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Abstract 24 

The diverse suite of trace elements incorporated into apatite in ore-forming 25 

systems has important applications in petrogenesis studies of mineral deposits. Trace 26 

element variations in apatite can be used to distinguish between fertile and barren 27 

environments, and thus have potential as mineral exploration tools. Such classification 28 

approaches commonly employ two-variable scatterplots of apatite trace element 29 

compositional data. While such diagrams offer accessible visualization of 30 

compositional trends, they often struggle to effectively distinguish ore deposit types 31 

because they do not employ all the high-dimensional (i.e. multi-element) information 32 

accessible from high-quality apatite trace element analysis. To address this issue, we 33 

use a supervised machine learning-based approach (eXtreme Gradient Boosting, 34 

XGBoost) to correlate apatite compositions with ore deposit type, utilizing such high-35 

dimensional information. We evaluated 8629 apatite trace element data from five ore 36 

deposit types (porphyry, skarn, orogenic Au, iron oxide copper gold, and iron oxide-37 

apatite) along with unmineralized magmatic and metamorphic apatite to identify 38 

discriminating parameters for the individual deposit types as well as for mineralized 39 

systems. According to feature selection, eight elements (Th, U, Sr, Eu, Dy, Y, Nd and 40 

La) improve the model performance. We could show that the XGBoost classifier 41 

efficiently and accurately classifies high-dimensional apatite trace element data 42 

according to the ore deposit type (overall accuracy: 94% and F1 score: 89%). 43 

Interpretation of the model using the SHAPley Additive exPlanations (SHAP) tool 44 

shows that Th, U, Eu and Nd are the most indicative elements for classifying deposit 45 

types using apatite trace element chemistry. Our approach has broad implications for 46 

the better understanding of the sources, chemistry and evolution of melts and 47 

hydrothermal fluids resulting in ore deposit formation. 48 
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 52 

Introduction 53 

To develop a quantitative, process-based model for ore-forming systems, a 54 

characterization of melt and hydrothermal fluid source, composition and evolution is 55 

required (e.g., Andersson et al., 2019). Various minerals in ore-forming systems can 56 

constrain the conditions of mineralization based on variations in their mineral chemistry, 57 

thus recording the evolution of melts and hydrothermal fluids and yielding constraints 58 

on the metallogenic processes (Clark & Williams-Jones, 2004; Pisiak et al., 2017; 59 

Chapman et al., 2021; Qiu et al., 2021). As a common accessory mineral in igneous, 60 

metamorphic and clastic sedimentary rocks, apatite has a broad range of applications in 61 

the geosciences, including thermochronology studies to investigate tectonic unroofing 62 

(Fitzgerald et al., 1991), fault slip rates (Brichau et al., 2006), landscape evolution 63 

(Braun, 2006), petroleum system maturation (Burtner et al., 1994) and record of volatile 64 

budgets and volcanic eruption triggering (Stock et al., 2016). The structure of apatite 65 

also facilitates the substitution of more than half the stable members of the periodic 66 

table as trace-elements (Hughes, 2015), including the rare earth elements and Sr, Y, Th, 67 

and U (Sha & Chappell, 1999; Chew et al., 2011; Zhou et al., 2022a). Apatite trace 68 

element chemistry thus has important applications in igneous and metamorphic 69 

petrogenesis studies to improve the understanding of ore deposit formation (Chu et al., 70 

2009; O’Sullivan et al., 2020; Yu et al., 2021, 2022).  71 

Previous studies that have employed apatite trace element chemistry to classify 72 

protolith rock type or fertility have typically employed binary or ternary discrimination 73 

diagrams with the variables being apatite trace element abundances or elemental ratios. 74 

Belousova et al. (2002) analyzed trace elements in apatite from a variety of common 75 

rock types and employed plots of Sr versus Y and Mn, (Ce/Yb) cn versus the sum of the 76 

REE, and Y versus Eu/Eu* to identify fields of apatite compositions from different rock 77 

types. Bouzari et al., (2016) used cathodoluminescence combined with trace element 78 

compositions to discriminate trace element variations due to alteration linked to the 79 



 

 

ingress of hydrothermal fluids. Mao et al. (2016) evaluated trace element compositions 80 

in apatite from multiple deposit types and suggested several discrimination diagrams 81 

for the division of deposit types based on apatite trace element chemistry. O’Sullivan et 82 

al. (2020) applied compositional statistics, classification and a machine learning 83 

classifier to apatite trace element compositional data, and generated binary plots that 84 

discriminated between several types of igneous and metamorphic rocks. Zhou et al. 85 

