite, scheelite, and quartz with minor fluorite, sericite, and chlorite constituting the gangue.
minerals (Xiong et al. 2020). The major wallrock alterations that accompanied formation of these ore minerals include muscovitization, silicification, sericitization, chloritization, and dolomitization.

The Dengfuxian Pluton is a large granitic complex that is spatially and genetically associated with a Sn polymetallic deposit (Xiong et al. 2019, 2020). The granitic rocks in this composite pluton cover a total area of about 171 km² and were emplaced in three main stages (Fig. 2a). Stage I is represented by coarse-grained and porphyritic biotite granites emplaced at ca. 230.0 ± 1.6 Ma (Huang et al. 2011). Stage II was marked by emplacement of a medium- to fine-grained two-mica granite at 154.0 ± 2.2 Ma (Huang et al. 2013), and its associated mineralization has yielded a molybdenite Re-Os isochron age of 150.5 ± 5.2 Ma (Cai et al. 2012). Stage III is represented by a fine-grained muscovite granite emplaced at 145.2 ± 0.9 Ma (Xiong et al. 2020).

Sedimentary and metamorphic rocks spatially associated with the Dengfuxian polymetallic deposit include limestone of the Lower Permian Longtan Formation as well as metamorphosed sandstone, slate, and phyllite of middle Cambrian age (Xiong et al. 2020).

Dayishan deposit

The Dayishan (DYS) deposit is located about 30 km northwest of Chenzhou city in southern Hunan Province. This Sn deposit is spatially related to the Dayishan Granitic Complex, which can be divided into four units, from oldest to youngest: the Shuangfengan Unit (Triassic), Guankou Unit (Early Jurassic), Tangshipu Unit (Middle Jurassic), and Nibatian Unit (Late Jurassic) (Sun et al. 2018, 2021; Zhang et al. 2021). Granite related to tin mineralization was emplaced mainly in the Jurassic (Sun et al. 2018). The granites of the Dayishan Granitic Complex were intruded into carbonate strata of the Devonian to Carboniferous age, which overlie shale,
conglomerate, and sandstone beds of the Ordovician age. Major structures in the area include NW-trending faults and NNE-trending anticlinal folds (Fig. 2b).

Well-studied ore bodies in the study area include the Tengshan’ao and Maozaishan deposits. The mineralization is associated with greisen-quartz veins and altered granites, both of which are associated with potash alteration, silicification, and greisenization (Sun et al. 2018, 2021; Zhang et al. 2021). Cassiterite, the major ore mineral in this deposit, is closely associated with arsenopyrite, chalcopyrite, pyrite, sphalerite, and molybdenite. Common gangue minerals are quartz, potassium feldspar, tourmaline, muscovite, topaz, albite, sericite, and chlorite (Sun et al. 2018, Zhang et al. 2021).

Shizhuyuan deposit

The Shizhuyuan (SZY) deposit is a multistage W-Sn-Mo-Bi deposit located 16 km southeast of Chenzhou city. This deposit is closely associated with the Qianlishan Granite Complex, which covers a total area of ~11 km² and consists of three intrusive stages: Stage I is a microfine-grained porphyritic biotite granite with an emplacement age of 183.2-152.3 Ma (Liu et al. 1997; Chen et al. 2016; Liao et al. 2021); Stage II is a fine-grained biotite granite with an intrusion age of 162.6-137.4 Ma (Liu et al. 1997; Yin et al. 2002; Li et al. 2004; Chen et al. 2016; Liao et al. 2021); and Stage III is a medium-grained equigranular zinnwaldite granite and granite porphyry, intruded at 154.4-144.4 Ma (Liu et al. 1997; Chen et al. 2016; Liao et al. 2021). Other units in the area include Sinian metasedimentary rocks, Devonian carbonate, and clastic sedimentary rocks. The Devonian rocks are the most significant ore-bearing host rocks and can be subdivided into four formations (from bottom to top): (1) Tiaomajian Formation, (2) Qiziqiao Formation, (3) Shetianqiao Formation, and (4) Xikuangshan Formation.
The W-Sn-Mo-Bi mineralization is structurally controlled by NE-trending faults and fractures (Fig. 2c). The styles of mineralization include greisen-quartz vein Sn-Cu ore, disseminated W-Sn-Mo-Bi ore in skarn, greisen-skarn-type W-Sn-Mo-Bi ore, and disseminated W-Sn-Mo-Bi-type ore in greisen at the roof of the porphyritic biotite granite pluton (Liao et al. 2021). The major ore minerals are cassiterite, wolframite, scheelite, molybdenite, bismuthinite, arsenopyrite, pyrrhotite, pyrite, magnetite, sphalerite, galena, and chalcopyrite. The common gangue minerals are potassium feldspar, albite, quartz, muscovite, topaz, and fluorite (Liao et al. 2021). The major hydrothermal alterations that accompanied ore formation are skarn metasomatism, tourmalinization, and greisenization.

Xianghualing deposit

The Xianghualing (XHL) deposit is located in northern Linwu County, Hunan Province, proximally to the Laiziling plutons. The Laiziling Pluton covers a total area of 2.2 km² and has yielded a zircon U-Pb age of 156.4 ± 1.4 Ma (Yang et al. 2018). It can be divided into four vertical zones, from top to bottom, the pegmatite, greisen, albite granite, and albite microcline granite zones (Wu et al. 2018). Minor rocks in this area include shallow-marine sand and clay deposits of Cambrian age, shallow-marine carbonates of Devonian to Carboniferous age, and sandstones and shales ranging from the Permian to Cretaceous in age. NE-trending faults and fractures are the main ore-bearing structures (Fig. 2d).

