1	Revision 3
2	Origin of gem-quality turquoise associated with quartz-barite veins in
3	western Hubei Province, China: constraints from mineralogical, fluid
4	inclusion, and C-O-H isotopic data
5	WEN-TIAN LI ¹ , SHAO-YONG JIANG ^{1*} , HAO ZHANG ² , PEI-LONG CUI ²
6	¹ State Key Laboratory of Geological Processes and Mineral Resources, Collaborative
7	Innovation Center for Exploration of Strategic Mineral Resources, School of Earth
8	Resources, China University of Geosciences, Wuhan, 430074, P.R. China
9	² Eighth Geological Brigade of Hubei Geological Bureau, Xiangyang 441000, China
10	*Corresponding author, E-mail, <u>shyjiang@cug.edu.cn</u> (S-Y Jiang)
11	ABSTRACT
12	Two types of turquoise, including homogeneous Cu-rich turquoise and oscillatory zoned
13	turquoise-planerite series, are recognized in association with quartz-barite veins hosted by Cambrian
14	carbonaceous slates from western Hubei Province of China. Combined fluid inclusion and Raman
15	microspectroscopic data reveal that turquoise-bearing barite-quartz veins contain three types of fluid
16	inclusions (pure CH ₄ -N ₂ , carbonic-aqueous, and aqueous), suggesting the responsible fluid is of
17	carbonic-aqueous composition with low oxygen fugacity. Pressure-corrected homogenization
18	temperatures in quartz and barite show a range from 325 °C to 485 °C and 186 °C to 391 °C, respectively.
19	Carbon, oxygen and hydrogen isotopic data suggest that the mineral-forming fluids have a mixed

20	metamorphic-organic affinity, in which the fluids have $\delta^{18}O$ and δD values of 15.0 to 18.8 ‰ and -111 to
21	-93 ‰, respectively. Generally, the formation of quartz-barite-turquoise veins could be triggered by prior
22	metamorphic devolatilization, followed by the interaction of fluids with country rocks enriched in
23	carbonaceous material, which resulted in the leaching of Cu, Fe, P and Al from chalcopyrite, pyrite,
24	magnetite, monazite, xenotime, apatite, feldspar and muscovite in the wall rocks. Decomposition of the
25	organic matter in the carbonaceous slates, caused by regional metamorphism and deformation, could also
26	promote the concentration and transportation of necessary metals for the turquoise. Thus, we propose a
27	new model and suggest that the turquoise gem deposits in western Hubei Province of China belong to the
28	non-magmatic hydrothermal vein type deposit, not the previously proposed supergene origin. The
29	turquoise-forming fluids were characterized by the coexistence of two immiscible fluids of non-magmatic
30	affinity (i.e., moderate to high temperature and low salinity aqueous fluid and pure CH ₄ -N ₂ fluid formed
31	by interaction with carbonaceous slates). The bluish green homogeneous turquoise in the metamorphic
32	quartz-barite-turquoise veins evolved towards the turquoise-planerite solid solution series as the
33	metal-leaching capability of the aqueous fluids decreased.
34	Keywords: turquoise, fluid inclusions, H-O-C isotopes, metamorphic hydrothermal origin, western Hubei
35	Province
36	
37	INTRODUCTION
38	The name turquoise is derived either from the French Turquois for Turkish, or possibly from the

40 the turquoise group, consisting of aheylite, chalcosiderite, faustite, planerite and turquoise. All of them

French pierre turquin (King, 2002). Turquoise is a hydrated copper aluminum phosphate and belongs to

41	crystallize in triclinic system with the general formula $A_{0-1}B_6(PO_4)_4(OH)_8 \cdot 4H_2O$, where Zn^{2+} , Cu^{2+} , and
42	Fe^{2+} occur at the A site and Al^{3+} , Fe^{3+} , and Cr^{3+} replace each other at the B site (Abdu et al., 2011; Jomeh
43	et al., 2020). Turquoise is well known as a valuable gemstone for its impressive color and thus used for
44	rituals, demonstrating social status and adornments (Fritsch et al., 1999). The oldest turquoise deposit
45	has a history going back 70 centuries to ancient Egypt (Fritsch et al., 1999) and for now commercial
46	sources of this gemstone are mainly exploited from Iran, United States, Egypt, Russia, Chile, South
47	Africa, and China. Several minerals may resemble turquoise and are commonly known as semi-precious
48	turquoise simulants. These include malachite (Cu ₂ (OH) ₂ CO ₃) and a fairly unusual, green variety of
49	lazulite (MgAl ₂ (PO ₄) ₂ OH ₂) (King, 2002). Chrysocolla ((Cu,Al) ₂ H ₂ Si ₂ O ₅ (OH) ₄ ·nH ₂ O) and dyed howlite
50	(Ca ₂ B ₅ SiO ₉ (OH) ₅) have also been used to imitate turquoise (Bernardino et al., 2016). Finally, amazonite
51	(KAlSi ₃ O ₈), a variety of microcline, can also be used to forge turquoise (Kile and Eberl, 1999;
50	
52	Bernardino et al., 2016).
52	Comprehensive research has concentrated on the mineralogy of the turquoise-group minerals
52 53 54	Bernardino et al., 2016). Comprehensive research has concentrated on the mineralogy of the turquoise-group minerals (Fritsch et al., 1999; Taghipour and Mackizadeh, 2014; Dumanska-Slowik et al., 2020). Their
52 53 54 55	Bernardino et al., 2016). Comprehensive research has concentrated on the mineralogy of the turquoise-group minerals (Fritsch et al., 1999; Taghipour and Mackizadeh, 2014; Dumanska-Slowik et al., 2020). Their compositional evolution during the ore-forming process, although critical for commercial exploitation,
52 53 54 55 56	Bernardino et al., 2016). Comprehensive research has concentrated on the mineralogy of the turquoise-group minerals (Fritsch et al., 1999; Taghipour and Mackizadeh, 2014; Dumanska-Slowik et al., 2020). Their compositional evolution during the ore-forming process, although critical for commercial exploitation, has rarely been studied in detail. Gem-quality turquoise of uncertain origin has been reported by Chen et
52 53 54 55 56 57	Bernardino et al., 2016). Comprehensive research has concentrated on the mineralogy of the turquoise-group minerals (Fritsch et al., 1999; Taghipour and Mackizadeh, 2014; Dumanska-Slowik et al., 2020). Their compositional evolution during the ore-forming process, although critical for commercial exploitation, has rarely been studied in detail. Gem-quality turquoise of uncertain origin has been reported by Chen et al. (2012), Cejka et al. (2015), Rossi et al. (2017) and Dumanska-Slowik et al. (2020) from Iran, the
52 53 54 55 56 57 58	Bernardino et al., 2016). Comprehensive research has concentrated on the mineralogy of the turquoise-group minerals (Fritsch et al., 1999; Taghipour and Mackizadeh, 2014; Dumanska-Slowik et al., 2020). Their compositional evolution during the ore-forming process, although critical for commercial exploitation, has rarely been studied in detail. Gem-quality turquoise of uncertain origin has been reported by Chen et al. (2012), Cejka et al. (2015), Rossi et al. (2017) and Dumanska-Slowik et al. (2020) from Iran, the United States and China. Previous researchers have suggested that this gemstone originates, in general,
52 53 54 55 56 57 58 59	Bernardino et al., 2016). Comprehensive research has concentrated on the mineralogy of the turquoise-group minerals (Fritsch et al., 1999; Taghipour and Mackizadeh, 2014; Dumanska-Slowik et al., 2020). Their compositional evolution during the ore-forming process, although critical for commercial exploitation, has rarely been studied in detail. Gem-quality turquoise of uncertain origin has been reported by Chen et al. (2012), Cejka et al. (2015), Rossi et al. (2017) and Dumanska-Slowik et al. (2020) from Iran, the United States and China. Previous researchers have suggested that this gemstone originates, in general, from: (1) supergene processes (meteoric water migrates along crack and fractures, leaching
52 53 54 55 56 57 58 59 60	Bernardino et al., 2016). Comprehensive research has concentrated on the mineralogy of the turquoise-group minerals (Fritsch et al., 1999; Taghipour and Mackizadeh, 2014; Dumanska-Slowik et al., 2020). Their compositional evolution during the ore-forming process, although critical for commercial exploitation, has rarely been studied in detail. Gem-quality turquoise of uncertain origin has been reported by Chen et al. (2012), Cejka et al. (2015), Rossi et al. (2017) and Dumanska-Slowik et al. (2020) from Iran, the United States and China. Previous researchers have suggested that this gemstone originates, in general, from: (1) supergene processes (meteoric water migrates along crack and fractures, leaching mineral-forming elements; Qin et al., 2015; Chen et al., 2012; Shi and Cai, 2011); (2) hydrothermal
52 53 54 55 56 57 58 59 60 61	Bernardino et al., 2016). Comprehensive research has concentrated on the mineralogy of the turquoise-group minerals (Fritsch et al., 1999; Taghipour and Mackizadeh, 2014; Dumanska-Slowik et al., 2020). Their compositional evolution during the ore-forming process, although critical for commercial exploitation, has rarely been studied in detail. Gem-quality turquoise of uncertain origin has been reported by Chen et al. (2012), Cejka et al. (2015), Rossi et al. (2017) and Dumanska-Slowik et al. (2020) from Iran, the United States and China. Previous researchers have suggested that this gemstone originates, in general, from: (1) supergene processes (meteoric water migrates along crack and fractures, leaching mineral-forming elements; Qin et al., 2015; Chen et al., 2012; Shi and Cai, 2011); (2) hydrothermal processes; and (3) hydrothermal-metasomatic processes. The hydrothermal turquoise (Type 2)