(2022b) used a big data approach to investigate variations in apatite trace element 86 

chemistry and showed that an Eu/Y vs Ce diagram best discriminates apatite crystallized 87 

from different host rock types. However, while two-variable scatterplots or three-88 

variable ternary diagrams offer easy and convenient visualization of discrimination 89 

trends, they can often fail to rigorously trace the sources, chemistry, and evolution of 90 

melts and hydrothermal fluids based on variations in apatite trace element chemistry (Li 91 

et al., 2015; Wang et al., 2021; Zhong et al., 2021). The first reason is that apatite has a 92 

complex chemistry with high partition coefficients for many trace elements, and trace 93 

element partition coefficients in apatite also differ significantly with varying temperature, 94 

pressure and melt compositions (Prowatke and Klemme, 2006). The range of possible 95 

substitutions in both anion and cation sites and significant tolerance to structural 96 

distortion and chemical substitution leads to highly diverse trace element and minor 97 

compositions. Another reason is the inherent difficulty of discrimination diagrams 98 

resulting in low classification accuracy. Although discrimination diagrams can have a 99 

robust geochemical basis, the discrimination fields themselves are defined based on 100 

statistics (Pearce, 1996). While the geochemical underpinnings of discrimination 101 

diagrams may be well understood, they are typically not sufficiently well constrained 102 

to accurately predict absolute elemental abundances for chemically complex systems 103 

(Snow, 2006). In addition, while an individual apatite trace element analysis can yield 104 

the abundances of tens of trace elements, discrimination diagrams typically only use the 105 

information from two or three variables (element contents and element ratios). 106 

Diagnostic geochemical signatures from apatite trace element data may not be 107 



 

 

effectively extracted from these limited numbers of variables, potentially leading to 108 

different types of apatite not being discriminated between or, even worse, misclassified.  109 

High-dimensional analysis methods using machine learning can overcome these 110 

challenges. As a rapidly growing approach to analyzing high-throughput experimental 111 

data in novel ways, machine learning focuses on the underlying relationships between 112 

features (measurable properties) and research targets (Jordan & Mitchell, 2015). In 113 

recent years, it has been successfully applied to a diverse suite of classification 114 

challenges on high-dimensional datasets in the geosciences (Petrelli & Perugini, 2016; 115 

Schönig et al., 2021; Zhong et al., 2021; Wang et al., 2022). These include estimating 116 

pre-eruptive temperatures and pressures using clinopyroxene-melt (Petrelli et al., 2020), 117 

evaluating the occurrence of H diffusion in the clinopyroxene phenocrysts of basaltic 118 

magma (Chen et al., 2021), proposing and improving thermobarometry for different 119 

magma types (biotite-bearing magma: Li and Zhang, 2022, amphibole -bearing magma: 120 

Higgins et al., 2022, clinopyroxene-bearing magma: Jorgenson et al., 2022), and 121 

distinguishing S-, I-, and A-type granites (Gion et al., 2022).  122 

In this study, we have compiled a trace element dataset comprising 8629 apatite 123 

analyses from known mineralization types and ore-barren magmatic rocks from 124 

published literature to train and test the classification model. After comparing four 125 

commonly employed machine learning algorithms, we chose a scalable end-to-end tree 126 

boosting system called XGBoost as the optimal algorithm to tune and yield the final 127 

classifiers. XGBoost is an open-source machine-learning algorithm that combines 128 

‘weak classifiers’ to form ‘strong classifiers’ based on a decision tree with gradient 129 

boosting (Chen & Guestrin, 2016). It provides a rapid and highly accurate approach to 130 

classifying high-dimensional data, such as distinguishing between ore-fertile and ore-131 

barren provenance and classifying ore-fertile environments in this study. To address the 132 

black box problem commonly attributed to machine learning algorithms resulting from 133 

their potential opacity, we employed the SHAP (SHAPley Additive exPlanations) 134 

(Lundberg and Lee, 2017) visualization tool that makes a machine learning model more 135 



 

 

explainable by visualizing its output. SHAP is a game theoretic method and applying it 136 

herein reveals the most diagnostic trace elements in apatite for classifying ore deposit 137 

types, while also revealing the variable geochemical behavior of different elements in 138 

ore deposit types. Our results demonstrate strong correlations between high-139 

dimensional apatite trace-element geochemical data and ore deposit type thus furthering 140 

our knowledge of ore-forming systems, and have broad implications for understanding 141 

the sources, chemistry and evolution of melts and hydrothermal fluids. 142 

 143 

Database 144 

For the compilation of the apatite trace element dataset, 8629 analyses from 1685 145 

rock samples were retrieved from 245 publications using the global petrological open-146 

access database GEOROC (http://georoc.mpch-mainz.gwdg.de/georoc/). Apatite trace 147 

element compositions from these studies include data from five common ore deposit 148 

types located worldwide, including porphyry, skarn, orogenic Au, iron-oxide copper 149 

gold (IOCG), and iron-oxide apatite (IOA or Kiruna type) (Figure 1). Apatite trace 150 

element compositions were collected from various unmineralized (barren) magmatic 151 

and metamorphic rocks to identify any systematic differences between apatite from 152 

fertile and barren systems. Unmineralized samples in the database comprise both wall 153 

rocks from the respective mineral deposits but also include non-mineralized regions. As 154 

an example, three different types of quartz monzonite porphyry from Jia et al. (2020) 155 

were incorporated in our database. Two samples (PD02 and BR04) are ore-fertile 156 

samples containing sulfide veins, while sample PD01 is an ore-barren quartz monzonite 157 

porphyry containing minimal sulfide. Detailed information on the apatite analyses 158 

incorporated in the database is provided in Appendix Table 1.  159 

Different experimental LA-ICP-MS procedures and protocols employed in the 245 160 

publications result in a diverse suite of trace elements in the compiled dataset. The 14 161 

most commonly analyzed trace elements. La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Yb, Lu, Sr, 162 

