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ABSTRACT 25 

The three main serpentine minerals, chrysotile, lizardite, and antigorite, form in various geological 26 

settings, and have different chemical compositions and rheological properties. The accurate 27 

identification of serpentine minerals is thus of fundamental importance to understanding global 28 

geochemical cycles and the tectonic evolution of serpentine-bearing rocks. However, it is 29 

challenging to distinguish specific serpentine species solely based on geochemical data obtained 30 

by traditional analytical techniques. Here, we apply machine learning approaches to classify 31 

serpentine minerals based on their chemical compositions alone. Using the Extreme Gradient 32 

Boosting (XGBoost) algorithm, we trained a classifier model (overall accuracy of 87.2%) that is 33 

capable of distinguishing between low-temperature (chrysotile and lizardite) and high-temperature 34 

(antigorite) serpentines mainly based on their SiO2, NiO, and Al2O3 contents. We also utilized a 35 

k-means model to demonstrate that the tectonic environment in which serpentine minerals form 36 

correlates with their chemical compositions. Our results obtained by combining these classification 37 

and clustering models imply the increase of Al2O3 and SiO2 contents and the decrease of NiO 38 

content during the transformation from low- to high-temperature serpentine (i.e., lizardite and 39 

chrysotile to antigorite) under greenschist–blueschist conditions. These correlations can be used 40 

to constrain mass transfer and the surrounding environments during the subduction of hydrated 41 

oceanic crust. 42 

 43 

Keywords: Serpentine, machine learning, XGBoost, classifications, k-means, clustering 44 
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INTRODUCTION 46 

The hydration of upper mantle rocks and metamorphism are the two predominate processes 47 

producing serpentine minerals (John et al. 2011; Plümper et al. 2017; Tamblyn et al. 2019; Zhang 48 

et al. 2019; Ulrich et al. 2020), resulting in the wide occurrence of serpentines in various geological 49 

settings (Rüpke et al. 2004; Reynard 2013; Canales et al. 2017). Lizardite and chrysotile are 50 

produced during near-surface metasomatism or alteration, corresponding to greenschist facies or 51 

lower-grade metamorphism (Auzende et al. 2006; Koutsovitis 2017; Boskabadi et al. 2020), 52 

whereas antigorite dominates in blueschist- and eclogite-facies ultramafic rocks, which usually 53 

represent subduction contexts at depths exceeding 75 km (Hattori and Guillot 2007; Zhang et al. 54 

2009, 2019; Tamblyn et al. 2019). Antigorite is also less hydrous and contains more minor fluid-55 

mobile elements than lizardite and chrysotile (Deschamps et al. 2010; Debret et al. 2019). 56 

Antigorite can also endure greater shear strain than lizardite or chrysotile, indicating the different 57 

rheological properties of the serpentine minerals (Hirauchi and Katayama 2013; Plissart et al. 58 

2019). Therefore, distinguishing serpentine minerals from one another is of fundamental 59 

importance for constraining geothermal gradients and mass transfers, as well as for understanding 60 

the mechanism of strain localization, which may induce exhumation, deformation, and seismicity 61 

in subduction zones (Boudier et al. 2010; Deschamps et al. 2010; Reynard 2013; Schwartz et al. 62 

2013; Rouméjon et al. 2019; Wheat et al. 2020). 63 

Serpentine minerals are hydrous, Mg-rich, 1:1 (i.e., one tetrahedral silicate sheet, mainly 64 

Si4+ occupying the tetrahedral sites, and one octahedral sheet, mainly Mg2+ occupying the 65 

octahedral sites, stack alternately) trioctahedral clay minerals with the ideal composition 66 

Mg3Si2O5(OH)4. Because of their chemical compositional differences, the tetrahedral sheets are 67 

slightly smaller than the octahedral sheets (Whittaker and Wicks 1970), and different sheet 68 
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arrangements accommodate this mismatch, producing the different structures of the serpentine 69 

minerals, with lizardite, chrysotile, and antigorite being the three most abundant serpentine 70 

minerals (Auzende et al. 2002; Boudier et al. 2010; Deschamps et al. 2013). Common substitutions 71 

occurring in natural samples are Fe3+, Ti4+, Mn2+, or Cr3+ for Mg2+ in the octahedral sites and Al3+ 72 

for Si4+ in the tetrahedral sites (Evans 2004). 73 

Modern techniques used to discriminate between serpentine minerals present specific 74 

advantages and disadvantages. Serpentine minerals can be distinguished based on structural 75 

differences (Mellini 1986; Banfield et al. 1995; Schwartz et al. 2013; Rouméjon et al. 2019), 76 

generally by transmission electron microscopy (TEM), requiring important sample preparation. 77 

Serpentine minerals can also be identified from their Raman spectra (Rinaudo et al. 2003; 78 