The style of mineralization is skarn type, and hydrothermal alteration processes such as chloritization accompanied the formation of major ore minerals including cassiterite, pyrrhotite, pyrite, arsenopyrite, sphalerite, magnetite, and galena. Common gangue minerals in the deposit are actinolite, tremolite, diopside, garnet, and wollastonite (Wu et al. 2018).
The Jiuyishan (JYS) deposit, located in southwestern Hunan Province, is one of the most important W-Sn deposits in the Nanling region of China. This deposit is closely related to the Jiuyishan Granitic Complex, which consists of the Xuehuading, Pangxiemu, and Jinjiling plutons, covering 130 km², 350 km², and 49 km², respectively (Fig. 2e; Su 2017). Although the Xuehuading Pluton dates to the Early Paleozoic (432.0 ± 21.0 Ma; Fu et al. 2004), the other granites were emplaced in the Jurassic (156-145 Ma), with cross-cutting relationships demonstrating Pangxiemu to be younger than Jinjiling (Liu et al. 2019; Li et al. 2021). This area, which also exposes carbonates of Devonian to Triassic age, is dominated by NNE- and N-trending fractures, accompanied by NE-, NW-, and E-trending faults.

The main W-Sn deposits in the Jiuyishan area, e.g., Da'ao, Shazichong, and Xiangyuan, are concentrated in the western part of the Jinjiling Pluton and exhibit diverse mineralization types including disseminated greisen-type, altered granite-type, and greisen-quartz vein-type (Fu et al. 2007). Greisenization and silicification were the major hydrothermal alteration processes that accompanied formation of the main ore minerals, which include cassiterite, wolframite, pyrite, chalcopyrite, sphalerite, and molybdenite. Common gangue minerals are potassium feldspar, plagioclase, topaz, albite, quartz, and muscovite (Fu et al. 2007).

SAMPLING AND ANALYTICAL METHODS

Representative samples of Sn ore were collected from the five deposits. Sample DFX is from a sulfide-bearing W-Sn quartz vein in muscovite granite of the No. 13 tunnel of the Dengfuxian tungsten deposit (Fig. 3a-c), and sample DYS is from the greisen ore body (ore vein width 1 m) of the Xilingxi granite in Dayishan (Fig. 3d-f). Sample SZY is from the greisen-skarn vein (not intensely skarn mineralized) of the
No. 490 tunnel of the Shizhuyuan deposit (Fig. 3g-i), sample XHL is from the skarn-related Sn- and As-bearing granite in exploration line No. 47 of Tunnel 272 of the Xinfeng Ore Block (Fig. 3j-l), and sample JYS is from the greisen-quartz vein of the Xiangyuan mine (Fig. 3m-o).

After observation by optical microscopy (Fig. 4), each sample was crushed and different phases were separated for further analysis. The analytical techniques used in this study, i.e., cathodoluminescence (CL) imaging and mapping, geochronology and trace elements analyses, and statistical methods (PCA and OPSL-DA) are detailed in the Supplementary Material 1 (10.6084/m9.figshare.22187755) and have been made publicly available in Figshare (https://figshare.com/account/home, 2023/02). SnO₂ reserve data for the tin deposits involved in this study were obtained from the National Geological Archive of China (https://www.ngac.cn/, 2023/02).

RESULTS

Cassiterite petrography

All five of the studied tin deposits contain only a single generation of cassiterite, each showing similar textural characteristics. Sample DFX grains are quasi-automorphic, grayish-yellowish in color, ~400 μm in diameter, and lightly altered (Fig. 4a-b). Sample DYS grains are yellow-brown, up to 1 mm in diameter (the largest among the five deposits), and strongly altered in greisen veins (Fig. 4c-d).

Sample SZY grains are irregular in shape, yellow-brown, ~200 μm in size, and strongly altered (Fig. 4e-f). Sample XHL grains are elongated (~300 μm in length) and usually broken, gray-yellow (Fig. 4g-h). Sample JYS grains are quasi-automorphic, brown, and ~200 μm in size, and strongly altered (Fig. 4i-j).
Cassiterite U-Pb geochronology

Analytical results of cassiterite U-Pb dating are presented in Supplementary Material 2 (10.6084/m9.figshare.22187752). Analyzed grains range in size from 70 to 300 μm and in color from dark grey to black, most having euhedral to subhedral shapes and displaying evident oscillatory zonation or patchiness in CL images (Fig. 5a-e). They frequently contain hydrothermal alteration veins or veinlet cracks. These characteristics can provide a reference for the location of laser ablation spots, and avoid the ablation of grains with exceptionally low or high U or Pb contents (which are usually pure black or off-white) prone to yielding poor intercept ages. Because the 128 cassiterites tested have relatively low U (0.1-53 ppm) and Th (0-6.5 ppm) contents, crystallization ages and initial $^{207}\text{Pb}/^{206}\text{Pb}$ are calculated from a Tera-Wasserburg concordia plot. Cassiterite analyses from the five deposits form Tera-Wasserburg isochrons defining lower-intercept dates of 142.0 ± 17.1 Ma (MSWD = 1.40; $n = 25$, initial $^{207}\text{Pb}/^{206}\text{Pb} = 0.884 ± 0.020$) for Dengfuxian (Fig. 6a), 154.7 ± 3.0 Ma (MSWD = 0.96; $n = 40$, $^{207}\text{Pb}/^{206}\text{Pb} = 0.852 ± 0.013$) for Dayishan (Fig. 6b), 154.9 ± 2.1 Ma (MSWD = 1.50; $n = 21$, $^{207}\text{Pb}/^{206}\text{Pb} = 0.851 ± 0.081$) for Shizhuyuan (Fig. 6c), 155.4 ± 4.8 Ma (MSWD = 0.43; $n = 20$, $^{207}\text{Pb}/^{206}\text{Pb} = 0.833 ± 0.018$) for Xianghualing (Fig. 6d), and 152.0 ± 5.8 Ma (MSWD = 1.50; $n = 23$, $^{207}\text{Pb}/^{206}\text{Pb} = 0.828 ± 0.007$) for Jiuyishan (Fig. 6e). Overall, cassiterites from the five deposits yielded lower intercept ages that range from 155.4 ± 4.8 Ma to 142.0 ± 17.1 Ma, indicating a Late Jurassic to earliest Cretaceous age of formation.

Trace element compositions

The trace element compositions of cassiterite grains from the five studied W-Sn deposits are given in Supplementary Material 2 (10.6084/m9.figshare.22187752). To show more clearly the trace element characteristics of cassiterite in each type of
deposit, we present here a pooled dataset (note: all ranges represent 16th-84th percentiles in order to avoid the influence of outliers).