Y, Th and U were used to provide a consistent and optimized dataset. The data set 163 

http://georoc.mpch-mainz.gwdg.de/georoc/
http://georoc.mpch-mainz.gwdg.de/georoc/


 

 

includes values below the detection limit (bdl) or values that were not reported. To 164 

improve the quality of the dataset, bdl analyses were replaced by a value of half of the 165 

detection limit (Zhong et al., 2021). Ultimately the dataset was reduced to 4085 analyses 166 

from 249 individual samples (unmineralized magmatic apatite: 148; porphyry: 29; skarn: 167 

35; orogenic Au: 15; IOCG: 13 and IOA: 9) for further investigation by the different 168 

machine learning methods (Table 1). Figure 2 provides a compilation of the apatite trace 169 

element data based on deposit type and individual deposits. Apatite from IOA deposits 170 

has the highest La and Th contents, while IOCG apatite has the lowest Sr (Figure 2a, b). 171 

These diagrams show that the variation in concentration of some individual elements 172 

can distinguish apatite from different deposit types to a certain extent. However, most 173 

trace element ranges still overlap and are thus not entirely diagnostic. Therefore, 174 

although deposit type is unlikely to be identified using binary or ternary diagrams, the 175 

partial separation observed in some of the apatite compositional data implies that 176 

machine learning approaches in high-dimensional space have the potential to 177 

distinguish apatite derived from different ore deposit types. 178 

 179 

Model development and performance 180 

Machine learning is used to teach algorithms to construct self-learning systems 181 

which can handle large datasets more efficiently (Jordan & Mitchell, 2015; Mahesh, 182 

2020). Machine learning is classified into two broad categories - supervised learning 183 

and unsupervised learning (Soofi & Awan, 2017). In this study, we used supervised 184 

machine learning (use of labeled datasets to train algorithms to classify data) to link 185 

apatite trace element composition to their source ore-deposit type. We tested four 186 

different established algorithms: k-nearest neighbors (KNN) (Bentley, 1975), random 187 

forest (RF) (Breiman, 2001), support vector machine (SVM) (Vapnik, 1995), and 188 

eXtreme Gradient Boosting (XGBoost) (Chen & He, 2015), before selecting the best 189 

classification model after hyperparameter optimization and comparison. Figure 3 190 

outlines the detailed workflow of our approach.  191 



 

 

Data pre-processing 192 

Pre-processing of the data involves standardization and balance processing. A 193 

suitable standardization procedure is critical in applying machine learning algorithms, 194 

to avoid attributes in greater numeric ranges dominating those in smaller numeric fields, 195 

while also helping to eliminate potential numerical difficulties during the calculations 196 

in many machine learning approaches (Hsu et al., 2003). We first transformed the 197 

dataset in this study by applying a log-ratio transformation to obtain a Gaussian 198 

distribution which was then normalized using the Standardscaler () function in the 199 

Scikit-learn machine learning library for Python (more detail is provided in section 3.5 200 

on the libraries employed in this study). This function centers data by setting the mean 201 

to zero for each feature, then scaling it by dividing non-constant features by their 202 

standard deviation to produce a standard normal distribution with the mean of observed 203 

values = 0 and a standard deviation = 1.  204 

Dealing with imbalanced data is essential prior to building a machine learning 205 

model. Many algorithms may be biased towards classes with large sample sizes if the 206 

training set is imbalanced. For example, in our data set, 2300 analyses are from 207 

unmineralized magmatic apatite, while only 78 analyses are from IOCG deposits. 208 

Therefore, we applied the synthetic minority oversampling technique (SMOTE) using 209 

the imbalanced-Learn Library in Python to minimize the possible effects resulting from 210 

variations in sample size. SMOTE (Chawla et al., 2002) is an improved scheme based 211 

on a random oversampling algorithm, which artificially synthesizes new data to add to 212 

the dataset. Compared with most sampling methods, SMOTE has stronger robustness and 213 

achieved the real sense of combining the over-sampling minority class and under-214 

sampling majority class.  215 

The selected dataset is randomly divided into a training dataset (80%) and a testing 216 

dataset (20%) using the hold-out method while maintaining the exact proportions of 217 

each class. The training set was oversampled using the SMOTE algorithm, which was 218 

then used to train the classifier, while the testing set was utilized to evaluate the classifier. 219 



 

 

Algorithm comparison 220 

K-nearest neighbors (KNN), random forest (RF), support vector machine (SVM), 221 

and eXtreme Gradient Boosting (XGBoost) are widely used machine learning methods 222 

that can be applied to the classification of high-dimensional data, and have been 223 

commonly used in a variety of fields in the geosciences (Carranza & Laborte, 2015; 224 

Petrelli et al., 2017; Liu & Beaudoin, 2021; Shen et al., 2022). We compared these four 225 

supervised machine learning algorithms to select the optimal approach to train the 226 

machine learning model for determining ore-deposit type from apatite trace element 227 

data.  228 

KNN is one of the simplest classification methods in that it calculates the similarity 229 