Petriglieri et al. 2015). Auzende et al. (2004) and Groppo et al. (2006) found that antigorite can be 79 

identified from the frequencies at which Si-O-Si and the inner and outer OH stretchings occur, and 80 

the translation modes of OH-Mg-OH linkages (vibrating at 500–550 cm−1) can be used to 81 

distinguish between chrysotile and lizardite. To identify serpentine based on these vibrational 82 

differences, the serpentine species being analyzed should be well-crystallized and sufficiently 83 

compositionally distinct. However, serpentine minerals may share the same chemical 84 

compositions via substitutions (e.g., the substitution of Ni, Fe, and Al for Mg in octahedral sheets 85 

and Al for Si in tetrahedral sheets; O'Hanley and Dyar 1998), and poorly crystallized serpentine 86 

minerals are common. The associated shifts of the vibrational frequencies of these bonds can result 87 

in different serpentine minerals sharing similar Raman spectra (Wang et al. 2015). Therefore, it 88 

may be difficult to reliably distinguish poorly crystallized serpentine minerals based only on their 89 

chemical compositions and spectroscopic features using traditional geological methodologies. 90 
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Recent studies suggest that machine learning (ML) approaches offer new opportunities for 91 

classifying minerals based on their chemical compositions in high-dimensional space (Petrelli and 92 

Perugini 2016; O'Sullivan et al. 2020; Valetich et al. 2021; Wang et al. 2021). Because they are 93 

driven purely by data, ML models can unravel complexities in large datasets through a learning 94 

process unimpeded by a priori defined conceptual models (e.g., the definition of an equilibrium 95 

state; Hazen et al. 2019; Caricchi et al. 2020; Petrelli et al. 2020). 96 

Here, we tested the potential of ML approaches as an alternative tool for classifying 97 

serpentine minerals. We first compiled and filtered a dataset comprising eight elemental 98 

concentrations in serpentine minerals. Then, we trained the Extreme Gradient Boosting (XGBoost) 99 

classification and k-means clustering models, employing strategies to avoid overfitting. XGBoost 100 

was applied to classify the serpentine minerals at first. Based on the results of these models, we 101 

discussed the classification performance and feature importance, which can be used to explore the 102 

features dominating the chemical differences between serpentines crystallized in natural systems. 103 

Then, the k-means algorithm was used to cluster each class. We tested the clustering results to 104 

identify the tectonic environments in which serpentine minerals form and to constrain the typical 105 

variations in SiO2, NiO, and Al2O3 contents during the replacement of chrysotile/lizardite by 106 

antigorite in subduction zones.  107 

 108 

DATA AND METHODS 109 

Data Compilation 110 

The dataset used in this study contains compositional data for serpentine-group minerals from 111 

50 publications (see Supplementary Reference List), containing 1,375 chemical analyses of 566 112 

serpentine phases. To explore the relationship between the serpentine minerals and their formation 113 
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conditions, we grouped the minerals as low-temperature, (L_Srp, 534 analyses of 264 lizardite and 114 

chrysotile samples) vs, high-temperature serpentines (H_Srp, 841 analyses of 302 antigorite 115 

samples; Supplementary Table S2). Lizardite has flat, stretched tetrahedral sheets with interlayer 116 

H-bonds, favoring the coupled substitution of Fe, Ni, and Al for Mg in the octahedral sheets and 117 

Al for Si in the tetrahedral sheets (Mellini 1986; Viti and Mellini 1997). Chrysotile forms multi-118 

walled nanotubes or nanoscrolls (Wicks and Whittaker 1975). Antigorite displays curved, wavy 119 

layers similar to Roman roof tiles (e.g., Banfield et al. 1995; Ji et al. 2018): the octahedral sheets 120 

are continuous and wavy, whereas the tetrahedral sheets undergo periodic reversals along the a-121 

axis to connect to the concave half-waves of adjacent octahedral sheets (Capitani and Mellini 2004). 122 

These reversals bind the antigorite layers through strong, mainly covalent Si–O bonds (Evans et 123 

al. 2013) (Fig. S1). 124 

The samples in our dataset are mainly from three geological settings: ophiolites, modern 125 

seafloor hydrothermal systems, and subduction zones (e.g., Sachan et al. 2007; Zhang et al. 2019; 126 

Majumdar et al. 2020). The serpentine minerals within these samples have been accurately 127 

characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and/or 128 

TEM (e.g., O'Hanley and Wicks 1995; Rouméjon et al. 2019; Shen et al. 2020), and their 129 

compositions determined by electron microprobe analysis, X-ray fluorescence, and/or energy 130 

dispersive spectrometry (e.g., Hirose et al. 2006; Wu et al. 2018). The concentrations of 12 oxides 131 