Cassiterite in the quartz vein-type deposit (DFX) has the highest concentrations of Fe (median = 1892 ppm, 243-5091 ppm), Mn (median = 8.5 ppm, 1.1-171 ppm) and W (median = 4224 ppm, 51.6-18799 ppm), and the lowest concentrations of Zr (median = 8.3 ppm, 3.8-14.0 ppm), U (median = 0.8 ppm, 0.3-1.3 ppm), Nb (median = 20.3 ppm, 7.3-278 ppm), Ta (median = 2.2 ppm, 0.2-4.4 ppm) and Hf (median = 0.5 ppm, 0.1-1.2 ppm).

Cassiterite in the greisen-skarn-type (SZY) deposit has the highest concentrations of Ti (median = 1067 ppm, 352-4701 ppm) and U (median = 34.1 ppm, 25.8-47.3 ppm), but rather low concentrations of Nb (median = 302 ppm, 163-549 ppm), Ta (median = 83.0 ppm, 44.9-122 ppm), Zr (median = 203 ppm, 127-347 ppm) and Hf (median = 15.9 ppm, 6.2-26.4 ppm).

Cassiterites in both the granite-type (XHL) and greisen-type deposits (DYS and JYS) contain relatively high concentrations of Nb (XHL, median = 567 ppm, 101-1367 ppm; DYS, median = 2772 ppm, 1582-5513 ppm; JYS, median = 1867 ppm, 315-9789 ppm), Ta (XHL, median = 680 ppm, 92-1763 ppm; DYS, median = 292 ppm, 189-1019 ppm; JYS, median = 994 ppm, 15.5-3788 ppm), Zr (XHL, median = 145 ppm, 57.2-145 ppm; DYS, median = 151 ppm, 101-283 ppm; JYS, median = 118 ppm, 37.1-498 ppm), Hf (XHL, median = 43.0 ppm, 13.9-48.4 ppm; DYS, median = 19.8 ppm, 12.7-45.5 ppm; JYS, median = 10.0 ppm, 2.1-74.4 ppm), and Ti (XHL, median = 2023 ppm, 742-2576 ppm; DYS, median = 97.0 ppm, 47.3-163 ppm; JYS, median = 1139 ppm, 376-1675 ppm). The total REE (ΣREE) contents of cassiterites from all five deposits are quite low and not significantly different (DFX, 0-0.40 ppm; DYS, 0-0.40 ppm; SZY, 0-1.00 ppm; XHL, 0-0.40 ppm; JYS, 0-0.43 ppm), and REEs...
DISCUSSION

Timing of the Sn-polymetallic mineralization

Only small amounts of U and Th usually partition into cassiterite, which precludes considerable radiation-related damage of the mineral (Lehmann et al. 2021). Thus, in situ U-Pb dating of cassiterite provides a robust constraint on the timing of evolved magmatic or magmatic-hydrothermal systems responsible for rare-metal mineralization (Zhang et al. 2017). In this section, we discuss our newly obtained cassiterite U-Pb crystallization ages in the context of the magmatic and metallogenic evolution of the five studied deposits of southern Hunan Province (Fig. 7). Overall, these ages offer novel insights into the timing of magmatic-hydrothermal processes responsible for the production of the largest Sn reserves in China.

The main episode of tin mineralization at Dengfuxian is considered to be associated with the formation of Stage II granites (Cai et al. 2012; Huang et al. 2013). However, recent studies have found that the muscovite granite (i.e., Stage III granite), which was the product of residual magma fractional crystallization, also has tin mineralization potential (141-137 Ma; Xiong et al. 2020). Our cassiterite grains are spatially correlated with the Stage III granite, and the U-Pb dating results (142.0 ± 17.1 Ma) also support this relationship despite significant age uncertainty. The main reason for the large age uncertainty is the very low U and Pb contents of these cassiterite grains, which were probably precipitated late in the mineralization history of the deposit. This observation implies that Early Cretaceous granites (~145-130 Ma) in this region have a strong potential for Sn-polymetallic mineralization.

There is as yet no consensus on the emplacement age of the numerous granite
bodies in the Dayishan area (Zeng 2013). Geochronological studies of granite-associated deposits can help to resolve this issue. Several radiometric studies have yielded Middle Jurassic dates, e.g., 151.1 ± 1.5 Ma for a muscovite 40Ar-39Ar plateau age of the Tengshan’ao deposit (Zhang et al. 2021), 157.9 ± 7.7 Ma for a molybdenite Re-Os isochron age of the Maozaishan deposit (Sun et al. 2018), and 156.5 ± 2.8 Ma for a cassiterite U-Pb age of the Maozaishan deposit (Sun et al. 2018). The geochronological results for these nearby deposits overlap, within analytical uncertainty, with our cassiterite U-Pb date of 154.7± 3.0 Ma, thus suggesting that tin mineralization in the Dayishan area was related to the intrusion of granite plutons and occurred during the Late Jurassic.

Cassiterite grains from the Shizhuyuan deposit yield a concordia intercept age of 154.9 ± 2.1 Ma, which is more precise than existing zircon U-Pb ages of ca. 160-150 Ma reported for the porphyritic biotite granite hosting this deposit (Chen et al. 2016). This date overlaps with a molybdenite Re-Os isochron age of 151.0 ± 3.5 Ma reported for W-Sn-Mo-Bi mineralization (Li and Mao 1996), which also supports late-stage formation of greisen-skarn-type cassiterite in the SZY deposit, during which granitic fluids provided the heat source and metals (Liao et al. 2021).

The age of Sn mineralization of the Xianghualing deposit is constrained by in situ U-Pb dating of cassiterite, which yielded a Tera-Wasserburg lower intercept age of 155.4 ± 4.8 Ma (MSWD = 0.43), consistent with a zircon U-Pb age of 156.4 ± 1.4 Ma reported for granite of the Laiziling Pluton (Yang et al. 2018). This finding suggests that Sn mineralization was coeval with granite emplacement.

Finally, our U-Pb cassiterite date for the Jiuyishan deposit (152.0 ± 5.8 Ma) agrees, within analytical uncertainty, with the Re-Os molybdenite date of the greisen-quartz vein of the Da’ao tin mine (151.3 ± 2.4 Ma, Fu et al. 2007) and the
U-Pb age of zircons from the Jinjiiling granite with which it is spatially associated
(156.4 ± 0.7 Ma, Li et al. 2021).