(proximity) between new and available data. It puts the new data case into the category 230 

most similar to the available categories. While this simple classification method has no 231 

explicit training step, it is not well suited for large datasets with high dimensionality due 232 

to the difficulties in calculating proximities for each data point in high dimensions and 233 

does not work well on imbalanced data or datasets with outliers (Bently, 1975; Alfeilat 234 

et al., 2018, Nathwani et al., 2022). RF employs an ensemble of decision tree classifiers 235 

on various sub-samples of the dataset and uses averaging to improve the predictive 236 

accuracy and control over-fitting (Breiman, 2001). RF does not require significant 237 

tuning of parameters, tends not to overfit the data and can handle non-linear numeric 238 

and categorical predictors. Nevertheless, prediction accuracy on complex problems is 239 

generally inferior to that of gradient-boosted trees. RF classification is also more 240 

difficult to interpret than a single decision tree (which may be easily visualized as a 241 

sequence of decisions and outcomes). The objective of the SVM algorithm is to find a 242 

hyperplane in N-dimensional space (where N is the number of features, in this case 243 

elements) that distinctly classifies the data points. It is the most commonly used machine 244 

learning method in geosciences (Noble, 2006; Soofi & Awan, 2017), tends not to overfit 245 

data nor be overly influenced by outliers, and is most effective in high-dimensional 246 

spaces when there is a clear margin of separation between classes. SVM does not 247 



 

 

perform very well when the dataset is noisy (i.e. target classes are overlapping) or on 248 

large datasets due to the training time involved. The final SVM model is not 249 

probabilistic and can be challenging to interpret and also requires selection of an 250 

appropriate kernel function and hyperparameters. XGBoost is a scalable machine 251 

learning system that combines ‘weak classifiers’ to form ‘strong classifiers’ based on a 252 

decision tree with gradient boosting (Chen & Guestrin, 2016). It typically outperforms 253 

all other algorithms in machine learning community competitions, can handle large 254 

datasets and is not prone to overfitting or the influence of outliers when properly tuned 255 

(Nielsen, 2016; Abou Omar, 2018; Ogunleye and Wang, 2020; Wang et al., 2020). It 256 

also does not require significant feature processing (i.e. no need for scaling or 257 

normalizing data, and it can also handle missing values well); thus feature importance 258 

can be ascertained, allowing for feature selection. It does not work well on sparse and 259 

unstructured data and can be difficult to tune due to the many hyperparameters involved. 260 

Similar to many of the other algorithms described above, interpretation of the final 261 

model can be difficult.  262 

Grid search and cross-validation were introduced to optimize hyperparameters as 263 

appropriate hyperparameter selection can significantly improve the performance of the 264 

machine learning model. Grid search is the traditional approach to hyperparameter 265 

optimization, which finds the optimal hyperparameters by conducting a complete search 266 

over a given subset of hyperparameters space of the training algorithm (Liashchynskyi 267 

& Liashchynskyi, 2019). However, a single grid search is insufficient and therefore, we 268 

used k-fold cross-validation to undertake multiple grid searches using the 269 

GridSearchCV () function in Python’s Scikit-learn machine learning library. The 270 

training set is divided into k groups, and one subset of data is selected randomly as a 271 

validation set and the remainder (k-1) of the subsets as training datasets. This step is 272 

repeated for k times to obtain k models, and the average classification accuracy of the 273 

final validation set of these k models is used as the performance indicator of the machine 274 

learning model.  275 



 

 

We performed a grid search with 10-fold cross-validation to tune hyperparameters 276 

and used the testing set to evaluate the F1 score (which conveys the balance between 277 

the precision and the recall) of the four machine-learning algorithms. We set the random 278 

seed while splitting the training and testing sets. This ensures that the data is divided 279 

the same way every time the code is run and is also required because algorithms such 280 

as RF and XGBoost are non-deterministic (for a given input, the output is not always 281 

the same) and thus require a random seed argument for reproducible results and 282 

algorithm comparison. After tuning of the hyperparameters, the algorithms yielded the 283 

following performance: KNN algorithm (F1 score: 88.6%), random forest algorithm (F1 284 

score: 89.8%), SVM algorithm (F1 score: 89.7%) and XGBoost algorithm (F1 score: 285 

90.8%). Table 2 provides detailed information on the hyperparameters and test scores 286 

and Figure 4 shows the detailed classification information of the four algorithms on a 287 

confusion matrix. We chose XGBoost as the optimal supervised machine-learning 288 

algorithm as it produced the highest test score and the best and most balanced 289 

performance across the five ore deposit categories (Fig. 4). 290 

Feature selection 291 

To effectively apply machine learning methods, feature selection is a key step that 292 

helps understand the data, reduces computation and the curse of dimensionality (the 293 

explosive nature of increasing data dimensions and its resulting exponential increase in 294 

computational efforts) and improves learning performance (Kalousis et al., 2007; 295 

Chandrashekar & Sahin, 2014; Kumar & Minz, 2014; Li e al., 2017). The SHAP tool 296 

was employed to compute each trace element's contribution (SHAP value) in apatite in 297 

the initial dataset for a particular prediction. We list the SHAP values in descending 298 

order in Figure 5 and sequentially added more elements to the XGBoost algorithm in 299 

descending SHAP order to show the change (cross-validation and test score) in model 300 

performance. As shown in Figure 5, for n = 1 (Th) the cross-validation score is ~59% 301 

and the test score was only ~37%. Increasing the number of elements (n = 5; Th, U, Sr, 302 