63 porphyry intrusions. This type of turquoise can occur as nodules and veinlets in fractures, or in the 64 cavities of quartz in the intrusive and volcanic rocks (Disbrow and Stoll, 1957; Szakáll et al., 2012). The 65 generation of the hydrothermal-metasomatic turquoise (Type 3) could be linked to the interactions 66 between hydrothermal fluids and wall rocks containing copper-bearing phases. Such a type of turquoise 67 can also form as a result of the neoformation from preexisting minerals during reaction between 68 phosphates (e.g., montebrasite) and copper-bearing fluid (Pirard et al., 2007; Ribeiro et al., 2021). 69 Turquoise deposits in western Hubei Province of China, which occur mainly in Lower Cambrian 70 carbonaceous slates, are regarded as a significant gem source with superior quality. These account for 71 the majority of China's total turquoise production. However, the mineralogical evolution, derivation, and 72 characteristics of the fluids that control the crystallization of gem turquoise remain open questions. 73 The representative turquoise deposit within the carbonaceous slates studied here is located at 74 Zhushan County of western Hubei Province, which shows gem-level quality and has over 800 t ore 75 reserves with an annual production from 50 to 129 t (Chen et al., 2012). In this paper, we present the 76 geological, electron probe micro-analysis and laser ablation (LA) ICP-MS imaging analysis on the 77 turquoise-group minerals combined with the fluid inclusions and stable isotope (H-O-C) data of the 78 co-existing gangue minerals including barite and quartz, to better understand the formation of gem 79 turquoise. Previous research speculated that the formation of the turquoise in Zhushan County can be 80 ascribed to supergene processes involving the circulation of meteoric water along the fractures and 81 fissures, followed by leaching the mineral-forming elements (i.e., Cu, P, and Al) from the host rocks 82 (Jiang et al., 1983; Tu, 1996, 1997; Qin et al., 2015; Liu et al., 2020). Our results reconsider the 83 turquoise as a non-magmatic hydrothermal mineral which is most likely formed by the interaction of 84 metamorphic fluids, characterized by low salinity and moderate to high temperature, with organic matter

85 from wall rocks. The results allow us to propose a new genetic type named the non-magmatic

86 hydrothermal quartz-vein type turquoise deposit worldwide.

87 REGIONAL AND DEPOSIT GEOLOGY

88 The Qinling orogenic belt is distributed in the central segment of the Central China Orogenic Belt 89 which was formed by the late Triassic collision of the North China Block (NCB) and the Yangtze Block 90 (YB) (Fig. 1a; Chen et al., 2009). The Qinling orogenic belt, separated by the San-Bao Fault to the north 91 and the Longmenshan Fault to the south, can be further subdivided into: (1) the Huaxiong Block as the 92 southern margin of the NCB; (2) the north Qinling accretionary belt; (3) the south Qinling orogenic belt; 93 and (4) the northern margin of the YB or the Songpan fold belt by the Luanchuan Fault, the Shang-Dan 94 Fault and the Mian-Lue Fault from north to south (Fig. 1b; Li et al., 2015). 95 The Zhushan turquoise deposit studied here is located in the southwestern fragment of the Wudang 96 Block which is one of the Precambrian crystalline basements of the south Qinling orogenic belt (Zhang 97 et al., 1995). The Wudang Block is mainly composed of the Neoproterozoic Wudangshan Group which 98 is unconformably overlain by the early Neoproterozoic Yaolinghe Group, late Neoproterozoic 99 Doushantuo and Dengying Formations, and Paleozoic sedimentary rocks (Fig. 1c; Ling et al., 2002; Yue 100 et al., 2014). The Wudangshan Group comprises a suite of greenschist facies metamorphosed 101 volcanic-sedimentary rocks (Zhang et al., 2002). The early Neoproterozoic Yaolinghe Group occurs 102 along the western edge of the Wudang Block and contains greenschist facies metamorphosed 103 quartz-keratophyre tuff and pebbly tuff (Zhang et al., 2001). The late Neoproterozoic Doushantuo and 104 Dengying Formations contain limestone, dolomite, sericite schist, and phyllite (Yue et al., 2014). 105 The Wudang Block has undergone multiple deformation events, leading to the formation of NNW- trending folds and faults followed by the nearly EW- and NW-trending faults, produced by continental
collision between the NCB and YB and local extension in the Early Paleozoic and Jurassic-Early
Cretaceous (Hu et al., 2002; Zhang et al., 2019). Felsic intrusions are rarely observed in the region,
while mafic dykes emplace into the Wudang Group along the NNW- and NW-trending faults and have
undergone greenschist facies metamorphism as the result of continental collision (Zhou et al., 1998;
Ling et al., 2007; Li and Zhao, 2016; Nie et al., 2016).

112 The turquoise deposits in the western Hubei Province are currently divided into three ore belts,

113 where turquoise deposit in Zhushan County belongs to the south one (Fig. 1c; Tu, 1996). Lin et al. (2006)

114 delineated the Cu-Ag-turquoise prospective districts in the north of the Fangshan-Zhushan Fault on the

115 basis of the metallogenic geological conditions. They also linked the Ag-Cu-Zn geochemical anomalies

to the regional dynamic metamorphism contributing the enrichment of copper, silver and ore-forming

117 elements. Moreover, the Fangshan-Zhushan Fault was thought to significantly facilitate the migration of

118 ore-forming fluids as conduits (Fig. 1c).

In particular, the distributions of the turquoise deposits are controlled by the strata of the Lower Cambrian Shuigoukou Formation (Fig. 1c). The Lower Cambrian Shuigoukou Formation is subdivided into two lithologic members. The lower part is composed of sericite quartz schist and siliceous rock interbedded with the carbonaceous slate with phosphatic nodules. The upper lithologic member is dominated by the limestone, interbedded with a small amount of mudstone (Li et al, 2012; Zhang et al., 2019). The majority of turquoise ores mainly distribute in the carbonaceous slates with phosphate nodules in the lower part of the Shuigoukou Formation.

126 The turquoise ore bodies occur in 20 to 100 m length and 1 to 25 m width in the carbonaceous slate
127 layers, and the largest one is about 250-m-long and 10-m-wide. Turquoise in Zhushan County has two

128	occurrences: (1) quartz-barite vein, and (2) disseminated in the carbonaceous slates. The former
129	mineralization (1) is typically hosted in continuous quartz-barite veins controlled by the faults and
130	fractures along or cross-cutting the bedding planes of the carbonaceous slates, showing sharp contact
131	between the veins and the wall rocks (Fig. 2a). The quartz-barite-turquoise associations not only occur
132	as elongated lenses and/or veins, but also remain in concordance with the foliations of the carbonaceous
133	slates (Fig. 2b), suggesting a ductile deformation regime during the coeval precipitation of quartz, barite
134	and turquoise (Li et al., 2014). The disseminated turquoise (2) is characterized by massive structure and
135	occurs as the block-shaped aggregates outside of the quartz-barite veins, of which synchronous ductile
136	deformation is also noticed accompanied with the mineralization (Fig. 2c, d).

137

METHODS

138 Scanning electron microscope

A JEOL JCM-7000 environmental scanning electron microscope (SEM) fitted with an energy dispersive spectrometer (EDS) system was used to identify textural and compositional features of the carbonaceous siliceous slate and turquoise at the Collaborative Innovation Center for Exploration of Strategic Mineral Resources (CIC-ESMR), China University of Geosciences (Wuhan). Back-scattered electron (BSE) images were taken to distinguish compositional zonation of turquoise and mineral assemblages in the carbonaceous slates.