(SiO2, TiO2, Al2O3, Cr2O3, FeOtot [total iron expressed as FeO], MnO, NiO, MgO, CaO, Na2O, 132 

K2O, and H2O) are commonly reported for the major chemical compositions of serpentine minerals. 133 

However, CaO, Na2O, and K2O contents are negligible because the large ionic radii of Ca2+, Na+, 134 

and K+ make their substitutions for smaller cations (Mg2+ and Si4+) almost impossible. Thus, the 135 

occurrence of CaO, Na2O, and K2O contents in these publications is most likely due to impure 136 
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materials (e.g., the presence of pyroxene), and we excluded these three oxides from our processed 137 

dataset (Supplementary Table S2). We also excluded H2O content because most studies did not 138 

report loss on ignition for serpentine minerals. 139 

 140 

Data Processing 141 

To train the classification algorithm, we applied the XGBoost algorithm directly to the 142 

unprocessed, labeled (L_Srp vs. H_Srp) dataset because it can handle missing data. However, we 143 

did some processing to the original dataset before applying the k-means clustering (Fig. 1). (1) 144 

Missing data imputation: missing data from the mineralogically labeled (L_Srp vs. H_Srp) 145 

unprocessed dataset were imputed by the k-nearest neighbor (KNN) algorithm (Gheyas and Smith 146 

2010). (2) Centered Log-Ratio (CLR) transformation: like all other compositional data, our dataset 147 

suffers from data closure problems due to the multivariate nature of geochemical data (Aitchison 148 

1982), which we chose to address by applying the CLR transformation (Aitchison 1982). Because 149 

this transformation requires strictly positive values, we replaced any zero values with 0.0001. We 150 

also reduced the complexity of the 1,375 × 8 data matrix by employing principal component 151 

analysis (PCA). PCA measures interrelationships among multiple variables in numerous 152 

dimensions using a covariance matrix (Ringnér 2008). We used the first three principal 153 

components (explaining over 85% of the variance in the L_Srp and H_Srp datasets) to run the k-154 

means algorithm for visualization purposes. After applying the k-means algorithm, the resulting 155 

datasets with predicted labels were named L_Srp_km and H_Srp_km (Supplementary Tables S3 156 

and S4, respectively) (Fig. 1). 157 

 158 
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Machine learning (ML) models 159 

Given a set of observations (here, serpentine chemical compositions), ML models classify 160 

the dataset. We trained the classifier using the XGBoost, support vector machine (SVM), and 161 

random forest (RF) algorithms and their results were similar (not shown). We chose the XGBoost 162 

algorithm for our classification because it does not require imputation of missing values. Next, we 163 

used both the k-means and Gaussian mixture algorithms to cluster the data; again, both algorithms 164 

showed consistent results (not shown). Here, we showed and discussed only the clustering results 165 

obtained using the well-known unsupervised learning approach of the k-means algorithm. As 166 

mentioned above, we also applied PCA to the dataset before the k-means clustering to visualize 167 

the results in three dimensions. 168 

 169 

Extreme Gradient Boosting (XGBoost). XGBoost is a highly efficient and flexible end-170 

to-end boosting tree system (Chen and Guestrin 2016), improved by the gradient-boosting decision 171 

tree. It uses a parallel computing strategy in the training process to maintain optimal calculation 172 

speeds while adding a common term to the objective function. This prevents overfitting and 173 

optimizes computing resources during the adjustment of the objective function value. Unlike using 174 

feature vectors to calculate similarity, boosted trees are constructed to intelligently obtain feature 175 

scores, revealing the importance of each feature to the training model. When a feature is used with 176 

higher frequency to make critical decisions in boosted trees, that feature is given a higher score. 177 

The principle of the algorithm is to continuously add trees to fit the residuals of the previous 178 

prediction, summing the prediction scores of each tree to obtain the final score. More specific 179 

information on the XGBoost algorithm is available in Chen and Guestrin (2016). We used the 180 

open-source Python package (“xgboost”) to implement the algorithm. 181 
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 182 

Model optimization with Scikit-learn. Scikit-learn is a Python module integrating a wide 183 

range of state-of-the-art machine learning algorithms for medium-scale supervised and 184 

unsupervised problems (Pedregosa et al., 2011). Before training the model, the dataset was 185 

randomly split into training (70%) and testing subsets (30%). The XGBoost algorithm uses 186 

numerous hyperparameters that affect the performance of the final model. Here, we selected the 187 

optimal hyperparameter combination by grid search, a typical parameter-tuning approach that 188 

methodically builds and evaluates a model in a specific grid (Hsu et al. 2003). We also performed 189 

tenfold cross-validation by building the prediction model with 90% of the training subset during 190 

the grid search and subsequently using the model to predict the withheld 10%. This was performed 191 

iteratively until all observations had been withheld and subsequently predicted. Tenfold cross-192 

validation is important for avoiding overfitting and evaluating the model's predictive capability 193 