Eu, Dy), the cross-validation score increased dramatically to ~98% with the test score 303 



 

 

increasing to ~86% (n=5). When n=8, the cross-validation score and test score have 304 

stabilized at ~99% and ~90%. The model could hence be built from these eight elements 305 

(Th, U, Sr, Eu, Dy, Y, Nd, La) as there is minimal improvement when n>8, which is 306 

geologically realistic as the remaining six elements (n = 9 to 14) are all REEs which 307 

exhibit coupled geochemical behavior. Therefore, to improve the learning performance 308 

and the application of the model, we built a filtered dataset using the XGBoost method 309 

with eight elements (Th, U, Sr, Eu, Dy, Y, Nd, La). 310 

Retraining and testing the classifier 311 

The filtered dataset was again randomly split into a training set (80%) and a testing 312 

set (20%) and the training set was then oversampled using the SMOTE algorithm, and 313 

retrained to produce the final XGBoost classifier. Grid search and 10-fold cross-314 

validation were used to choose the optimal hyperparameters (gamma and max_depth, 315 

Figure 6). The classifier was evaluated on the testing set. Randomly splitting the training 316 

set and testing set will change the predicted results of the XGBoost model each time, 317 

thus the test scores (mean score ± standard deviation) were calculated from 50 iterations. 318 

The optimal XGBoost classification was determined for hyperparameters of 319 

n_estimators=148, gamma=0, max_depth=9. (Table 3), with a precision of 0.89 ± 0.02, 320 

recall of 0.90 ± 0.02, F1 score of 0.89 ± 0.02 and accuracy of 0.94 ± 0.01. Figure 6 321 

shows the F1 score of different hyperparameter combinations. A summary of the 322 

precision, recall, and F1 score for each class are provided in Table 3. The dataset and 323 

code are available on the Zenodo website (http://doi.org/10.5281/zenodo.7094836). 324 

Libraries 325 

All operations on the reference dataset from pre-processing through to model 326 

application were undertaken using the Python programming language. The following 327 

libraries were used to complete the code: pandas (Snider and Swedo, 2004), numpy 328 

(Oliphant, 2006) and imlearn (Ma and He, 2013) for data analysis; matplotlib (Barrette 329 

et al., 2005) and seaborn (Waskom, 2021) for plotting the diagrams; scikit-learning 330 

(Kramer, 2016) and xgboost (Chen & He, 2015) for machine learning; shap (Lundberg 331 

http://doi.org/10.5281/zenodo.7094836
http://doi.org/10.5281/zenodo.7094836


 

 

and Lee, 2017) for feature selection and machine learning interpretation. 332 

 333 

Discussion 334 

Limitations of 2D classification diagrams employing two variables 335 

The potential limitations of employing discrimination diagrams (e.g. 2D 336 

scatterplots with two variables) were initially discussed in the introduction and are 337 

explored further here. In this study, we first calculated the ratio of two random elements 338 

from the dataset and added them into the dataset as new features. A total of 5460 339 

discrimination diagrams were constructed using any two features in the dataset with the 340 

best discrimination combination represented by a plot of Th/Pr vs U/Pr ratio (Figure 7a), 341 

with the silhouette coefficient used to investigate the separation distance between the 342 

resulting clusters. We also investigated the six elements (Th, U, Sr, Eu, Dy, and Y) with 343 

the highest SHAP values (Figure 5) to draw 2D scatterplots (Figure 7b, c, d).  344 

As shown in Figure 7, these four discrimination diagrams cannot effectively 345 

distinguish between ore-fertile and ore-barren provenance. Apatite data from different 346 

ore-fertile environments overlap as well. This is the principal limitation of two-variable 347 

scatterplots – they only employ a small amount of information from the high-348 

dimensional data, unlike the high dimensional machine learning approach undertaken 349 

in this study. Even though the apatite trace element data from the different ore deposit 350 

types overlap, the apatite data from individual deposit types still cluster together on the 351 

four discrimination diagrams (Figure 7). Unsurprisingly given the extremely broad 352 

variation in apatite trace element abundances in igneous rocks (O’Sullivan et al., 2020), 353 

the unmineralized magmatic apatite field is by far the largest, encompassing nearly all 354 

the ore deposit fields. The unmineralized magmatic apatite field exhibits bimodal Sr 355 

(Figure 7b) and U abundances (Figure 7c). This corroborates the findings of O’Sullivan 356 

et al. (2020), with U abundances low in ultramafic igneous and low-grade metamorphic 357 

apatite and higher in igneous and high-grade metamorphic apatite, and Sr low in all 358 

metamorphic rocks and I- and S-type igneous rocks, and higher in alkaline and 359 



 

 

ultramafic igneous rocks (Figure 6 in O’Sullivan et al., 2020).  360 

Apatite from IOA deposits define relatively restricted fields on all discrimination 361 

plots (Figure 7), while those from orogenic Au deposits show higher concentrations of 362 

Y and the geochemically-similar element Dy (Figure 7b, d). The kernel density curves 363 

of Sr contents in apatite from orogenic Au deposits also have two distinct peaks (Figure 364 