Overall, cassiterite grains from the five studied tin deposits yield a relatively
narrow range of Late Jurassic to earliest Cretaceous ages (155.4 to 142.0 Ma),
indicating that the deposits are temporally linked to the multistage emplacement of
granitic plutons in the study area (Xiong et al. 2020). In a geodynamic context, the
Middle Jurassic to Early Cretaceous (180-125 Ma) magmatism and tin-tungsten
mineralization events in the South Ridge area may have been related to the westward
subduction of Pacific Ocean lithosphere beneath the Eurasian continent, which
triggered asthenospheric upwelling owing to lithospheric thinning in an extensional
tectonic setting (Mao et al. 2007). The new cassiterite U-Pb ages determined here
overlap with the main mineralization interval (165-150 Ma) of the world-class W-Sn
metallogenic province in the Nanling region (Mao et al. 2007). However, the
timescale of W-Sn mineralization in southern Hunan Province extends into the earliest
Cretaceous, possibly due to the continued enrichment of mineralizing elements in
residual magmas (Xiong et al. 2019, 2020). This inference indicates that Early
Cretaceous granites in the study area should be regarded as targets for W-Sn
exploration.

Cassiterite compositions trace the nature of ore-forming fluids

Origin of Sn. Cassiterite typically contains a wide range of trace elements such
as Ti, Nb, Ta, Fe, Mn, and W, which can either substitute for Sn⁴⁺ in the mineral
lattice or be present in the form of exsolved mineral inclusions (Taylor 1979). These
trace elements can be used to track the nature of mineralizing fluids as well as the
growth environment of the mineral (Tindle and Breaks 1998; Cheng et al. 2019; Wu et
al. 2021). In particular, Nb, Ta, Fe, W, and Mn in cassiterite are often used to
determine the type of tin deposits and the origin of tin-bearing fluids (Tindle and Breaks 1998). A Nb+Ta versus Fe+Mn discriminant diagram shows that all five deposits are typical magmatic-hydrothermal tin deposits related to granite (Fig. 8). Considering the possible positive correlation between iron and tungsten content in cassiterite (Yu and Jiang 2001) and that sample DFX is a quartz vein-type sample dominated by W in a W-Sn deposit (n.b. the only one out of the five studied deposits), the contents of W and Fe in this sample are high (Fig. 9d). Moreover, its low Nb and Ta contents are consistent with its origin as a hydrothermal vein-type cassiterite (Möller et al. 1988; Fig. 9a).

Metallogenesis temperature. Previous studies of tin deposits have shown that the concentrations of HFSEs such as Nb, Ta, Zr, and Hf in cassiterite reflect the temperature of the mineralizing fluid. Specifically, cassiterite formed at high temperatures is more enriched in Nb, Ta, Zr, and Hf than that formed at low temperatures (Cheng et al. 2019; Gemmrich et al. 2021; Hu et al. 2021; Wu et al. 2021). In addition to temperature, the early-precipitated minerals play a crucial role in controlling the chemical composition of later-formed minerals. Experimental studies of the partitioning of HFSEs in zircons have shown that Hf in the residual melt or hot liquid decreases substantially at lower temperatures (Wang et al. 2010). Furthermore, because HFSE-enriched accessory minerals are more enriched in Ta relative to Nb in felsic melts ($D_{Nb}/D_{Ta} = 0.3-0.4$ for sphene, $0.6-0.7$ for rutile, $0.7-0.8$ for ilmenite, and 0.8 for titanomagnetite in high-silica rhyolites; Green and Pearson, 1987), their precipitation leads to greater enrichment of Nb relative to Ta and Zr relative to Hf in the residual melt and associated fluid phase. Therefore, variation in the elemental composition of cassiterite is a function of temperature and mineral fractionation (Wu et al. 2021). During high-temperature mineralization events (e.g., greisen and granite),
hydrothermal fluids become enriched in Nb, Ta, Zr, and Hf, which can then be readily incorporated into the cassiterite lattice by isomorphic substitution. As the temperature of the ore-forming fluid decreases, cassiterites precipitated at this stage (e.g., skarn and veins) show a sharp decrease in HFSEs, and the Zr/Hf and Nb/Ta ratios increase with the precipitation of incompatible element-enriched minerals (Fig. 9a-c). The high contents of Nb, Ta, Zr, and Hf in cassiterite grains from greisen, greisen-quartz veins, and altered granites (e.g., samples DYS, JYS, and XHL) indicate that they were formed from higher-temperature fluids than cassiterite grains from greisen-skarn and quartz veins (e.g., samples SZY and DFX), which have lower Nb, Ta, Zr, and Hf contents (Fig. 9a-c). Thus, Nb, Ta, Zr, and Hf contents are indicative of mineralization temperatures (Fig. 9a-c), which is consistent with the results of other geothermometers that have been applied to these deposits (Xiong et al. 2019; Wang et al. 2020; Zhao et al. 2022a, b).

Variable chemistry of ore-forming fluids. Differences in chemical composition and physio-chemical conditions between ore-forming fluids of tin mineralization and the precursor magma are reflected in the HFSE content of cassiterite, its precipitation temperature, and the type of tin mineralization (Cheng et al. 2019; Wu et al. 2021). In a geochemical system that is characterized by charge- and radius-controlled (ChaRaC) behavior, some trace-element pairs with similar ionic radii and valence states (e.g., Nb-Ta and Zr-Hf) exhibit coherent behavior and maintain chondritic to near-chondritic ratios (Bau 1996; Rudnick et al. 1993). Moreover, the interelement ratios measured in magmatic systems can be influenced by chemical reactions and fluid mixing, and non-ChaRaC behavior reflects a specific magmatic-hydrothermal system that is highly evolved and enriched in H₂O, Li, B, F, P, and/or Cl (Bau 1996). Cassiterites from the five studied W-Sn deposits have a wide range of Nb/Ta ratios
and Zr/Hf ratios (DFX 1.04-297; DYS 0.85-14.8; XHL 0.33-81.6; SZY 0.52-14.6; JYS 0.81-718), implying derivation from a highly evolved melt. The wide range of Nb/Ta and Zr/Hf ratios of cassiterite in these deposits (Fig. 9a-c) can be explained by the influence of multiple processes, as described in previous studies. For example, quartz vein-type cassiterite (DFX) can be produced by fluid immiscibility (Xiong et al. 2019), greisen-skarn-type cassiterite (SZY) by mixing ore-forming magmatic fluid with meteoric water (Zhu et al. 2015), and greisen-type cassiterite (DYS and JYS) by fluid-rock interactions (Korges et al. 2018; Schmidt et al. 2020; Liu et al. 2021; Zhao et al. 2022a, b). In Nb-Ta-Zr-Hf discriminant plots (Fig. 9a-c), granite-type cassiterite (XHL) exhibits a limited range of Nb/Ta and Zr/Hf ratios. In contrast, the greisen-type cassiterite is more enriched in magmatic volatiles such as F and B, with the hydrothermal fluid source of DYS exhibiting a narrower range of Nb/Ta and Zr/Hf ratios than that of JYS (Rubin et al. 1993; Cheng et al. 2019; Zhao et al. 2022a, b).