(Fig. S2). We performed the grid search over a 1,500-parameter space to identify the optimal 194 

parameter combination and define the final classifier. Then, the classifier was evaluated based on 195 

its performance when applied to the testing subset. 196 

 197 

Model evaluation with confusion matrix. A confusion matrix (Supplementary Table S5) 198 

contains information about the actual and predicted classifications, which is used to evaluate the 199 

model performance. Based on the confusion matrix, four classification performance measures are 200 

typically used, defined based on the total numbers of true positive (TP), false positive (FP), true 201 

negative (TN), and false negative (FN) predictions: precision, recall, accuracy, and the traditional 202 

F-measure or balanced F-score (F1 score). 203 
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In this context, precision is a measure of accuracy, provided that a specific class has been 204 

predicted: 205 

          Precision = TP/(TP +FP)                                              (Eq. 1) 206 

Recall measures the ability of the model to select instances of a specific class from a dataset: 207 

Recall = TP/(TP + FN)                                              (Eq.2) 208 

Accuracy is a straightforward measurement of the proportion of the total number of predictions 209 

that were correct: 210 

Accuracy = (TP + TN)/(TP + TN + FP + FN)                           (Eq. 3) 211 

The F1 score is the harmonic mean of precision and recall: 212 

F1 score = 2*(Precision – Recall)/(Precision + Recall) = 2TP/(2TP + TN + FP)   (Eq. 4) 213 

The F1 score is high when both precision and recall are high. 214 

 215 

k-means clustering. The k-means clustering algorithm aims to partition a given dataset into 216 

k clusters based on the distances between data points and cluster centroids (Zhou et al. 2018; 217 

Ghezelbash et al. 2020). Because the naive k-means algorithm can be highly computationally 218 

expensive and very sensitive to the initialization of k centroids, multiple variations have been 219 

proposed to improve the algorithm’s efficiency and accuracy. Here, we used the k-means++ 220 

algorithm, which adopts a smarter centroid initialization (Arthur and Vassilvitskii 2007) than the 221 

naive k-means algorithm, which randomly chooses the initial k centroids. Generally, the 222 

procedure is as follows: 223 

1. The algorithm chooses the first centroid randomly from a given dataset. 224 

2. The distance between each data point and the nearest centroid is calculated. 225 
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3. The data point farthest from the previously chosen centroid(s) is selected as the next new 226 

centroid. 227 

4. Steps 2 and 3 are iterated until k centroids are found. 228 

5. Each data point is assigned to a cluster corresponding to the nearest centroid. 229 

6. The k cluster centers are taken as k new centroids (cluster centers) when Step 5 is 230 

completed. 231 

7. Steps 5 and 6 are iterated until the positions of the centroids remain fixed between 232 

subsequent iterations. 233 

 234 

RESULTS 235 

Chemical compositions of serpentine minerals 236 

The two classes of serpentine-group minerals have different compositional patterns (Fig. 237 

2). H_Srp have systematically higher SiO2, whereas L_Srp spans a wide range of SiO2 contents 238 

(36.0–46.0 wt%). Based on their higher Al concentrations, Al substitution into crystal sites is 239 

slightly more frequent in H_Srp than in L_Srp. Furthermore, although both H_Srp and L_Srp span 240 

similar ranges of FeOtot contents (0.0–12.5 wt%), >75% of H_Srp contain ≤5.0 wt% FeOtot. H_Srp 241 

tend to contain less MnO and NiO than L_Srp. H_Srp MgO contents are concentrated in the range 242 

37.0–39.0 wt%, whereas those of most L_Srp are more broadly distributed over 37.0–41.0 wt%. 243 

The distributions of TiO2 (0–0.2 wt%) and Cr2O3 contents (0.0–1.3 wt%) are almost identical in 244 

H_Srp and L_Srp. 245 

 246 
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XGBoost model 247 

Confusion matrix and performance evaluation. The raw confusion matrix of true 248 

(known) and predicted L_Srp and H_Srp labels after applying the XGBoost algorithm to the test 249 

dataset (i.e., 30% of the unprocessed dataset) is shown in Figure 3a and normalized to the known 250 

total number of analyses with each label in Figure 3b (i.e., the rows of the matrix sum to 1). The 251 

classification results indicate an overall accuracy of 87.2% (Table 1), with 86.2% of L_Srp and 252 

87.4% of H_Srp correctly classified (Fig. 3b). Of the 160 L_Srp examples in the test dataset, 22 253 

were falsely predicted as H_Srp, and 31 of the 253 H_Srp examples were falsely classified as 254 