7b). The kernel density curves of Eu and U abundances show that apatite from skarn 365 

deposits have lower concentrations of Eu and higher abundances of U compared with 366 

apatite from porphyry deposits (Figure 7c, d). These observations show that the trace 367 

element abundances of apatite from different ore deposits exhibit systematic trace 368 

element variations and thus have potential to be discriminated effectively using the 369 

high-dimensional data space through the machine-learning approach adopted in this 370 

study. 371 

Classification in high-dimensional space 372 

The classifier can effectively distinguish between ore-fertile and ore-barren 373 

environments (recall ratio > 95% for barren samples), and apatite from the different 374 

deposit types can be also successfully distinguished with F1 test scores of >88% for all 375 

four algorithms (Figure 4). This suggests that classifying deposit types using machine 376 

learning applied to apatite compositional data is a viable approach. The exception is 377 

IOCG apatite, for which 16% of analyses were predicted to belong to different classes 378 

(Figure 8), probably due to the small sample amount of this deposit type, even though 379 

SMOTE oversampled the training set. The predictions for porphyry and skarn deposits 380 

are better. However, both are less than 90% (porphyry deposits: 89%, skarn deposits: 381 

88%), which is attributed mainly to the complexity of porphyry and skarn 382 

mineralization processes. Porphyry mineralization takes place across a very broad 383 

temperature range from 250 to 1000°C, and apatite forming during different porphyry 384 

crystallization stages may have very different trace element signatures (Sillitoe, 2010). 385 

Skarn mineralization also occurs across a wide range of formation temperatures, while 386 

additionally the diverse nature of host rock types in skarn systems may impart additional 387 



 

 

trace element variability (Jia et al., 2020). Future work could include sub-division of 388 

apatite classes to incorporate differing crystallization stages and host rock chemistries 389 

in porphyry and skarn systems although this is likely to be a substantial undertaking. 390 

Nevertheless, the XGBoost classifier performs well on the classification of fertility and 391 

all deposit types in this dataset with an overall accuracy >94% and F1 score > 89%, 392 

with both high precision and recall ratios, especially for the IOA and orogenic Au 393 

deposits, from which almost all apatite data is predicted correctly (Figure 8).  394 

Low-grade metamorphic apatite is very similar in terms of its trace element 395 

geochemistry to hydrothermal apatite (O’Sullivan et al., 2020). Therefore, an effective 396 

machine learning model must distinguish low-grade metamorphic apatite from the five 397 

mineralized classes. We selected 215 apatite analyses from 31 samples from the 398 

database of O’Sullivan et al. (2020) with different metamorphic grades (high-grade 399 

metamorphic apatite: 112; low- and medium-grade metamorphic apatite: 103) as a new 400 

testing set. Based on the XGBoost classifier, our predicted results show that most of the 401 

analyses accurately classified unmineralized apatite (181 out of 215, Appendix Table 402 

2). Fourteen high-grade metamorphic apatite analyses were misclassified as IOCG 403 

apatite, while 98 high-grade metamorphic apatite analyses were correctly predicted as 404 

unmineralized apatite. For low- and medium-grade metamorphic apatite, 20 apatite 405 

were misclassified as a mineralized class (15 apatite predicted as orogenic Au, three 406 

apatite predicted as porphyry, one apatite predicted as skarn and one apatite predicted 407 

as IOA). In contrast, the remaining 83 apatite were predicted correctly. The performance 408 

(overall accuracy >84%) on this group of metamorphic samples shows that our 409 

XGBoost classifier can effectively distinguish low-grade metamorphic apatite from 410 

fertile classes and provides a rapid and highly accurate approach to predicting ore 411 

deposit type based on apatite trace element data. 412 

Interpreting machine learning models 413 

Machine learning methods have been widely used in geosciences and various 414 

algorithms have been proven to be useful tools for interpreting high-dimensional 415 



 

 

geochemical data (Petrelli & Perugini, 2016; Chen et al., 2021; Wang et al., 2021). 416 

Despite their widespread application in the classification of big data sets, machine 417 

learning approaches are often referred to as a black box, where the dataset undergoes a 418 

series of calculations immediately followed by the output of results, without providing 419 

a transparent working process between the input and output data (Lancet Respiratory 420 

Medicine, 2018). Some studies have employed feature importance to select machine 421 

learning training parameters (Nathwani et al., 2022). However, such an approach does 422 

not help show the relationship between a given feature and the working target – feature 423 

importance is based on the decrease in model performance and contains no information 424 

beyond this. To improve the transparency and interpretation of our XGBoost classifier, 425 

a SHAP summary plot is presented in Figure 9. This summary plot combines feature 426 

importance with the magnitude of feature attributes, and features are ordered according 427 

to their importance. Each point on the summary plot is a SHAP value for a feature and 428 

an instance. The feature importance determines the position on the y-axis and on the x- 429 

axis by the SHAP value, while the color represents the value of the feature from low to 430 

high.  431 

Strontium and Eu are the two most diagnostic elements for classifying IOCG 432 

deposits. For example, high concentrations of Sr (red colors) negatively influence the 433 

classification while low concentrations have a positive influence; the relationship is the 434 

opposite for Eu (Figure 9a). For IOA deposits, high Th contents, low U abundances and 435 

low Sr favor prediction as an IOA deposit (Figure 9b). Porphyry deposit apatite 436 

classification is favored by low Th and low Nd (Figure 9c) while low U and Eu 437 

abundances help to distinguish skarn deposits. The lowest U concentrations may be 438 

partly affected by values below the limit of detection. A larger dataset should confirm 439 

the relationship between apatite U contents and skarn deposits (Figure 9d). High 440 

concentrations of Dy and Sr help classify orogenic Au deposits (Figure 9e). Although 441 

there is wide variation in apatite trace element abundances in different types of igneous 442 

and metamorphic rocks (O’Sullivan et al., 2020) and the unmineralized magmatic 443 