Titanium (Ti) and uranium (U) are both incompatible elements that are difficult to incorporate into the mineral lattice of rock formations, and they tend to be relatively enriched in residual magmas and hydrothermal fluids (Han et al. 2003). The Ti and U concentrations in cassiterite are thought to be related to the degree of evolution of the parent magma, but the mechanism of their uptake during mineral precipitation is not well understood (Hu et al. 2021). To gain a deeper understanding of the influence of associated granites on the Ti and U contents of cassiterite, we conducted a comparative Ti-U analysis of the cassiterite and associated granites in the five studied tin deposits. Interestingly, our findings suggest that the Ti and U contents of cassiterite are positively influenced by their associated granites (Fig. 10). Although both are incompatible elements, Ti is relatively less incompatible than U and more
easily enters the cassiterite lattice. Additionally, the ionic radius of Ti (0.605 Å) is slightly smaller than that of Sn (0.69 Å), allowing it to readily replace Sn in cassiterite (Cheng et al., 2019), leading to lower TiO₂ contents in highly evolved tin-bearing granites. Combined with the fact that sample XHL is associated with evolved granites, this may be the reason for the low Ti content of the DYS sample, whereas the Ti content of cassiterite in the low-TiO₂ Laiziling granite is not low (Fig. 10a). Furthermore, the consistent geochemical behavior of the cassiterite and associated granites of these deposits in terms of U content confirms that the granite associated with quartz vein-type tin ore exhibits the lowest degree of evolution among the associated granites (Fig. 10b). In summary, Ti and U concentrations reflect the degree of evolution of granitic parent magmas for tin mineralization, with an increasing evolutionary degree from quartz vein-type to greisen-type to granitic-type cassiterite.

Redox conditions of ore-forming processes. Patterns of REE distribution in cassiterite have been used to constrain the source(s) of ore-forming fluids, the physicochemical characteristics of the fluids, and the dynamics of hydrothermal systems (Brugger et al. 2000; Wu et al. 2021). Four of the five of the studied deposits (excepting XHL) contain minerals coprecipitated with cassiterite that can affect the REE patterns of the latter, i.e., wolframite and/or scheelite at DFX, SZY, and JYS, and tourmaline at DYS. For this reason, the following discussion will focus on the REE behavior of cassiterite, wolframite, scheelite, tourmaline, and hydrothermal fluids.

The direction (i.e., positive or negative) and size of the Eu anomaly in hydrothermal minerals are chiefly controlled by three factors: (1) the redox state of the fluid, (2) the partitioning coefficients of Eu²⁺ and Eu³⁺ between the host mineral and the fluid, and (3) the Eu content of the fluid (Shannon 1976). In oxidizing systems, given the significantly smaller ionic radius of Sn⁴⁺ (0.69 Å) relative to Eu²⁺ (1.25 Å)
and Eu\(^{3+}\) (1.07 Å), valence changes have a limited effect on the Eu anomaly of cassiterite. In this case, cassiterite directly inherits the Eu anomaly of the ore-forming fluid because of the similar geochemical behavior of Eu\(^{3+}\) to other REEs (Wu et al. 2021). On the contrary, when the ore-forming fluid is reducing, Eu\(^{2+}\) readily replaces Ca\(^{2+}\) (1.12 Å) because of their equivalent electrovalences and similar ionic radii. In addition, Eu\(^{2+}\) tends to partition more readily into wolframite, scheelite and tourmaline in a reducing environment (Sverjensky 1984; Brugger et al. 2000; Zhu et al. 2014), resulting in a negative Eu anomaly in cassiterite. In this study, samples DFX, DYS, SZY, and JYS show significant negative Eu anomalies (Fig. 11), reflecting the reducing condition of the ore-forming fluids, whereas sample XHL from the Laiziling Granite has no Eu anomaly, indicating that its crystallization environment was probably less reducing than those of the other four deposits.

Little is known about the factors controlling the Ce content of cassiterite. Precipitation of cassiterite and scheelite does not require high-\(f_\text{O}_2\) conditions (Schmidt, 2018). The geochemical behavior of Ce\(^{3+}\) under reducing conditions is similar to that of other REEs, and the Ce anomalies in hydrothermal minerals may reflect the REE patterns of their precipitation environments unless Ce-rich minerals (e.g., monazite) are coprecipitated. Conversely, in an oxidizing magmatic-hydrothermal system, Ce\(^{4+}\) (0.97 Å) becomes more incompatible than Ce\(^{3+}\) (1.14 Å) due to the larger difference in its ionic radius from Ca\(^{2+}\) (1.12 Å), resulting in negative Ce anomalies in cassiterite, wolframite, and scheelite following precipitation of Ce-rich minerals like monazite (Wu et al. 2021). Based on the lack of significant Ce anomalies in cassiterite (Fig. 11), we infer that tin mineralization in southern Hunan Province occurred in a reducing environment.

To summarize, the characteristic behavior of trace elements in cassiterite...
indicates that the crystallization of that changes in physicochemical conditions (e.g.,
temperature) during highly evolved magmatic hydrothermal processes are important
factors driving the precipitation of Sn-enriched minerals, but the redox conditions of
the precipitated liquid are irrelevant. Based on our findings, we suggest that
progressively more evolved granites are responsible for quartz vein-type, greisen-type,
and granite-type cassiterite respectively. Through this magmatic sequence, the HFSE
contents of cassiterite gradually increased and their ranges of variation gradually
decreased, implying a relationship between these two patterns that need further study.