L_Srp (Fig. 3a). These results indicate that the ML model provides reasonably accurate 255 

classifications of serpentine minerals. 256 

 257 

Feature importance. Here, ‘feature’ refers to an elemental concentration, and feature 258 

importances reflect the relative influences of constituent elements on the model predictions. To 259 

identify the main features controlling the performance of the XGBoost algorithm in classifying 260 

serpentines, we calculated feature importances for the eight elemental concentrations considered. 261 

SiO2 content had the highest feature importance score (0.29), implying its importance in 262 

classifying serpentine minerals (Fig. 3c). The classification was also fairly sensitive to NiO content, 263 

with a feature importance score of 0.15. Therefore, the classification of serpentine minerals 264 

performs well when SiO2 and NiO are used to evaluate the models. Al2O3, MgO, FeOtot, MnO, and 265 

TiO2 contents had similar but weaker influences on the classification than NiO content (Fig. 3c). 266 

k-means model 267 

In our dataset, fewer than 10 analyses were available for some locations, leading to non-268 

representative clustering. Therefore, we excluded these analyses before applying the k-means 269 
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clustering model. We trained separate k-means models for the L_Srp and H_Srp samples and used 270 

their silhouette scores (measuring the mean distance between each sample to its cluster centroid) 271 

to evaluate their performances. As shown in Figure S3, the clustering results for L_Srp and H_Srp 272 

samples have maximum respective silhouette scores of 0.57 and 0.54 when k = 4, making this the 273 

optimum number of clusters. In addition, four well-separated groups are observed in the PCA plots 274 

of the first three PCs (Fig. 4). These results indicate that the datasets were well separated into four 275 

clusters. 276 

Of the L_Srp analyses, ~68.0% were classified into Cluster L_1 and are globally distributed 277 

(Fig. 5a). Furthermore, analyses from most locations fall into multiple clusters, with the exception 278 

of the landward slope of the Middle America Trench off Guatemala (Fig. 5a), for which all 279 

analyses were classified as Cluster L_1. Cluster L_2 of L_Srp only spread in four locations, 280 

including New Caledonia, NW Iran, the Eastern Desert of Egypt, and NE Corsica (Fig. 5a). These 281 

k-means results imply that analyses from British Columbia Canada, Elba Island, New Caledonia, 282 

and the North Qaidam orogen (Tibet) are characterized by only two meaningful classes, whereas 283 

analyses from the other eight areas (i.e., excluding Guatemala) are characterized by three or four 284 

clusters (Fig. 5a). We note that the classification of most of these analyses as Cluster L_1 indicates 285 

that the major chemical compositions of chrysotile and lizardite do not strongly reflect their 286 

sampling locations. 287 

Of the H_Srp analyses, 87.9% were classified as either Cluster H_1 or H_2 (Fig. 5b; note that 288 

Clusters H_1–4 are distinct from Clusters L_1–4). NW Iran was the only location without any 289 

samples classified as Cluster H_2. Analyses from Cuba, the Hess Deep, and Japan were uniquely 290 

classified as Cluster H_1. Only analyses from New Caledonia and Qinling China were categorized 291 

into just two clusters: Clusters H_2 and H_4 and Clusters H_2 and H_3, respectively (Fig. 5b). 292 
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The remaining nine locations showed broadly similar clustering distributions (Fig. 5b), implying 293 

that the compositional clustering of H_Srp (antigorite) is not largely due to the chemical 294 

environment in which is formed. 295 

 296 

DISCUSSION 297 

Classification of serpentine minerals 298 

Raman analyses are currently the most widely used traditional analytical method for 299 

discriminating between serpentine minerals (Rinaudo et al. 2003). The presence of peaks at ~1050 300 

cm−1 and 3680-3700 cm−1, representing antisymmetric Si-Ob-Si and OH stretching, respectively, 301 

usually indicates that a polymorph is an antigorite (Auzende et al. 2004; Petriglieri et al. 2015), 302 

whereas chrysotile and lizardite are identified based on the presence of a peak attributed to 303 

antisymmetric stretching modes of Si-Onb groups at ~1100 cm−1 (Groppo et al. 2006). However, 304 

these peaks may be absent in poorly crystallized serpentines. Valid peaks may also not occur if the 305 

sample was first analyzed by electron microprobe analysis which could destroy its structure by the 306 

electron beam. Another problem in most applications of Raman spectroscopy is the strong 307 

fluorescence background (Wei et al., 2015). Therefore, the high quality of the sample and 308 

appropriate methods to suppress the fluorescence background are required to collect useful Raman 309 

results. In contrast, our quantitative ML model can distinguish between serpentine minerals based 310 

only on their major chemical compositions. Our model can distinguish between L_Srp and H_Srp 311 

with 87.2% accuracy (Table 1), which is far more reliable than traditional geochemical methods. 312 