145 Electron probe microanalysis

Major element measurements of the turquoise group minerals were carried out at the State Key
Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (Wuhan)
(GPMR-CUG), with a JEOL JXA-8100 Electron Probe Micro Analyzer (EPMA) equipped with four
wavelength-dispersive spectrometers (WDS). Standards and samples were analyzed by 20 µm spot size

150	at an accelerating voltage of 20 kV and a beam current of 5 nA. Data were corrected on-line using a
151	ZAF (atomic number, absorption, fluorescence) correction procedure. H ₂ O contents were calculated by
152	difference of analytical total to the 100 wt.% and then incorporated into the ZAF correction procedure.
153	The peak counting time was 10 s for Al, P, Si, S, Cu, Fe, K and 20 s for Zn, Sr, Cr, Ti, V, Ti, Y, U and Ba.
154	The background counting time was one-half of the peak counting time on the high- and low-energy
155	background positions. The peak overlap of Ti K_β on V K_α and V K_β on Cr K_α was corrected by the
156	interference correction program provided by the Japan Electron Optics Laboratory (JEOL) during the
157	analysis. The following standards were used: pyrope garnet (Fe, Al), apatite (Ca, P), sphalerite (Zn),
158	olivine (Si), barite (S), copper (V), sanidine (K), chromium (Cr), vanadium (V), rutile (Ti), barium
159	fluoride (Ba), uranium (U). The calculation of their crystal-chemical formula was based on the 11
160	cations following the general formula from Foord and Taggart (1998).

161 LA-ICP-MS mapping

162	LA-ICP-MS analysis wa	s undertaken at the	CIC-ESMR, China	University of	Geosciences ((Wuhan),
-----	-----------------------	---------------------	-----------------	---------------	---------------	----------

163 using NWR 193 HE laser ablation system and He-Ar carrier gas (ca. 1.2 L min⁻¹ He and ca. 0.9 L min⁻¹

164 Ar) coupled to an Agilent 7900 single quadrupole ICP mass spectrometer. A trace element map was

165 constructed from the sequential line analyses under the following conditions: laser beam size (\emptyset_{spot}) of 5

166 μ m, scan speed (V_{scan}) of 17 μ m/s, repetition rate of 20 Hz, and the total dwell time (T_{acq}) of 147 ms,

167 corresponding a high X-spatial resolution of 7.5 µm calculated from the following equation:

168
$$X_{resolution} = \emptyset_{spot} + V_{scan} \times T_{acq}$$
 (1)

169 Each line analysis was composed of 10 s for background signal acquisition before the line ablation and

170 10 s for washout after the line analysis on the basis of a fast washout system (70% signal reduction in

171 less than 0.4 s). Further detailed analytical processes are similar to those described by Ubide et al.
172 (2015). NIST 610 glass was used as a calibration standard which was determined twice at the beginning,
173 middle and end of the analysis under the same parameters relative to the 84 unknown lines for the entire
174 mapping. Data reduction of trace elements distribution map was carried out by software Iolite v2.5
175 under semi-quantitative mode, using NIST 610 as the external standard.

176 Fluid inclusion analysis

177 Microthermometric determinations on a total of 134 fluid inclusions were carried out on doubly 178 polished 100- μ m-thick sections, using a Linkham THMS-600 Heating-Freezing Systems (from -196 °C to 179 550 °C) attached with a Zeiss AX-1 microscope at the CIC-ESMR, China University of Geosciences 180 (Wuhan). The stage was calibrated with synthetic fluid inclusions at -56.6 °C, 0.0 °C and 374.1 °C 181 supplied by SYN FLINC. The accuracy of the systems was \pm 2.0 °C for homogenization temperatures and 182 \pm 0.2 °C during the freezing cycle.

183 Laser Raman spectroscopic analyses of the individual inclusion were performed on a Renishaw 184 RM-1000 Raman spectrometer attached with a 514.5-nm Ar ion laser operating at 5mW as the source of 185 excitation at the GPMR-CUG. The analysis of the inclusions was undertaken by the spectra from 1200 to 3800 cm^{-1} with an accumulation time of 30 s per scan and a spectral resolution of 1 to 2 cm⁻¹. The 186 longpass Rayleigh filter was 785 nm. All spectra were collected with the 1800 groove/mm grating, and a 187 188 20× objective or a 50× long working distance objective. Raman data were processed using the Labspec6 189 software (Horiba Jobin Yvon). The baseline subtraction was first operated automatically at the degree of 190 5-8 in the Labspec6 software. Peaks were then searched and fitted using Gaussian-Lorentzian functions 191 with the level of 10 and the size of 30 according to the spectroscopic half width and peak intensity. The

- 192 laser beam size was 1 µm in diameter. Raman spectra and particular band assignments of individual fluid
- 193 inclusion as well as relevant references were listed in the Table 3.

194 Stable isotope analysis

195	Oxygen isotopic compositions of quartz and hydrogen and carbon isotopic compositions of	the
196	fluid inclusions in quartz were determined at the analytical laboratory of Beijing Research Institute	of
197	Uranium Geology (BRIUG), China, using a MAT253 mass spectrometer. Two Qtz ^I samples domina	ted
198	by the primary and pseudosecondary type I and type II inclusions and one Qtz ^{II} sample dominated by	the
199	type II and III inclusions were picked out from hand specimens and ground to about 60 mesh. Separa	ted
200	quartz grains were cleaned by pure 6 N nitric acid to remove other minerals and organic matter and w	ere
201	rinsed with deionized water. Oxygen was liberated from quartz by quantitatively reacting with pure B	rF ₅
202	and heating with a CO ₂ laser, following the method of Clayton and Mayeda (1963). For H and C isoto	ope
203	analysis of fluid inclusions in quartz, grains were first heated at 150 °C for over 4 h to remove surface	ace
204	water and water from the secondary fluid inclusions. Then, mixed gases were released and collec	ted
205	under vacuum after the decrepitation of heated quartz above 550 $^{\circ}$ C; H ₂ was obtained from the react	ion
206	of H ₂ O and zinc at 800 °C. Mixed CO ₂ and CH ₄ were also collected, frozen by liquid nitrogen, a	and
207	separated by adsorbed materials for $\delta^{13}C$ measurement using the method of Jin et al. (2021). The H	[-0
208	isotope data were reported relative to Vienna-Standard Mean Ocean Water (V-SMOW) with inter	nal
209	precisions of better than 1 ‰ for δD and 0.2 ‰ for $\delta^{18}O$ of a single analysis. Oxygen isoto	pic
210	compositions in hydrothermal fluids were calculated following the equation:	
211	$1000 \times \ln\alpha_{quartz-water} = 3.38 \times \left(10^6 \times T^{-2}\right) - 3.40 \tag{2}$)

212 where T in Kelvin (K) is the average pressure-corrected homogenization temperature from fluid

213 inclusion measurement as shown in Table 4, and α represents the equilibrium constant between the

- 214 quartz and fluid at a given temperature.
- 215

RESULTS

216 Sample characterization

217 Disseminated turquoise occurring as blocks and anhedral masses in the country rocks has bluish 218 green color and shows a waxy luster (Fig. 3a). On the other hand, turquoise distributed in the 219 metamorphic quartz-barite veins along or cross-cutting stratigraphic horizons is characterized by either 220 bluish green (Fig. 3b) or light green color (Fig. 3c, d) as well as vitreous and waxy luster. At the 221 microscale, two types of turquoise were further recognized in the transmitted-light photomicrographs 222 (Fig. 4a). The quartz-barite-turquoise veins and carbonaceous slates comprise the homogeneous bluish green turquoise (Trq¹) in 3-5 mm which is mostly intergrown with euhedral barite (Brt¹), surrounded by 223 224 quartz (Qtz^{I}) (Fig. 4a). Additionally, quartz-barite veins contain light-green Trq^{II}, characterized by more 225 transparent crystal surface. Trq^{II} replaces the Trq^I along the crystal margin and is cut by fine-grained irregular (anhedral) barite veins (Brt^{II}) as shown in Fig. 4a, suggesting both Trq^{II} and Brt^{II} are 226 paragenetically later. Even though Qtz^I and Qtz^{II} show less variations in terms of their textures, they 227 228 could be successfully distinguished according to the characteristics of the enclosed fluid inclusions as 229 described later. Back-scattered electron (BSE) images of the bluish green turquoise in the country rocks and veins (Fig. 3a, b) show that all the Trq¹ samples are non-turbid, homogeneous, and mineral 230 231 inclusions free (Fig, 4b). The Trq¹ intimately contacts with the Qtz¹ and Brt¹ grains along smooth, 232 wave-like boundaries, and there is no cross-cutting, alteration or dissolution observed in their contact zones. Light green Trq^{II} (Fig. 3c, d) in quartz veins shows well defined oscillatory zonation and coexists 233

with Qtz^{II}, which is filled with anhedral Brt^{II} according to the BSE images (Fig. 4c).