Substitution mechanism of trace elements in cassiterite

We evaluated the trace element assemblages of cassiterite in the five studied tin
deposits using two chemometric methods (PCA and OPLS-DA). The PCA results
reveal coupling between trace elements in cassiterite, with the first two components
accounting for 62.0% of total variance (36.4% for PC1, and 25.6% for PC2),
demonstrating the feasibility of dimensionality reduction. The main elemental
loadings are Nb, Ta, Zr, and Hf on PC1, and Fe, Mn, and W on PC2 (Fig. 12). In
Figure 12, vector angles smaller than 90° indicate a positive correlation between
elemental pairs, as for Fe + Mn vs. Nb + Ta (r = +35.20°; Fig. 8a), W vs. Fe (r =
+67.54°; Fig. 9d), and Nb + Ta vs. Fe (r = +22.56°; Fig. 9f). Therefore, the typical
trace element substitution mechanisms of (Fe, Mn)\(^{2+}\) + 2(Nb, Ta)\(^{5+}\) = 3Sn\(^{4+}\), W\(^{6+}\) +
2Fe\(^{3+}\) = 3Sn\(^{4+}\), and Fe\(^{3+}\) + (Nb, Ta)\(^{5+}\) = 2Sn\(^{4+}\) (Černý and Erct 1985; Černý et al. 1985; Cohen et al. 1985; Möller et al. 1988) can be confirmed in the cassiterite samples of
DYS, SZY, XHL, and JYS. However, the mechanism of trace element substitution in
the lattice of cassiterite from the tungsten-dominated quartz vein-type cassiterite is
dominantly W\(^{6+}\) + 2Fe\(^{3+}\) = 3Sn\(^{4+}\).

The PCA plot reveals the general similarities of the trace element assemblages in
The in situ cassiterite U-Pb ages of the present study offer insights regarding genetic links between Sn-polymetallic ores and their spatially related granites in southern Hunan Province, with useful implications for exploration of economically significant deposits. Critical elements (W, Sn, Cu, Pb, Zn) in granites of the Nanling region show a gradual increase from Early Paleozoic (542-360 Ma) to Triassic (251-200 Ma), Jurassic (195-146 Ma), and Cretaceous (145-80 Ma) plutons, with tungsten and tin being especially enriched in Early Cretaceous granites (Liu et al. 2022b). This trend conforms broadly to the size of mining operations in southern Hunan Province, with Early Paleozoic deposits being non-productive, Triassic deposits being rather small (e.g., Longshang deposit, 16 Kt SnO₂; Liu et al. 2022), and Jurassic deposits being quite large (e.g., Hehuaping, 130 Kt SnO₂; Yao et al. 2014).

However, the comparatively small size of mines extracting Cretaceous-age ores (e.g., the Jiepailing deposit, 92.1±0.7 Ma, 48 Kt SnO₂; Yuan et al. 2015) is not commensurate with their high concentrations of mineralized elements (W, Sn, Cu, Pb, Zn), and Early Cretaceous plutons warrant closer inspection in the future as possible mining targets.

Based on previous studies of the southern Hunan tin province and the present
study of its geochronology, the magmatic emplacement and metallogenic evolution of this province can be summarized as occurring in three main stages (Li et al. 2018a; Luo et al. 2022; Liu et al. 2022b): (1) Stage I (Early Paleozoic and Triassic), during which magma was formed by melting of lower crust and enrichment of tungsten and tin occurred through crustal-mantle interactions; (2) Stage II (Jurassic), during which magma was emplaced at high crustal structural levels where it reacted with wall rocks and extracted metals to further enrich tin-tungsten ores; and (3) Stage III (Cretaceous), during which magmatic-hydrothermal reactions were superimposed on earlier mineralization events. Small dykes and deeper intrusions formed during the Early Cretaceous, with associated hydrothermal fluids depositing additional tin and tungsten (Fig. 14a). Therefore, ore exploration should focus on the highly evolved granites from the late stages of granite complex formation.

Previous and present studies have inferred that the contents of Nb, Ta, Zr, and Hf and the ratios of Nb/Ta and Zr/Hf gradually decrease from granite-type to greisen-type and then to quartz vein-type cassiterites (Cheng et al. 2019; Hu et al. 2021; Wu et al. 2021). However, previous studies have not used the chemical behavior of these trace elements to analyze the distance between deposits and magmatic systems associated with intrusive rocks. In a systematic study of tin deposits in the Bolivian tin metallogenic belt, Gemmrich et al. (2021) concluded that variations in trace element content of ores emplaced at different levels within the xenothermal and epithermal environments recorded genetic compositional trends. Deposits that formed proximally to related intrusive complexes are typically enriched in Nb and Ta relative to epithermal and shallow xenothermal deposits. The present study shows that similar patterns of enrichment of Nb, Ta, and other HFSEs are present in the tin deposits of southern Hunan Province, which are more closely
associated with granitic bodies than other types of tin mineralization (Sun et al. 2018; Zhang et al. 2021; Zhao et al. 2022a, b). The sum of these elements provides a solid ground for the establishment of a comprehensive, idealized tin metallogenic model for the southern Hunan tin province and similar provinces worldwide (Fig. 14b).

IMPLICATIONS

A combination of cassiterite cathodoluminescence, U-Pb geochronology, and trace-element data offers important insights into the nature of ore-forming fluids and the extended formation history of Sn-polymetallic deposits in the southern Hunan tin province, as follows:

1. LA-ICP-MS in situ cassiterite U-Pb dating of five major deposits (i.e., Dengfuxian, Dayishan, Shizhuyuan, Xianghualing, and Jiuyishan) yielded ages ranging from 155.4 to 142.0 Ma, corresponding to the Late Jurassic to earliest Cretaceous. These ages indicate that these deposits are temporally and genetically linked to their spatially associated granitic rocks and expand the known age range of Sn-polymetallic mineralization in southern Hunan Province.