Our binary classification model sometimes misclassified serpentines (Figs. 3a, 3b), possibly 313 

due to mineral replacements among the serpentine minerals. Antigorite is more stable than 314 

chrysotile and lizardite at high temperatures (~250 to >500 °C; O'Hanley and Wicks 1995; Ghaderi 315 

et al. 2015), and usually forms through prograde and retrograde metamorphic reactions during 316 
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subduction and obduction, respectively (Guillot et al. 2001; Boudier et al. 2010; Wu et al. 2018; 317 

Zhang et al. 2019). Field observations and laboratory evidence suggest that chrysotile and lizardite 318 

can precede replacement by antigorite during prograde metamorphism (Koutsovitis 2017; Plissart 319 

et al. 2019), which is associated with the formation of brucite or a modest influx of SiO2 (e.g., 320 

O'Hanley and Wicks 1995; Evans 2010; Rouméjon et al. 2019). These two mineral replacement 321 

processes likely explain why antigorite contains more Si than lizardite and chrysotile (Fig. 2a), 322 

and are probably why the classification between H_Srp (antigorite) with L_Srp (chrysotile and 323 

lizardite) performed so well. 324 

These same transformations also imply that the composition of antigorite could be inherited 325 

from previous chrysotile and/or lizardite, which may explain the rare misclassification of H_Srp 326 

as L_Srp in our model. Furthermore, Evans (2004) suggested that, although serpentinization may 327 

force the crystallization of chrysotile, a considerable amount of chrysotile recrystallizes in 328 

antigorite-bearing serpentinites surrounded by abundant Si- and Mg-oversaturated fluids. 329 

Therefore, chrysotile may also replace antigorite without any associated compositional change 330 

(Evans 2004; Ulrich et al. 2020), which may explain the rare misclassification of L_Srp as H_Srp 331 

in our model (Figs. 3a, 3b). 332 

Our feature importance results indicate that the chemical differences between serpentine 333 

minerals mainly arise from their SiO2 contents (Fig. 3c). Consistent with previous results (e.g., 334 

Deschamps et al. 2013) and the SiO2 distribution plot (Fig. 2), antigorite samples contain more 335 

SiO2 than lizardite and chrysotile. Indeed, the tetrahedral sheets with periodic reversals along the 336 

a-axis in antigorite predestine the formation of antigorite to consume more SiO2 than the formation 337 

of chrysotile and lizardite. NiO contents were also important to the performance of our 338 

classification (Fig. 3c): chrysotile and lizardite span a fairly wide range of NiO concentrations (0–339 
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0.6 wt%), whereas the NiO contents of antigorite are more restricted to the range 0–0.2 wt%. This 340 

result is consistent with the conclusions of McCollom and Bach (2009), who identified the 341 

formation of Fe-Ni alloy during the replacement of chrysotile and lizardite by antigorite, indicating 342 

that Ni migrates from serpentine to the surrounding environment. Al2O3 was the third-most 343 

important feature for classifying serpentine minerals (Fig. 3c). The distribution plot reveals that, 344 

although serpentines have a wide range of Al2O3 contents (0.0–6.7 wt%), those of H_Srp are 345 

mainly restricted to the range 0.4–3.0 wt%, slightly above the range for L_Srp (Fig. 2c). Because 346 

Al generally substitutes for Si in the tetrahedral sheets of serpentine, the higher Al2O3 contents of 347 

H_Srp are the consequence of the higher SiO2 contents of H_Srp. Unexpectedly, the substitutions 348 

of Fe, Mn, Ti, and Cr into the structures of serpentine minerals had only minimal contributions to 349 

the classification (feature importances of 0.09, 0.09, 0.09, and 0.07, respectively; Fig. 3c). The 350 

different impacts of these substitutions suggest that Ni and Al equilibria between serpentine 351 

minerals and their surrounding environments depend on the minerals' structures and formation 352 

conditions, whereas those involving Fe, Mn, Ti, and Cr do not. 353 

 354 

Application of the k-means algorithm to determine the environmental conditions of 355 

crystallization 356 

Our clustering model can be applied to determine the original geological environments in 357 

which serpentine crystallized. The derived silhouette coefficients of the k-means model 358 

performances for L_Srp (chrysotile and lizardite) indicate that four clusters best classified the data 359 

(Fig. 5a). Kodolányi and Pettke (2011) confirmed that the alteration of oceanic crust is dominant 360 

in Guatemala, and no high temperature (>300–400 °C) alteration phases have been detected there, 361 

indicating that Guatemala chrysotile and lizardite formed at low temperatures (<300 °C). 362 
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Therefore, we consider that the temperature during the formation of L_Srp in Cluster L_1 is 363 

constrained to <300 °C, consistent with previous field observations and experimental results 364 

(Evans 2004; Schwartz et al. 2013). Cluster L_1 may also represent L_Srp that were not modified 365 

by subduction zones because L_Srp tends to crystallize during water-rock interactions on the 366 

seafloor, in the absence of intense tectonic activity and major shear zones (Federico et al. 2005; 367 