235	In petrographic observations of the thin sections, the carbonaceous slate is composed of micro-fine
236	to fine-grained quartz and muscovite, and medium-grained magnetite and pyrite (Fig. 4d-h). The
237	deformed carbonaceous slate presents a lamination determined by quartz and muscovite framework with
238	a strongly-developed foliation defined by alignment of elongated magnetite and fine-grained muscovite
239	(Fig. 4d, e). The mineralogy of the carbonaceous slates includes quartz, anhedral coarse-grained barite,
240	and apatite, with subordinate muscovite, distributed as fine flakes in the quartz (Fig. 4f, g).
241	Medium-grained pyrite occurs as disseminated euhedral to subhedral grains in the quartz or is
242	overprinted by the medium to coarse-grained magnetite and barite (Fig. 4f). Monazite, rutile and
243	xenotime are common but less abundant in the carbonaceous slate (Fig. 4h). Rock-Eval pyrolysis and
244	the separation of soluble organic compounds of the carbonaceous slates have been conducted by Wang
245	(2009) which illustrated that the carbonaceous matter is mainly composed of kerogen with a small
246	amount of the hydrocarbons from the kerogen decomposition due to the thermal evolution. Yields of
247	extractable soluble organic matter in the host rocks are fairly low in the range of 15.0 and 142.0 mg/g,
248	which might be attributed to the high thermal maturity of the organic matter in these rocks (Hu et al.,
249	2000).

250 Chemical compositions

Detailed EPMA compositional determination and the unit formula (apfu) of the turquoise group minerals are summarized in Table 1. Major element analysis of samples collected from Zhushan County indicates they belong to turquoise-planerite solid solution series.

254 Trq^I within the carbonaceous slate and the quartz-barite veins display similar chemical

255	compositions	with	an	average	calculated	formula	of
256	$(Cu_{0.81}Fe_{0.08}Zn_{0.01}K)$	$(L_{0.01}Ca_{0.01})_{\Sigma 0.92}$	$(Al_{6.05})_{\Sigma 6.0}$	5(P _{1.01} O ₄) ₄ (OH) _{Σ7.}	13.4H ₂ O		and
257	$(Cu_{0.82}Fe_{0.07}Zn_{0.01}K)$	$C_{0.01}Ca_{0.01})_{\Sigma 0.92}$	$(Al_{6.05})_{\Sigma 6.0}$	5(P _{1.03} O ₄) ₄ (OH) _{Σ7.9}	₉₂ .4H ₂ O, respectiv	vely. Generally,	Trq ^I
258	displays higher Cu	O, FeO^{T} and	Cr ₂ O ₃ but	lower Al ₂ O ₃ and	ZnO contents than	those of Trq ^{II} (Fig. 5).
259	Trq ^I shows a narro	ow range of (CuO, FeO ^T	^{Γ} and Cr_2O_3 conte	nts of 7.69-8.35 wt	t%, 0.57-0.74 wt	% and
260	0.11-0.19 wt%, res	pectively. The	Al ₂ O ₃ and	l ZnO concentratio	ons of Trq ^I are 37.01	1 to 37.98 wt% ar	nd 0.07
261	to 0.10 wt%, respec	ctively. The T	rq ^I has A si	te of 0.88-0.97 ap	fu that is mainly occ	cupied by Cu (0.7	/8-0.84
262	apfu) and minor Ba	a and Ca (up	to 0.01). S	uch invariable con	mpositions of Trq ^I a	are consistent wit	h their
263	homogeneity in BS	SE images (F	ig. 4b). In	the case of Trq ^{II} ,	compositional diff	ferences are deter	rmined
264	from the core to rin	m which shov	v gradually	v depletion of CuC	D, FeO and Cr_2O_3 at	nd enrichment of	Al ₂ O ₃
265	and ZnO contents	(Fig 5b-f), a	ccompanie	ed by cation defic	ciency in the A sit	e and increase c	of H ₂ O
266	contents (Fig. 6). C	Corresponding	y, the unit	formula of Trq ^{II} s	hows a relatively la	rge compositiona	l range
267	of (Cu _{0.31-0.82} Fe _{0.03-0}	$_{0.07}$ Zn $_{0.01-0.03}$ K	0.01-0.02Ca _{0.0}	01)Σ0.37-0.93(Al _{5.92-6.3}	$_{37})_{\Sigma 5.92-6.37}(P_{1.03-1.07}C)$	D ₄) ₄ (OH) _{Σ6.84-7.43} .4	H ₂ O.

268 LA-ICP-MS elemental mapping

As shown in Fig. 7a, two types of turquoise are recognized. Anhedral Trq¹ has compositional homogeneity and displays higher concentrations of Cu, Fe and Ti, evidenced on trace element maps (Fig. 7b-d). Elemental mapping of Trq^{II} reveals more pronounced laminations of concentric geometry. Both the core and rim of Trq^{II} grain share an enrichment of Zn and U in comparison with Trq¹ (Fig. 7e, f). The core shows slightly higher Cu, Fe, Ti and Zn concentrations with a decrease trend towards the outer zones. Zhou et al. (2017) interpreted analogous zonation to an environment of changing chemical and/or physical conditions. Noticeably, Trq^I and Trq^{II} are overprinted by a thin vein enriched in Sr and La along

the turquoise-quartz contact (Fig. 7g, h).

277 Fluid inclusion data

294

Fluid inclusions in quartz and barite that coexisted with Trq^I and Trq^{II} are identified as fluid 278 279 inclusion assemblages (FIA) according to their textural characteristics, illustrating groups of coeval 280 inclusions (Goldstein and Reynolds, 1994). Primary inclusions were entrapped on the growing faces of 281 the quartz during its precipitation, and the pseudosecondary inclusions were entrapped in fractures 282 during the growth of the quartz which were commonly overgrown by a layer of the host minerals 283 (Roedder, 1984). Accordingly, isolated fluid inclusions and FIA entrapped along the growing face of the 284 mineral grain are presumed to be most likely primary (Fig. 8a-c). Intra-crystal FIA within the barite and 285 quartz that stop at the grain boundary are assumed to be pseudosecondary (Fig. 8d-f). 286 Microthermometric measurements were conducted on the primary and pseudosecondary inclusions as 287 shown in Table 2. Bulk density of fluid inclusions were calculated using the Flincor software (Brown, 288 1989) and the computer program from Bakker (1997, 2003). 289 Three primary types of fluid inclusions are identified according to the phase relations at room 290 temperature and compositional data revealed by Raman spectroscopic analysis, including: 291 aqueous-carbonic (Type I), carbonic (Type II) and aqueous-salt (Type III) inclusions. Type I inclusions 292 have two phases at room temperature in which the liquid phase consists of C_3H_8 , C_2H_6 , and H_2O (Fig. 293 9a), whilst the vapor phase, occupying 5-90 percent of the total volume of the inclusion, is composed of

295 basis of the degree of filling (F): Type I_a is vapor-rich (F > 0.6) and Type I_b is liquid-rich (F = 0.1-0.4).

 CH_4 and N_2 (Table 3; Fig. 9b). The Type I inclusions could be further subdivided into two types on the

296 They are mainly found in the Qtz^I, coexisting with Type II inclusions as fluid inclusion assemblages

(FIA) along the growing face of Qtz^{1} , exemplified as a group of primary inclusions trapped coevally

298 (Roedder, 1984; Fig. 8b, c).

299 Accurate estimation of salinities of Type I inclusions is prevented because the melting temperatures 300 of clathrates are no longer a function of salinity as a result of the addition of the CH_4 and N_2 (Jia et al., 301 2000). Thus, the simplified NaCl-H₂O system may be acceptable for the maximum salinity calculation 302 (Collins, 1979). In Qtz^1 , Type I_a inclusions have final ice melting temperatures ($T_{m, icc}$) ranging from -6.6 303 to -2.5 °C, corresponding to low salinities of 4.4 to 11.9 wt% NaCl equiv., with calculated densities of 304 0.36-0.58 g/cm³ (Davis et al., 1990). The total homogenization temperatures (T_h) of the Type I_a 305 inclusions range from 357 to 455 °C. Type I_b inclusions yield lower T_b of 217 to 340 °C and show 306 similar $T_{m, icc}$ of -5.5 to -1.4 °C to those of Type I_a inclusions, equivalent to a salinity of 2.5 to 9.9 wt% NaCl equiv., resulting in the density of 0.68 to 0.95 g/cm³. Some of Type I inclusions display clathrate 307 308 melting temperatures ($T_{m, clath}$) of 12 to 17 °C. Type II inclusions are dominant in Qtz^I and Brt^I as individual or coexisting with Type I inclusions 309

along trails, and their abundances decrease in Qtz^{II} . They are 10 to 20 µm in diameter and composed of a single phase (liquid CH₄-N₂ or vapor CH₄-N₂; Table 3) at room temperature, which develop into two-phase inclusions on cooling to < 90 °C. Estimations of initial ice melting temperatures (T_m) failed because phase changes were invisible below -120 °C. Generally, they homogenized into the liquid phase at temperatures between -145 and -127 °C and partly into vapor phase at -144 to -136 °C, which are much lower than the critical point of pure CH₄ (-82.6 °C), suggesting the addition of dissolved N₂, which is also evidenced by laser Raman analysis (Fig. 9c).