2. The characteristic behavior of trace elements in cassiterite records changes in physicochemical conditions (e.g., temperature) of the source magma/hydrothermal fluids, which were important factors driving the precipitation of Sn-enriched minerals and were not related to fluid redox conditions. HFSE content tends to increase and its range of variation becomes more limited from quartz vein-type to skarn-type to granite-type cassiterites. Accordingly, the degree of magmatic evolution of related granites increases.

3. The magmatic emplacement and metallogenic evolution of the southern Hunan tin province can be divided into three main stages: (1) Stage I (Early Paleozoic
and Triassic): initial enrichment stage of tungsten and tin; (2) Stage II (Jurassic): metasomatic mineralization stage; and (3) Stage III (Cretaceous): magmatic-hydrothermal superposition stage. This study shows that the highly differentiated Cretaceous-age granites and their peri-plutonic areas are important targets for Sn ore exploration in the Nanling region.

ACKNOWLEDGMENTS

We are grateful to Don Baker (Editor-in-Chief), Matthew Steele-MacInnis (Associate Editor), and two reviewers (Prof. Jason Bennett and Prof. Lorenzo Tavazzani) for their constructive comments and suggestions that significantly improved this study.

FUNDING

This work was financed by the National Natural Science Foundation of China (Grant No. 92162103) and the Fundamental Research Funds for the Central Universities of Central South University (Grant No. 2021zzts0252 and No. 2022ZZTS0529).

REFERENCES CITED

hydrothermal systems (Mt. Charlotte and Drysdale gold deposits, Western Australia). Contributions to Mineralogy and Petrology, 139, 251–264.

Han, Y.W., Ma, Z.D., Zhang, H.F., Zhang, B. R., Li, F.L., Gao, S., and Bao, Z.Y.

Liu, B., Wu, Q.H., Kong, H., Xi, X.S., Jiang, J.B., Li, H., Cao, J.Y., and Tang, Y.Y. (2022b) The evolution sequence of granites in the Xitian ore field in Hunan and its tungsten–tin mineralization: constraints from zircon U–Pb dating and

Song, F., Niu, Z.J., He, Y.Y., Algeo, T.J. and Yang, W.Q. (2020) Geographic proximity of Yangtze and Cathaysia blocks during the late Neoproterozoic demonstrated by

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld
814 Mineralogist, 36, 609–635.
816 inclusion study of the ore-bearing stockwork greisen at Shizhuyuan
817 W–Sn–Mo–Bi deposit, Hunan. Journal of Nanjing University (Natural Science),
818 56, 653–665.
821 Wang, Z.Q., Chen, B., and Ma, X.H. (2014) In situ LA-ICP-MS U-Pb age and
822 geochemical data of cassiterite of the Furong tin deposit, the Nanling Range:
823 Implications for the origin and evolution of the ore-forming fluid. Chinese
826 Xianghualing Sn–Pb–Zn deposit, South China: A multi-method zircon study. Ore
827 Geology Reviews, 102, 220–239.
828 Wu, J.H., Kong, H., Li, H., Algeo, T.J., Yonezu, K., Liu, B., Wu, Q.H., Zhu, D.P., and
830 from the Tongshanling polymetallic deposit in the Nanling Range, South China.
831 Ore Geology Reviews, 139, 104521.
833 polymetallic magmatic-hydrothermal Xiangdong and Dalong systems in the W–
834 Sn–Cu–Pb–Zn–Ag Dengfuxian orefield, SE China: constraints from geology,
836 Mineralium Deposita, 54, 1101–1124.
837 Xiong, Y.Q., Shao, Y.J., Cheng, Y.B., and Jiang, S.Y. (2020) Discrete Jurassic and
838 Cretaceous mineralization events at the Xiangdong W(-Sn) deposit, Nanling
Range, South China. Economic Geology, 115, 385–413.

Cretaceous tin metallogenic event in Nanling W-Sn metallogenic province:
Constraints from U-Pb, Ar-Ar geochronology at the Jiepailing Sn-Be-F deposit, Hunan, China. Ore Geology Reviews, 65, 283-293.

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Figure captions

Fig. 1. (a) Sketch map showing the main terranes of China (modified after Wu et al. 2018); (b) Geological map of South China Craton (modified after Yuan et al. 2018); (c) Geologic map of the Nanling Range showing the age distribution of granites and spatially associated tungsten/tin deposits (modified after Mao et al. 2007; Yuan et al. 2018, 2019).

Fig. 2. Simplified geological maps of study areas of five tin deposits: (a) Dengfuxian (after internal data from 214 Geological Team of Hunan Province, 2010, and Xiong et al. 2020b); (b) Xianghualing (after Wu et al. 2018); (c) Dayishan (after Sun et al. 2018 and Zeng 2013); (d) Shizhuyuan (after Liao et al. 2021); (e) Jiuyishan (after Li et al. 2019, 2021).

Fig. 3. Field pictures and hand specimen photomicrographs from five tin deposits. (a) Sulfide-bearing wolframite quartz veins at DFX; (b) and (c) hand specimens of sulfide-bearing wolframite quartz vein; (d) greisen-quartz veins at DYS; (e) and (f) hand specimens of greisen-quartz veins; (g) skarn-greisen network veins at SZY; (h) and (i) hand specimens of skarn-greisen network veins; (j) biotite granite at XHL; (k) and (l) hand specimens of granite; (m) to (o) greisen veins at JYS. Mineral abbreviations: Py = pyrite, Cst = cassiterite, Grt = garnet, Bt = biotite.

Fig. 4. Transmitted light photomicrographs of cassiterite grains from five tin deposits, (a, c, e, g, i plane-polarized transmitted light; b, d, f, h, j cross-polarized transmitted light). DFX (a-b): Semi-idiomorphic cassiterite crystallized in quartz vein; DYS (c-d):
Metasomatic cassiterite in greisen vein; SZY (e-f): Cassiterite crystallized in greisen skarn vein with obvious metasomatism; XHL (g-h): Semi-idiomorphic cassiterite crystallized in granite; JYS (i-j): Semi-idiomorphic cassiterite crystallized in greisen.

Mineral abbreviations: Qtz = quartz, Cst = cassiterite, Ms = muscovite, Bt = biotite.

Fig. 5. Cathodoluminescence (CL) images of cassiterites from five tin deposits: (a) DFX; (b) DYS; (c) SZY; (d) XHL; and (e) JYS.