 

 

apatite dataset is very large and diverse, moderate Th and, in particular, high Nd are 444 

indicative for unmineralized apatite (Figure 9f).  445 

In summary, Th, U, Eu and Nd are the most effective elements for classifying ore 446 

deposit types, especially Th for IOA (Figure 9b), Nd for porphyry and unmineralized 447 

apatite (Figure 9c, f), U for skarn (Figure 9d) and Dy for orogenic Au deposits (Figure 448 

9e). Other elements, like Sr, also improves the classification of some deposit types 449 

(Figure 9a, e). 450 

 451 

Implications 452 

Traditional methods to discriminate (e.g. using two-variable scatterplots) only 453 

result in partial separation of ore deposit classes because of the complexity of apatite 454 

chemistry. Machine learning-based approach (XGBoost) fully exploit the high 455 

dimensionality of apatite trace element data to produce a novel geochemical 456 

classification system to link apatite trace element chemistry with ore deposit type. Based 457 

on the classifier, apatite has strong potential as a fertility indicator to distinguish fertile and 458 

barren environments effectively. To circumvent the ‘black box’ problem commonly 459 

associated with machine learning models, SHAP (SHapley Additive exPlanations) tool 460 

was introduced to explain individual predictions. Based on the selected elements (Th, U, 461 

Sr, Eu, Dy, Y, Nd and La), the XGBoost algorithm accurately and efficiently classifies 462 

apatite with ore deposit type (overall accuracy > 94%) and yields the optimal elements 463 

(Th, U, Eu and Nd) to discriminate apatite from different ore deposit types. With the 464 

increasing amount of high-throughput apatite trace element data produced by modern 465 

analytical techniques, our XGBoost approach offers the potential to make more data-466 

driven decisions such as sub-division of porphyry and skarn mineralization stages. 467 

Moreover, the novel SHAP-based analysis approach aids understanding of the sources, 468 

chemistry, and evolution of mineralizing melts and fluids in ore deposit studies. 469 
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 741 

Figure Captions 742 

Figure 1. Locations of apatite samples investigated in this study. (a) The 245 743 

publications with apatite compositional data cover 49 countries on six continents. 744 

Countries are colored according to the number of apatite trace element data (orange 745 

high, green low). (b) Pie chart of continent distribution. (c) Pie chart of deposit type 746 

distribution. IOCG - iron oxide copper gold deposits, IOA - iron oxide-apatite deposits. 747 

 748 

Figure 2. Box plots and line plots showing the abundances and dispersion of the 749 

selected 14 trace elements in apatite. (a, b) The box plots of data categorized according 750 

to deposit types. The height of the colored bars represents the interquartile range (25th-751 



 

 

75th percentile). The horizontal lines within the colored bars are the median. Whiskers 752 

show the 5th-95th percentile. The rhombuses (diamond shapes) represent outliers of 753 

more than 1.5σ. Unknown denotes the deposit type is known but the locality is not 754 

specified. 755 

 756 

Figure 3. Workflow employed to develop the machine learning model. (a) Creating the 757 

initial dataset after data pre-processing; (b) Using the training dataset to train four 758 

different algorithms and then using the testing dataset to evaluate and compare their 759 

performance to select the optimal one; (c) Calculating the SHAP value of each feature 760 

(i.e. element) in the initial dataset and constructing the filtered dataset with the most 761 

important (i.e. source-diagnostic) elements; (d) Retraining and testing the chosen 762 

algorithm based on the filtered dataset to yield the final classifier; (e) Determining the 763 

probable deposit type based on the trace element data. 764 

 765 

Figure 4. Confusion matrix of the testing set used to evaluate the accuracy of the four 766 

algorithms. (a) KNN; (b) Random Forest; (c) SVM; (d) XGBoost. The algorithm 767 

method and its respective F1 score are presented above each panel while the numbers 768 

at the top and bottom of each square represent the proportion of predicted deposit types 769 

and the number of predicted deposit types respectively. 770 

 771 

Figure 5. The mean SHAP value of each element and test F1 and cross-validation 772 

scores of the XGBoost model. The bar plot shows the mean SHAP value of each element, 773 

which reflects its contribution to the model prediction. The lines reflect the change in 774 

algorithm performance with increasing number of elements (red = cross-validation 775 

score; orange = test F1 score). 776 

 777 

Figure 6. The cross-validation F1-score across the gamma and max_depth grid search. 778 

The optimal combination is gamma=0 and max_depth=9. 779 



 

 