Type III inclusions mainly occur in Qtz^{II}, Brt^{II} and Brt^I as isolated two-phase inclusions or
randomly coexisting with Type II inclusions, consisting of 5-25 vol% vapor and 75-95 vol% liquid.

319	Raman spectra of vapor and liquid phases from Type III inclusions show narrower and more
320	symmetrical bands (Fig. 9d) than those from the pure water showing relatively broad signal, with a
321	shoulder situated in lower wavenumbers, indicating the addition of salts (Lawler and Crawford, 1983;
322	Mernagh and Wilde, 1989). Moreover, measurements of initial ice melting temperatures (T _m) for Type
323	III inclusions are -24.2 to -21.3 °C, implying the NaCl is dominant among the dissolved salts (Davis et
324	al., 1990). Based on the equations of Davis et al. (1990), aqueous fluids of Qtz ^{II} show relatively broad
325	range of 1.6-9.3 wt.% NaCl equiv., whereas those from Brt ^{II} and Brt ^{II} fall into 1.2-4.1 and 1.8-6.6 wt.%
326	NaCl equiv., respectively (Table 2). Type III inclusions in Brt ^I , Qtz ^{II} and Brt ^{II} homogenized into the
327	liquid phase at temperatures of 195-355 °C, 136-315 °C and 222-341 °C (Table 2). As shown in the Fig.
328	10c and g, the T _h of the Type III inclusions follow the unimodal distributions and decrease in the order
329	of the Brt ^I , Qtz ^{II} and Brt ^{II} , displaying the mean values of 292 ± 43 °C, 239 ± 40 °C and 238 ± 11 °C,
330	respectively. From the estimations of T_h and salinity, the bulk density of Type III fluid inclusions in Brt^I ,
331	Qtz ^{II} and Brt ^{II} are calculated as 0.60-0.81 g/cm ³ , 0.78-0.91 g/cm ³ and 0.62-0.86 g/cm ³ , respectively.
332	Since the homogenization temperatures of fluid inclusions may not represent the actual trapping
333	temperatures for the fluids, pressure correction is conducted followed the iterative method of Roedder
334	(1984) and Fan et al. (2003). Isochores are obtained for the Type $I_b CH_4$ -NaCl-H ₂ O inclusions and Type
335	III NaCl-H ₂ O inclusions to constrain the pressure and temperature of the fluids, using Flincor software
336	and the computer program of Bakker (2003) (Shepherd, 1986; Brown, 1989). For Type I_b
337	CH_4 -NaCl-H ₂ O inclusions in the Qtz ^I , the homogenization temperatures are 217 °C to 340 °C. The
338	preliminary pressure is about 150 MPa from Fig. 11. Accordingly, the pressure correction at 150 MPa is
339	about +130 °C (Roedder, 1984). Therefore, the trapping temperature for Type I_b inclusions is from
340	347 °C to 470 °C and the recalculated trapping pressure from Fig. 11 is greater than 300 MPa.

341	For Type III NaCl-H ₂ O inclusions in the Brt ^I , Qtz^{II} and Brt^{II} , the analyzed homogenization
342	temperatures are 195-355°C, 136-315 °C and 222-341 °C, corresponding to the low minimum pressure
343	estimations of 50-150 MPa from Fig. 11. At such pressure, the corresponding temperature correction
344	would be +130 °C in Brt ^I and +50 °C in Qtz ^{II} and Brt ^{II} (Roedder, 1984). Thus, estimated entrapping
345	temperatures for Type III inclusions in Brt ^I , Qtz ^{II} and Brt ^{II} are 325-485 °C, 186 -365 °C and 272-391 °C,
346	and the recalculated trapping pressure is 150-250 MPa.

347 H-O-C isotope data

348 Hydrogen, oxygen and carbon isotope data were determined and listed in Table 4. The measured δ^{18} O values of Qtz^I range from 20.9 to 22.4 ‰, and that of Qtz^{II} is 22.6 ‰. Hydrothermal fluids in 349 350 equilibrium with Qtz^I have the calculated oxygen isotopic compositions of 17.3 to 18.8 %, using the 351 quartz-water fractionation equation of Clayton et al. (1972) and the average pressure-corrected 352 homogenization temperature of 422 °C. Calculated oxygen isotopic composition of hydrothermal fluids equilibrated with Qtz^{II} is relatively lower at 15.0 % on the basis of the lower pressure-corrected 353 homogenization temperature of 282 °C. The measured δD values of fluid inclusions in Qtz^{I} and Qtz^{II} are 354 extremely negative and range from -111 to -93 %. Measured δ^{13} C values of CO₂ and CH₄ in quartz fluid 355 356 inclusions range from -27.6 to -22.5 ‰ and -40.8 to -30.3 ‰, respectively.

357

DISCUSSION

358 Mineralogy of the turquoise occurrence

On the basis of SEM-BSE images and EPMA data, two types of gemstone turquoise could be distinguished: Trq^I and Trq^{II}. Trq^I appears homogeneous in SEM-BSE images, mainly comprises of turquoise endmember as shown by relatively high Cu (apfu) at A site (up to 0.84 apfu), low A-site vacancy and calculated water content (Table 1; Foord and Taggart, 1998). Trq^{II} with oscillatory zoning texture consists of turquoise endmember at the core and gradually evolves to the planerite endmember towards the rim as a result of the decreasing A site occupancy, accompanied by increasing water content (Fig. 6; Rossi et al., 2017; Jomeh et al., 2020). Of note, Trq^{II} contains anomalous concentrations of Cr, Zn, U, Pb and Sr, which are obviously discriminated from those of Trq^I. Such compositional and textual distinctions could be explained by different properties of non-magmatic hydrothermal fluids and changing physicochemical conditions when Trq^{II} and Trq^{II} precipitated.

369 Source and evolution of mineralizing fluids

370 Microthermometric data combined with laser Raman spectroscopic analysis reveal that there are

three types of fluid inclusions in the quartz and barite associated with the formation of Trq^I and Trq^{II}: the

372 carbonic-aqueous fluid inclusion (Type I), pure CH₄-N₂ fluid inclusion (Type II), and the aqueous-salt

373 fluid inclusion (Type III), from which the presence of pure CH₄-N₂ fluids is significantly distinct from

- 374 the meteoric water that is represented by the H₂O-CO₂-NaCl system (Jenkin et al., 1994; Menzies et al.,
- **375 2014**).

Coexistences of pure CH_4 - N_2 inclusions (type II) and carbonic-aqueous inclusions (type I) within trails along the quartz growth zones form distinct primary FIA in the Qtz^I (Fig. 8b, c), reflecting they were trapped coevally (Roedder, 1984). Of particular note is that Type I_a and I_b inclusions with various ratios of vapor to liquid display a large range of homogenization temperatures to both vapor and liquid (Fig. 8c and 10c), which could be ascribed to various molar volumes of inclusions due to the randomly mixtures of two phases in fluids resulted from the heterogeneous trapping of the immiscible fluids (Ramboz et al., 1982). The Type II fluid inclusions represent the pure CH_4 - N_2 fluids, and the Type I_a and

383	I_b fluid inclusions with various V/L ratios reflect the heterogeneous trapping of the aqueous fluids and
384	pure CH ₄ -N ₂ fluids. The coexistence of such three types of fluid inclusions is the most direct evidence of
385	fluid immiscibility in which CH_4 - N_2 might be exsolved from aqueous fluids due to the low CH_4 - N_2
386	solubility limits (Ramboz et al., 1982; Xu, 1998; Chi et al., 2021). For such case, Type I _a inclusions with
387	higher vapor volumes commonly homogenize at temperatures far above the actual trapping temperatures,
388	which are supposed to be geologically meaningless. Hence, Type $I_{\rm b}$ inclusions with the lowest V/L ratios
389	are thought to most likely represent the primary free liquid, and their molar volumes and
390	homogenization temperature are taken to be the best estimations of those of the original liquid (Roedder,
391	1984).