Putlitz et al. 2005; Obeid et al. 2016; Imayama et al. 2020). Because chrysotile and lizardite tend 368 

to crystallize in such geological environments, the classification of ~68.0% of L_Srp into Cluster 369 

L_1 is consistent with these observations (Fig. 5a). L_Srp samples in Cluster L_1 occur in all 370 

locations listed in our L_Srp dataset, indicating that it is not practical to attempt to distinguish 371 

which L_Srp phase is produced upon alteration of oceanic crust on the seafloor at a given sampling 372 

location based on chemical composition alone. Furthermore, the hydration of ultramafic or mafic 373 

rocks by meteoric water at Earth's surface (Zhang et al. 2019; Ulrich et al. 2020), the equilibration 374 

of fluids with shallow subducting sediments (Wu et al. 2018), or upwelling fluids sourced from 375 

subducted slabs (Martin et al. 2020) dehydrated under sub-greenschist conditions can also produce 376 

both chrysotile and lizardite. Unfortunately, we failed to assign any of this information to Clusters 377 

L_2–4. The incorporation of more data, including isotopic results (e.g., δ11B, δ18O) should improve 378 

our models, allowing us to constrain specific P-T conditions and explore the evolution of 379 

geological processes and elemental cyclings (Zhang et al. 2019; Martin et al. 2020). 380 

We also obtained four clusters by applying the k-means algorithm to the H_Srp chemical 381 

compositions (Fig. 5b). Ribeiro da Costa et al. (2008) suggested that antigorite at the Mid-Atlantic 382 

ridge may result from extensive deformation at low temperature rather than high-temperature 383 

prograde metamorphism. Rouméjon et al. (2019) further proposed that the presence of a Si-rich 384 

fluid is the only requirement for the crystallization of antigorite. Indeed, antigorite formed under 385 
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conditions unrelated to subduction was classified into Cluster H_2 in our study (Fig. 5b). In 386 

contrast, antigorite produced by blueschist to eclogite facies metamorphism (i.e., 390–650 °C) was 387 

classified into Clusters H_1, H_3, and H_4 (Lafay et al. 2013; Vitale Brovarone and Herwartz 388 

2013; Martin et al. 2020; Ulrich et al. 2020). Antigorite from Tibet, China, and Iran may have 389 

undergone metamorphism at ultra-high pressure (21–35 kbar), but at temperatures not exceeding 390 

700 °C (Zhang et al. 2019; Moghadam and Stern 2015), indicating that the stability of antigorite 391 

is more sensitive to temperature than pressure. Nonetheless, the prograde recrystallization of 392 

chrysotile and/or lizardite to form some of the subduction-related H_Srp (Rouméjon et al. 2019; 393 

Martin et al. 2020) may result in misclassifications between L_Srp and H_Srp, consistent with our 394 

XGBoost results (Fig. 3). 395 

For both L_Srp and H_Srp, samples from different locations can be classified into the same 396 

cluster, suggesting that the specific sampling location has a negligible effect on compositional 397 

clustering. However, our results confirm that the geological environment determines the serpentine 398 

species and chemical composition. We note that our dataset only contains 1,375 analyses, limiting 399 

our efforts to assess the P-T conditions required to form serpentine of specific chemical 400 

compositions. Nevertheless, subduction-related serpentines seem to contain less TiO2, Al2O3, and 401 

Cr2O3 (Figs. S4 and S5). 402 

 403 

IMPLICATIONS 404 

Serpentinization occurs ubiquitously in seafloor ultramafic rocks and subduction zones, 405 

exerting a strong influence on the geochemistry of those systems (Schmidt et al. 2011; Schroeder 406 

et al. 2015; Seyfried et al. 2015; Scott et al. 2017; Debret et al. 2019). Serpentine-group minerals 407 

can structurally accommodate water and elements, and minerals thus play a significant role in the 408 
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alteration process (Evans 2008; Hacker 2008; Iyer et al. 2008; Jöns et al. 2010; Schrenk et al. 2013; 409 

Canales et al. 2017; Mayhew et al. 2018). Therefore, the transformation from L_Srp to H_Srp 410 

promotes elemental cycling (Malvoisin 2015; Mayhew et al. 2018). Our feature importance data 411 

and the distributions of serpentine chemical compositions (Figs. 2a, 3c) indicate that the 412 

enrichment of Si in serpentine is associated with subduction-generated Si-rich fluids. This sheds 413 

light on the factors controlling the solubility of hydrous melts and dilute aqueous solutions in 414 

which the dissolved silicate components also play significant roles (Manning 2004). Our feature 415 

importance data indicate that Ni migrates from serpentine to the surrounding environment during 416 

mineral replacement (Figs. 2g, 3c) and may be consumed by Fe-Ni alloy when dominated by 417 

ferrous iron (McCollom and Bach 2009), redistributing Fe among the solids. In contrast, Al 418 

diffuses into H_Srp during replacement (Figs. 2c, 3c) in association with the increase in SiO2 419 

content (Figs. 2a, 3c). This indicates that Al tends to substitute for Si in the tetrahedral sheets 420 