 780 

Figure 7. Scatterplots and kernel density curves for different apatite trace element or 781 

element ratio combinations. (a) Th/Pr vs U/Pr; (b) Sr vs Y; (c) Th vs U; (d) Eu vs Dy. 782 

 783 

Figure 8. Confusion matrix of the testing set to evaluate the accuracy of the XGBoost 784 

classifier. The numbers in the top and bottom of each square represent the proportion 785 

of predicted deposit types and the number of predicted deposit types respectively. Note 786 

the score in this confusion matrix and the evaluation report (Table 3) differ slightly from 787 

the scores presented in the confusion matrix in Figure 4. In this figure and Table 3, the 788 

XGBoost model was optimized further to use three hyperparameters (n_estimators, 789 

gamma, and max_depth) and the splitting of the training set and testing set was iterated 790 

50 times, both of which improved the classifier accuracy. 791 

 792 

Figure 9. SHAP summary plots of apatite trace element data various deposit types. (a) 793 

IOCG; (b) IOA; (c) Porphyry; (d) Skarn; (e) Orogenic Au; (f) Unmineralized rocks. 794 

Each line represents one element from the dataset in decreasing order of importance, 795 

and the abscissa is the SHAP value. When the SHAP value exceeds 0, the feature has a 796 

positive impact and vice versa. A small circle (dot) represents an individual analysis 797 

and the color represents the concentration of the respective element (red = high, blue = 798 

low). 799 

 800 

Table 801 

Table 1 Apatite trace element data description 802 

Deposit type Apatite type Location Country Selected reference 

IOCG 
Magmatic/ 

Hydrothermal 

Wernecke, Bhukia, 

Wirrda Well 

prospect, Acropolis 

prospect 

USA, Australia, India 

Mao et al., 2016; 

Mukherjee et al., 

2017; Krneta et al., 

2017 

IOA Magmatic/ Durango, Aoshan, Mexico, Canada, China Mao et al., 2016 



 

 

Hydrothermal Great Bear 

Orogenic Au Hydrothermal 

Congress (Lou), 

Kirkland Lake, 

Dentonia, Seabee, 

Laodou, Xindigou, 

Hutti 

Canada, China, USA, 

India 

Mao et al., 2016; 

Hazarika et al., 2016; 

Zhang et al., 2020 

Porphyry 

Magmatic 

(/Hydrotherm

al) 

Boss Mountain, 

Mount Polley, 

Shiko, Kemess 

South, Highmont, 

Highland Valley, 

Gibraltar, Brenda, 

Endako, Cassiar 

Moly, Dobbin, 

Lornex, Willa, 

Daheishan 

Canada, China, USA, 

German, South 

Africa, Kazakhstan 

Cao et al., 2012; Mao et 

al., 2016; Pan et al., 

2016; Xing et al., 

2021 

Skarn Hydrothermal 

Racine, Minyari, 

Little Billie, Gold 

Canyon, 

O'Callagham's, 

Molly, Yangla, 

Shuikoushan, 

Cantung 

Canada, China, USA, 

Kazakhstan 

Cao et al., 2012; Mao et 

al., 2016; Adlakha et 

al., 2018; Yang et al., 

2018; Jia et al., 2020 

Unmineralized Magmatic 

Hawaiian Islands, 

European orogenic 

belt, Jan mayen, 

North Atlantic 

igneous province, 

Mexican volcanic 

belts, Sulawesi Arc 

Canada, China, USA, 

German, South 

Africa, British, 

France, Brazil, Chile, 

Cabo Verde, Russia, 

Bolivia, Congo, 

Morocco, Czech, 

Finland, Greek, 

Hungary, Italy, 

Kenya, Norway, 

Spain, Tanzania, 

Turkey, Peru 

Acosta et al., 2010; 

Laurent et al., 2017; 

Henrichs et al., 2018; 

Minissale et al., 

2019; Matusiak et al., 

2021; Sun et al., 

2021 

 803 

Table 2 Optimal hyperparameters and test scores of the four applied algorithms 804 

Algorithms Best hyperparameters Hyperparameter cross-

validation score 
Test score 

KNN n_neighbors=2; p=5 99.0% 88.6% 



 

 

RF n_estimators=130 98.8% 89.8% 

SVM C=64; gamma=0.5 99.2% 89.7% 

XGBoost n_estimators=148 98.8% 90.8% 

 805 

Table 3 Evaluation of 50 iterations of the final XGBoost classifier 806 

 precision recall F1 score support 

IOCG 0.70±0.12 0.74±0. 12 0.71±0.09 15.80±3.63 
IOA 0.99±0.01 0.98±0.02 0.98±0.01 52.08±5.26 
Orogenic Au 0.91±0.03 0.90±0.04 0.90±0.03 49.33±6.40 
Porphyry 0.86±0.04 0.87±0.04 0.87±0.03 84.57±7.71 
Skarn 0.93±0.03 0.92±0.03 0.92±0.02 108.61±11.11 
Unmineralized 0.96±0.01 0.96±0 .01 0.96±0.01 506.61±13.78 
Accuracy   0.94±0.01 817.00 
Macro avg. 0.89±0.02 0.90±0.02 0.89±0.02 817.00 
Weighted avg. 0.94±0.01 0.94±0.01 0.94±0.01 817.00 

 807 
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