392 In summary, the earlier turquoise-forming fluids contain all of three types of fluids, while later ones 393 were primarily aqueous fluids with smaller CH₄-N₂ components, promoting higher salinity with less proportions of CH₄ and N₂ (Fig. 12a, b). Non-magmatic hydrothermal fluids in Qtz^I and Brt^I associated 394 with Trq^I were characterized by relatively high proportions of CH₄ and N₂, low salinities of 1.2-9.9 wt.% 395 396 NaCl equiv. with most values lying between 6-8 wt.% NaCl equiv., and fairly high homogeneous 397 temperature (T_b) of 325-485 °C (Table 2; Fig. 12a-c). On the contrary, the fluids responsible for the formation of Qtz^{II} and Brt^{II} coexisting with Trq^{II} are devoid of CH₄ and N₂, but show similar salinities of 398 399 1.6-9.3 and 1.8-6.6 wt.% NaCl equiv. and lower average T_h of 289 ± 40 °C and 288 ± 11 °C, 400 respectively (Table. 2; Fig. 12a, b and d). In either case, the homogenization temperatures of the fluid 401 inclusions are pronouncedly higher than those of the meteoric waters ranging from 17 to 35 °C (Shi and 402 Cai, 2011), implying a much more differentiated source.

403 The main stage of fluid immiscibility events mainly occurred during the formation of the 404 homogeneous Trq^{I} (Fig. 12c). The immiscible fluids of two endmembers, namely pure CH₄-N₂ fluids

and aqueous fluids, have been rarely documented in the context of gem turquoise mineralization. Cox et al. (1995), Jia et al. (2000) and Fu et al. (2014) have attributed the presence of CH_4 to the interaction of magmatic and/or metamorphic fluids with carbonaceous slates during the metamorphism. As for the production of N₂ in fluids, previous studies confirmed that the release of NH₃ from wall rocks is a significant source of nitrogen following the equation at 600 K and 1.8 kbar (Bottrell and Miller, 1990; Shepherd et al., 1991; Andersen et al., 1993; Berwick et al., 2007):

411
$$3C+4NH_3 = 3CH_4 + 2N_2$$
 (3)

412 Therefore, we speculate that the methane and nitrogen were leached into fluids as a consequence

413 of extensive fluid-rock interaction.

This hypothesis is also confirmed by the stable isotopic compositions. Turquoise-forming fluids in equilibrium with quartz have δ^{18} O values of 15.0-18.8 ‰, showing a great affinity to those of metamorphic water (Fig. 13a; Taylor, 1974). Also, the absence of simultaneous magmatic activity in the study area precludes a magmatic origin for the fluids (Fig. 1; Zhang et al., 2019). Consequently, it is

418 suggested that the turquoise-forming fluids are mainly metamorphic fluids.

419 Sedimentary rocks are generally composed of hydrous phyllosilicates, quartz, feldspars, carbonates 420 and organic matter. Increasing temperature and pressure during prograde metamorphism will lead to the 421 dehydration and decarbonation of the metasedimentary rocks, thus defining the nature of coexisting 422 metamorphic fluids (Yardley, 1989; Ague, 2003; Stepanov, 2021). Besides, semi-quantitative calculation 423 suggested that the devolatilization of a rock pile could form 2-5 wt.% aqueous fluids around the 424 greenschist to amphibolite facies transition, indicative of a large volume of fluids (Phillips and Powell, 425 2010). Therefore, evidence above permits the quartz veins to be an end product of metamorphic 426 devolatilization. Breakdown of chlorite, probably derived from the schist in the Lower Cambrian

- 427 Shuigoukou Formation (Zhao et al., 2017; Zhang et al., 2019), likely accounted for the generation of
- 428 metamorphic fluids during the regional low greenschist facies metamorphism in the turquoise deposit
- following the reaction (Bebout and Fogel, 1992; Wang et al., 2019):
- 430 2 Phengite + Chlorite = Muscovite + Biotite + Quartz + $4H_2O$ (4)
- 431 Such fluids, mainly distributed in situ at the grain-scale level throughout the rock, further

432 promote the reactions with rocks and minerals, which eventually lead to the enrichment of elements in

- 433 the fluids (Stepanov, 2021). With regard to the fluid compositions, they depend predominantly on the
- 434 primary mineralogy of the source rocks (Yardley and Graham, 2002). The lack of minerals containing
- 435 chlorine in the slates leads to the low salinity of the turquoise-forming metamorphic fluids.

436 Notably, the metamorphic fluids are characterized by significantly depleted δD values similar to

those from waters that have reacted with organic matter (Fig. 13a; Taylor, 1974; Sheppard, 1986). The

438 oxidation of CH_4 into CO_2 due to increasing fO_2 could dramatically deplete deuterium in fluids (Fu et al.,

439 1991; Tarantola et al., 2007), while an increase of CO₂ contents is not observed in metamorphic fluids

440 by microthermometry. Thus, possible interpretation of such low δD values might be the interaction

441 between metamorphic fluids and organic materials (Kesler et al., 1997). Carbon isotope data are also

442 useful for the determination of the potential sources in ore deposits (Fig. 13b; Hu et al., 2021; Ma et al.,

443 2021; Niu et al., 2022): a marine carbonate source with δ^{13} C values of 0 ‰; an organic matter source

444 with δ^{13} C value from -35 ‰ to -15 ‰ and a magmatic source with δ^{13} C values of -9 ‰ to -3 ‰. The

445 carbon isotope compositions of CO_2 in the turquoise-forming system display obviously sedimentary

446 organic carbon characteristics (-27.6 to -22.5 ‰; Fig. 13b). During the oxidation or hydrolysis of

447 organic matter (i.e., graphite) at the temperature around 500 °C, strong carbon isotope fractionation

448 occurs between the released gaseous CO_2 phase and the source rocks. The former prefers to be enriched

449	in $^{13}\text{C},$ leading to an increase of the $\delta^{13}\text{C}$ values by almost +10 ‰ than those of the source rocks
450	(Bottinga, 1968). Thus, the δ^{13} C values of potential source rocks for the gaseous CO ₂ are likely more
451	negative as the measured $\delta^{13}C_{\rm CO2}$ values from fluid inclusions and cover the range of the reported bulk
452	carbon isotope compositions of the Lower Cambrian Shuigoukou Formation (-35 ‰ to -15 ‰; Hou,
453	2008). Moreover, the measured $\delta^{13}C$ values of methane from fluid inclusions between -40.8 ‰ and
454	-30.3 ‰ are typically consistent with those produced by primary cracking of kerogen within the range of
455	-45 ‰ to -31 ‰ (Schoell, 1980; Lueders et al., 2012). All these observations described above imply CO ₂
456	and CH ₄ in the turquoise-forming fluids were predominantly derived from the organic carbon coming
457	from the carbonaceous slates by fluid-rock interaction.
458	Such unusual characteristics of C-H-O isotope compositions have been widely recognized
459	regarding the formation of Pb-Zn-Mo-Au deposits, illustrating the interaction between ore-forming
460	fluids and organic matter in the host rocks (e.g., Kelser et al., 1997; Xia et al., 2013; Zhou et al., 2015;
461	Ma et al., 2021; Niu et al., 2022). Low δD values of fluid inclusions have been reported by Kelser et al.
462	(1997) in the Mississippi Valley type (MVT)-forming brines, of which hydrogen and oxygen isotopes of
463	fluids plot along the meteoric water line with δ^{18} O and δ D values of 2 ‰ and -41 ‰ and then evolved to
464	the very low δD values of -87 ‰. Combined with the depleted $\delta^{13}C$ values of CH_4 of inclusions, the
465	mineralizing brines in the MVT deposits were identified as seawater that was modified by interaction
466	with organic matter in the host rocks. Moreover, Niu et al. (2022) interpreted H-O isotope compositions
467	of ore-forming fluids ranging from -111.2 ‰ to -85.5 ‰ and +9.0 ‰ to +11.5 ‰ as mixtures of
468	magmatic fluids with the organic-containing water in the Suixian Mo deposit. The presence of CH ₄ and
469	the depleted $\delta^{13}C$ values of CO_2 in the fluid inclusions also pointed to the thermochemical reaction
470	between the magmatic fluids and organic matter from hosted metamorphic rocks.

471	In this regard, fluid evolution could be reconstructed for the turquoise deposit in Zhushan County.
472	The turquoise-forming fluid system in the Zhushan County was initially CH ₄ -N ₂ -rich, high temperature
473	(325-485 °C), low salinity (1.2-9.9 wt.% NaCl equiv.), and had low CO ₂ /CH ₄ ratios, coexisting with
474	immiscible CH ₄ -N ₂ fluids. With decreasing temperature (186-391°C), fluids progressively evolved to
475	become CH ₄ -N ₂ -poor, with lower salinity (1.6-6.6 wt.% NaCl equiv.) (Fig. 12). Throughout this process,
476	metamorphic fluids locally interacted with organic matter from wall rocks, modifying fluid C-H-O
477	isotope compositions.