(Evans et al. 2013), which may stabilize antigorite at higher temperatures (Padrón-Navarta et al. 421 

2013). Our XGBoost model thus documents the importance of serpentine mineral replacements 422 

during mass transfers in subduction zones and relates serpentine chemical compositions to their 423 

geological environments, whereas traditional geochemical methods have limited capabilities to 424 

provide such information on alteration chemistry (e.g., Barbier et al. 2020). 425 

The dataset used to train these ML algorithms only contains 1,375 analyses for which the 426 

concentrations of the eight analyzed elements were reported. Due to the lack of P-T data, our 427 

discussion on serpentine crystallization and geological environments is qualitative. Model 428 

performance will improve when more data becomes available. Similar ML algorithms could be 429 

applied to track the sources of fluids participating in the formation of serpentine minerals by 430 

incorporating 87Sr/86Sr data to further constrain the evolution of metasomatic processes (Consuma 431 
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et al. 2020). Additional data on Fe2+/Fe3+ ratios and B isotopes will be useful for classifying the 432 

redox state of serpentine minerals and revealing the influence of mineral replacements on the redox 433 

budget during subduction (Zhang et al. 2019, 2021). Furthermore, applying such ML algorithms 434 

to a dataset incorporating the P-T conditions of serpentine crystallization, the age of the lithosphere, 435 

and convergence rates will improve our understanding of Earth’s tectonic history (Blanco-436 

Quintero et al. 2011; Wu et al. 2018; Cannaò et al. 2020). 437 

 438 
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Figure 1. Operational flow chart of the methods used in this study. Step 1: the original dataset was used to 698 

train the XGBoost models and evaluate model performance. Step 2: the preprocessed (KNN & CLR) 699 

original dataset was used to train the k-means clustering models.  700 

 701 

Figure 2. The distributions of the eight analyzed elemental concentrations in serpentine minerals. L_Srp 702 

represents chrysotile and lizardite, and H_Srp represents antigorite. 703 

 704 

Figure 3. The performance of our XGBoost model presented in the form of (a) nonnormalized and (b) 705 

normalized confusion matrices. (c) Relative feature importances (summing to 1) during the training of the 706 

XGBoost algorithm to classify serpentines as either L_Srp or H_Srp. 707 

 708 

Figure 4. Distribution plots of (a,d) PC1 vs. PC2, (b,e) PC1 vs. PC3, and (c,f) PC2 vs. PC3 for (a–c) L_Srp 709 

and (d–f) H_Srp. Symbol colors represent clusters identified by k-means analysis and symbol shapes 710 

indicate sampling locations. MAR, Mid-Atlantic Ridge; IOR, Indian Oceanic Ridge; IBM, Izu-Bonin 711 

Mariana arc; ED, Eastern Desert; BC, British Columbia; NQO, North Qaidam orogen. 712 

 713 

Figure 5. The distributions of each cluster of major chemical compositions of (a) L_Srp and (b) H_Srp 714 

identified by k-means analysis. BC, British Columbia; NQO, North Qaidam orogen; IBM, Izu-Bonin-715 

Mariana arc; ED, Eastern Desert; MAR, Mid-Atlantic Ridge; IOR, Indian Oceanic Ridge. 716 
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Figure S1. TEM images of (a) chrysotile, (b) lizardite, and (c) antigorite. Inset images are schematic 719 

diagrams of their respective structures, with yellow tetrahedra, purple tetrahedra, light green octahedra, and 720 

purple octahedra representing SiO4, AlO4, Mg(O,OH)6, and Al(O,OH)6, respectively. 721 

 722 

Figure S2. The XGBoost learning curve when using the eight selected major elements to classify L_Srp 723 

and H_Srp. 724 

 725 

Figure S3. Silhouette scores used to select the optimum number of clusters k when applying the k-means 726 

algorithm to (a) L_Srp and (b) H_Srp. 727 

 728 

Figure S4. Violin plots of the density distributions of oxide concentrations in each L_Srp cluster. 729 

 730 

Figure S5. Violin plots of the density distributions of oxide concentrations in each H_Srp cluster. 731 
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Table 1. Summary of the performance of the XGBoost model applied to the test serpentine dataset. 734 

Class Precision (%) Recall (%) F1-score Accuracy (%) 

L_Srp 81.7 86.3 0.839 
87.2 

H_Srp 91.0 87.7 0.872 
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