Fig. 6. Tera–Wasserburg concordia diagrams for cassiterite grains from five tin deposits: (a) DFX, (b) DYS, (c) SZY, (d) XHL, and (e) JYS.

Fig. 7. Geochronologic chart of Sn-ore mineralization and related granites in southern Hunan Province, including the new U-Pb cassiterite data of the present study.

Fig. 8. Plots of selected trace elements in cassiterite grains from five tin deposits: (a) Nb+Ta vs Fe+Mn in cassiterite (modified from Tindle and Breaks 1998); (b) Fe vs W in cassiterite (analyzed by LA–ICP–MS). The granite-related tin deposits field is based on data from Hennigh and Hutchinson (1999); Wang et al. (2014); and Pavlova et al. (2015), and the VMS/SEDEX tin deposits field is from Hennigh and Hutchinson (1999). The dashed line represents the approximate detection limit for W by PIXE probe (Hennigh and Hutchinson 1999).

Fig. 9. Log-scale scatter plots of selected trace elements for cassiterite grains from five tin deposits: (a) Nb vs Ta, (b) Zr vs Hf, (c) Zr/Hf vs Nb/Ta; (d) Fe vs W, (e) Zr vs Ti, and (f) Fe vs Nb+Ta. Sources: Guo et al. 2018; Chen et al. 2019; Cheng et al. 2019;
Hu et al. 2021; Wu et al. 2021.

Fig. 10. Log-scale scatter plots of U and Ti content for cassiterite grains and associated granite from five tin deposits: (a) Ti content, (b) U content. Sources: Li et al. 2019; Sun et al. 2021; Liao et al. 2021; Yang et al. 2018; Liu et al. 2019; Li et al. 2021.

Fig. 11. Chondrite-normalized REE patterns for southern Hunan cassiterite-hosted tin deposits (normalization after Sun and McDonough 1989). (a) DFX, (b) DYS, (c) SZY, (d) XHL, (e) JYS, and (f) all samples. Data for quartz vein-type cassiterite in the Tongshanling deposit (Wu et al. 2021) is included for reference.

Fig. 12. Score graph and loading graph of principal component analysis (PCA) of cassiterite from southern Hunan Province.

Fig. 13. Score plot of the orthogonal projection to latent structures-discriminant analysis (OPLS-DA) models between the five tin deposits. (a) DFX vs. DYS, (b) DFX vs. SZY, (c) DFX vs. XHL, (d) DFX vs. JYS, (e) SZY vs. XHL, (f) SZY vs. JYS, (g) DYS vs. JYS, (h) DYS vs. SZY, and (i) DYS vs. XHL.

Fig. 14. Diagenesis and mineralization model diagram of Sn polymetallic deposits in southern Hunan Province. (a) Schematic diagram of the multistage magmatic-hydrothermal evolution developed from previously reported data (Li et al. 2018a; Luo et al. 2022; Liu et al. 2022b) and the results of this study, and (b) ideal tin metallogenic model diagram (inspired by Gemmrich et al. 2021).
Figure 1
Figure 2
Figure 3

(a) Sulfide-wolframite-quartz veins in muscovite granite

(b) Sulfide-wolframite-quartz vein ore

(c) Sulfide-wolframite-quartz vein ore

(d) Greisen vein

(e) Greisen veins

(f) Greisen veins

(g) Greisen veins

(h) Biotite Granite

(i) Biotite Granite

(j) Skarn

(k) Biotite Granite

(l) Biotite Granite

(m) Greisen vein

(n) Greisen vein

(o) Greisen vein
Figure 4
Figure 5
(a) DFX:
Intercept age = 142.0 + 17.1 Ma
MSWD = 1.4 (n = 25)

(207Pb/206Pb) = 0.884 ± 0.020

(b) DYS:
Intercept age = 154.7 + 3.0 Ma
MSWD = 0.96 (n = 40)

(207Pb/206Pb) = 0.852 ± 0.013

(c) SZY:
Intercept age = 155.4 ± 4.8 Ma
MSWD = 0.43 (n = 20)

(207Pb/206Pb) = 0.833 ± 0.018

(d) XHL:
Intercept age = 152.0 ± 5.8 Ma
MSWD = 1.5 (n = 23)

(207Pb/206Pb) = 0.828 ± 0.007

(e) JYS:
Intercept age = 154.9 ± 2.1 Ma
MSWD = 1.5 (n = 21)

(207Pb/206Pb) = 0.851 ± 0.051

Figure 6
Figure 8

(a) Cassiterite in epithermal & hydrothermal deposits

(b) Granite-related tin deposits

SEDEX/VMS tin deposits
Figure 9
Figure 11
Figure 12

Explained Variance (%)

Loadings

<table>
<thead>
<tr>
<th>Element</th>
<th>PC1</th>
<th>PC2</th>
<th>PC3</th>
<th>PC4</th>
</tr>
</thead>
<tbody>
<tr>
<td>LN(Ti)</td>
<td>-0.038</td>
<td>-0.137</td>
<td>0.603</td>
<td>0.589</td>
</tr>
<tr>
<td>LN(Mn)</td>
<td>0.227</td>
<td>0.518</td>
<td>0.342</td>
<td>-0.015</td>
</tr>
<tr>
<td>LN(Fe)</td>
<td>0.338</td>
<td>0.369</td>
<td>-0.043</td>
<td>0.076</td>
</tr>
<tr>
<td>LN(Nb)</td>
<td>0.457</td>
<td>-0.299</td>
<td>0.124</td>
<td>-0.306</td>
</tr>
<tr>
<td>LN(Nb)</td>
<td>0.425</td>
<td>0.166</td>
<td>-0.263</td>
<td>0.335</td>
</tr>
<tr>
<td>LN(Ta)</td>
<td>0.481</td>
<td>0.073</td>
<td>-0.170</td>
<td>0.285</td>
</tr>
<tr>
<td>LN(U)</td>
<td>-0.061</td>
<td>0.472</td>
<td>0.455</td>
<td>-0.385</td>
</tr>
<tr>
<td>LN(U)</td>
<td>0.181</td>
<td>-0.395</td>
<td>0.430</td>
<td>0.122</td>
</tr>
</tbody>
</table>
Figure 13