478 The source of metals

479	Previous studies proposed that the turquoise deposits were sourced from the Lower Cambrian
480	Shuigoukou Formation by weathering and leaching of the low-temperature oxidized surface water in a
481	supergene environment (Tu et al., 1996, 1997; Qin et al., 2015; Liu et al., 2020). We agree with the
482	general view that the turquoise-forming elements were sourced from the Cambrian carbonaceous slates.
483	However, as discussed above, the Zhushan turquoise displays characteristics best explained by
484	derivation from metamorphic fluids: high temperature, high contents of CH ₄ and N ₂ , and H-O isotopic
485	compositions distinct from meteoric water. Considering the above-mentioned features, the following
486	discussion will concentrate on the essential origin of Cu, Fe, P and Al to form turquoise.
487	According to the previous geochemical analysis of the Shuigoukou Formation, the black slates
488	contain appreciable amounts of Cu in the range of 10-1907 ppm (Wang, 2009; You et al., 2018),
489	supporting the source bed for the turquoise mineralization. SEM results illustrate that the slate mainly
490	consists of quartz, apatite, barite, muscovite, magnetite and pyrite with minor amounts of monazite,
491	rutile and xenotime. Electron probe micro-analysis (EPMA) and X-ray diffraction (XRD) analysis have

492	also been carried out by Wang (2	016), You et al. (2018)) and Liu et al. (2021), which	further refined the
-----	----------------------------------	-------------------------	--------------------------------	---------------------

102	minoralogy of the contemporary dates with the presence of day minorals including leadinite and illite
493	mineralogy of the carbonaceous states with the presence of clay minerals including kaomine and mine,
494	and non-clay mineral assemblages of chalcopyrite, feldspar, calcite, dolomite and siderite in wall rocks.
495	As has been noted, minerals above are randomly dispersed in the carbonaceous slates, thus
496	insufficient enriching Cu, Fe, Al and P to the economic value in the absence of remobilization as a result
497	of weathering-leaching process, igneous intrusion, or metamorphic activity (Chen et al., 1990; Wang,
498	2009). Turquoise mixed with goethite, alunite, and jarosite in veins hosted in a shale unit have been
499	attributed to a supergene origin at low temperatures (Crook and Lueth, 2014). Previous studies
500	elucidated the oxidizing acid aqueous fluid, formed by the oxidation of pyrite and transformation of clay
501	minerals in supergene environments, could promote the chemical reactions and ore metal transportations
502	which further facilitated the formation of the turquoise (Crook and Lueth, 2014; Li et al., 2022).
503	Nevertheless, the absence of oxidized minerals such as malachite and hematite, coexistence of turquoise
504	with quartz and barite, and high CH ₄ /CO ₂ ratios in fluids of Zhushan turquoise preclude a supergene
505	environment of formation. Moreover, no magmatic activity has been observed in the region (Fig. 1;
506	Zhang et al., 2019). Therefore, we argue that metamorphic fluids generated from the dehydration and
507	devolatilization of the carbonaceous slates produced the quartz-barite veins that deformed
508	synchronously with wall rocks (Fig. 2, 4; Wang, 2009). In this process, we suggest that Cu, Fe, Ba, U, Ti,
509	Al and P were remobilized from apatite, feldspar, barite, muscovite, chalcopyrite, magnetite, pyrite,
510	rutile, monazite and xenotime in the slates during water-rock interaction, and transferred into fluids as
511	chloride complexes in the function of the saline metamorphic fluids, ultimately to precipitate as gem
512	turquoise in tectonically favorable sites (Chen et al., 1990; Yardley and Graham, 2002).
513	We interpret the compositional changes from turquoise (Trq ^I) to turquoise-planerite solid solution

We interpret the compositional changes from turquoise (Trq^I) to turquoise-planerite solid solution

п

514	(Trq ¹¹) reflect evolution of the metamorphic fluids during the process of fluid-rock interaction. The
515	fluid-rock interaction process was recorded by the evolution of fluid inclusions throughout the different
516	stages. Legros et al. (2020) argued that the primary fluids from the intrusion in the Cantung tungsten
517	deposit are CO ₂ -rich which indicate their primary magmatic source, while fluids that interacted intensely
518	with the surrounding limestone are CH4-rich. Correspondingly, carbonic-aqueous fluids with immiscible
519	CH ₄ -N ₂ fluids in Trq ^I -related samples (Fig. 12c) likely represent the initial fluids that underwent
520	extensive interaction with surrounding carbonaceous slates, increasing the turquoise-forming elements
521	in water. In contrast, the fluids related to the Trq ^{II} are CH ₄ -N ₂ -poor (Fig. 12d) and suggest the decreasing
522	reactivity of fluids with the wall rocks, inducing the decrease of necessary metals for the turquoise
523	(Table 1; Fig. 8).

524 Alternatively, such a pattern might be explained by the changing elemental partition behaviors 525 during the precipitation of the turquoise. The uncertainties regarding fluid-rock and fluid-turquoise 526 partitioning hinder the understanding of this mechanism. According to Skora et al. (2006), the decrease of Cu and Fe contents in the oscillatory zoning Trq^{II} could also be interpretated by the transient matrix 527 528 diffusion model that the Trq^{II} have crystallized in the depleted matrix where Cu, Fe and other elements 529 uptake were restricted by diffusion in the matrix surrounding the crystals. Nevertheless, neither explanation could account for the significantly decreasing CH₄-N₂ contents in the Trq^{II}-forming fluids. 530 531 Thus, we favor our interpretation that the decline of interaction between metamorphic fluid and metasedimentary rocks drove the geochemical evolution from homogeneous turquoise in Trq^I towards 532 533 turquoise-planerite solid solution in Trq^{II}.

Another possible metal source (Cu, Fe, V, Zn and U) is envisioned on the basis of large amount of
organic carbon in the Shuigoukou Formation, as indicated by the high total organic carbon (TOC)

536	content ranging from 0.46 to 2.43 % (Wang, 2009; You et al., 2018). Previous organic geochemical
537	studies have confirmed there is a certain positive correlation between the metal contents (V, Ni, Zn, Cu,
538	Os, Rh, Pt, Pd, Ir, Ru, Ag and U) and the total organic carbon content (TOC) in the Lower Cambrian
539	Shuigoukou Formation (You et al. 2018). Such correlations have been reported in other carbonaceous
540	rock-hosted Au-V-U ore deposits (Hu et al., 2000; Hou, 2008; Wang, 2009; Wang, 2016). Metals could
541	be absorbed on organic matter before generating primary sulfides by the action of H_2S under reducing
542	conditions (Chen et al., 1990). Moreover, experimental studies proved that gold-metallogenic elements
543	could strongly combine with immature and low-maturity organic matter due to the action of chelation
544	(Hu et al., 1993). Thus, organic-rich carbonaceous formations are supposed to highly promote the
545	primary accumulation of metallogenic elements as the metal sources.
546	We interpret that the evolution of organic matter in the carbonaceous slates could facilitate the
547	migration of metals in the aqueous fluids. Decomposition of organic matter would lead to the
548	transformation from the organic carbon into gaseous H_2O , N_2 , H_2S and hydrocarbon compounds (e.g.,
549	CH4) which could self-extract metals or combine with metals as metal-organic complexes, promoting
550	the release of metals from slates into fluids and their transportation in aqueous fluids (Breit and Wanty,
551	1991; Wang, 2009; Wang, 2016). Moreover, degradation and oxidation of organic matter could produce
552	the organic acids, which are mainly composed of the negatively charged hydroxyl group, carboxy group
553	and other function groups. Such groups have been assumed to significantly enhance the combination,
554	adsorption and chelation of the metal ions, allowing soluble metals to migrate over long distances in
555	aqueous fluids (Leventhal and Giordano, 1997; Hu et al., 2000; Qin and Zhou, 2009; Wang, 2009).
556	Metal complexes will then break down from the metamorphic fluids owing to changes in pressure,
557	temperature, and acidity in fluids, resulting in the formation of gem turquoise.

558

IMPLICATIONS

559	The turquoise deposit in Zhushan County, western Hubei Province, China, consists of
560	turquoise-quartz-barite veins occurring along or cutting the beddings of the carbonaceous slates. New
561	fluid inclusion and stable isotope data, combined with geological and geochemical evidence,
562	substantiate a new genetic model for gem turquoise worldwide, termed the metamorphic quartz-vein
563	type turquoise deposit. Devolatilization of Lower Cambrian carbonaceous slates transpired during
564	regional metamorphism and deformation, and generated turquoise-forming metamorphic fluids
565	characterized by low salinities (6-8 wt.% NaCl equiv.) at moderate to high temperatures (up to 450 °C).
566	Further support for this model comes from the δ^{18} O values of turquoise-forming fluids (20.9-22.6 ‰),
567	which are consistent with metamorphic fluids. The presence of CH ₄ -N ₂ fluid inclusions, the remarkably
568	depleted $\delta^{13}C$ values of CO ₂ and CH ₄ in fluid inclusions from quartz (-27.6 to -22.5 ‰ and -40.8 to
569	-30.3 ‰) and the extremely low δD values of turquoise-forming fluids (-111 to -93 ‰), suggest the
570	intense interaction between the metamorphic fluids and the carbonaceous siliceous slates, leading to
571	immiscibility between pure CH4-N2 and carbonic-aqueous fluids during the formation of the
572	homogeneous turquoise. As temperature and reactivity with wall rocks decreased, so did the CH_4 and N_2
573	contents of fluids. Concurrently, the A site deficiency in the turquoise group minerals became more
574	dominant, leading to the transition from gem turquoise to Cu-bearing planerite solid solutions.
575	Turquoise-forming metals (e.g., Cu, Fe, Ba, U, Ti, Al and P) are assumed to be sourced from the
576	dissolving of various minerals (e.g., apatite, feldspar, barite, muscovite, chalcopyrite, magnetite, pyrite,
577	rutile, monazite and xenotime) in the carbonaceous slates caused by the fluid-rock interaction. Moreover,
578	decomposition of the organic carbon from the Shuigoukou carbonaceous slates might also contribute to
579	the extraction and the transportation of the metals responsible for the formation of turquoise.

580

ACKNOWLEDGEMENTS

581	We appreciated Associate Prof. Huimin Su and all members of the LA-ICP-MS lab in the
582	Collaborative Innovation Center for Exploration of Strategic Mineral Resources for their assistance with
583	the trace elemental mapping. No.8 th Geological Team of Hubei Geological Bureau is thanked for guide
584	the field trip. We are grateful to Dr. Suo-Fei Xiong, De-Liang Liu, Ying Ma, Zhenpeng Duan, Haoxiang
585	Zhang for their kind help with the analysis. We thank Prof. Paul Tomascak, Dr. Tomasz Powolny and an
586	anonymous reviewer for valuable comments that assisted us to improve this contribution.
587	FUNDING
588	This study was financially supported by projects from the National Key R&D Program of China
589	(no. 2022YFC2903504), the National Natural Science Foundation of China (No. 42030811), the No.8th
590	Geological Team of Hubei Geological Bureau, and the State Key Laboratory of Geological Processes
591	and Mineral Resources, China University of Geosciences (No. MSFGPMR03-2)
592	
593	REFERENCES CITED
594	Abdu, Y.A., Hull, S.K., Fayek, M., and Hawthorne, F.C. (2011) The turquoise-chalcosiderite Cu(Al,
595	Fe ³⁺) ₆ (PO ₄) ₄ (OH) ₈ ·4H ₂ O solid-solution series: A Mossbauer spectroscopy, XRD, EMPA, and FTIR
596	study. American Mineralogist, 96(10), 1433-1442.
597	Ague, J.J. (2003) Fluid flow in the deep crust. Treatise on Geochemistry, 3, 195-228.
598	Andersen, T., Austrheim, H., Burke, E.A.J., and Elvevold, S. (1993) N ₂ and CO ₂ in deep crustal fluids:
599	evidence from the Caledonides of Norway. Chemical Geology, 108, 113-132.
600	Bakker, R.J. (1997) Clathrates: Computer programs to calculate fluid inclusion V-X properties using
601	clathrate melting temperatures. Computers & Geosciences, 23, 1-18.
602	Bakker, R.J. (2003) Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for 28

- modelling bulk fluid properties. Chemical Geology, 194, 3-23.
- 604 Bebout, G.E., and Fogel, M.L. (1992) Nitrogen-isotope compositions of metasedimentary rocks in the
- 605 Catalina Schist, California: Implications for metamorphic devolatilization history. Geochimica et
- 606 Cosmochimica Acta, 56, 2839-2849.
- Bottinga, Y. (1968) Calculation of fractionation factors for carbon and oxygen exchange in the system,
 calcite-carbon dioxide-water. Journal of Physical Chemistry, 72, 800-808.
- Breit, G.N., and Wanty, R.B. (1991) Vanadium accumulation in carbonaceous rocks: a review of
 geochemical controls during deposition and diagenesis. Chemical Geology, 1991, 91(2): 83-97.
- 611 Bernardino, N.D., Izumi, C.M.S., and de Faria, D.L.A. (2016) Fake turquoises investigated by Raman
- 612 microscopy. Forensic science international, 262, 196-200.
- Berwick, L., Greenwood, P., Kagi, R., and Croue, J.P. (2007) Thermal release of nitrogen organics from
 natural organic matter using micro scale sealed vessel pyrolysis. Organic Geochemistry, 38, 1073–
 1090.
- Bottrell, S.H., and Miller, M.F. (1990) The geochemical behavior of nitrogen compounds during the
 formation of black shale hosted quartz-vein gold deposits, North Wales. Applied Geochemistry, 5,
 289–296.
- Brown, P.E. (1989) FLINCOR: a microcomputer program for the reduction and investigation of
 fluid-inclusion data. American Mineralogist, 74, 1390-1393.
- Brunsgaard-Hansen, S., Berg, R.W., and Stenby, E.H. (2002) How to determine the pressure of a
 methane-containing gas mixture by means of two weak Raman bands, v3 and 2v2. Journal of
 Raman Spectroscopy, 33, 160–164.
- 624 Burke, E.A.J. (2001) Raman microspectrometry of fluid inclusions. Lithos, 55, 139–158.
- 625 Cejka, J., Sejkora, J., Macek, I., Malikova, R., Wang, L.N, Scholz, R., Xi, Y.F., and Frost, R.L. (2015)
 626 Raman and infrared spectroscopic study of turquoise minerals. Spectrochimica Acta Part A:
 627 Molecular and Biomolecular Spectroscopy, 149, 173-182.
- 628 Chen, N.S., Yang, X.Z., Liu, D.H., Xiao, X.J., Fan, D.L., and Wang, L.F. (1990) Lower Cambrian black
 629 rock series and associated stratiform deposits in Southern China. Chinese Journal of Geochemistry,
 630 8(2), 244-255.
- 631 Chen, Q.L., Yin, Z.W., Qi, L.J., and Xiong, Y. (2012) Turquoise from Zhushan County, Hubei Province,

- 632 China. Gems & Gemology, 48(3), 198–204.
- 633 Chen, Y.J., Zhai, M.G., and Jiang, S.Y. (2009) Significant achievements and open issues in study of
- orogenesis and metallogenesis surrounding the North China continent. Acta Petrologica Sinica, 25,
- 635 2695–2726 (in Chinese with English abstract).
- Chi, G.X., Diamond, L.W., Lu, H.Z., Lai, J.Q., and Chu, H.X. (2021) Common Problems and Pitfalls in
 Fluid Inclusion Study: A Review and Discussion. Minerals, 11, 1-17.
- 638 Clayton, R.N., O'Neil, J.L., and Meyeda, T.K. (1972) Oxygen isotope exchange between quartz and
 639 water. Journal of Geophysical Research, 77, 3057–3067.
- 640 Clayton, W.M., and Mayeda, T.K. (1963) The use of bromine pent a fluoride in the extraction of oxygen
- from oxides and silicates for isotopic analysis. Geochimica et Cosmochimica Acta, 27, 43–52.
- 642 Collins, P.L.F. (1979) Gas hydrates in CO₂-bearing fluid inclusions and the use of freezing data for
 643 estimation of salinity. Economic Geology, 74, 1435–1444.
- Cox, S.F., Sun, S.S., Etheridge, M.A., Wall, V.J., and Potter, T.F. (1995) Structural and geochemical
 controls on the development of turbidite-hosted gold quartz vein deposits, Wattle Gully mine,
 central Victoria, Australia. Economic Geology, 90, 1722–1746.
- 647 Crook, J.C. and Lueth, V.W. (2014) A geological and geochemical study of a sedimentary-hosted
 648 turquoise deposit at the Iron Mask mine, Orogrande, New Mexico, in: Geology of the Sacramento
- 649 Mountains region. New Mexico Geological Society, Guidebook, 65th Field Conference, p. 227-233.
- 650 Davis, D.W., Lowenstein, T.K., and Spencer, R.J. (1990) Melting behavior of fluid inclusions in
- laboratory-grown halite crystals in the systems NaCl-H₂O, NaCl-KCl-H₂O, NaCl-MgCl₂-H₂O,
 and NaCl- CaCl₂-H₂O. Geochimica et Cosmochimica Acta, 54, 591–601.
- Disbrow, A.E., and Stoll, W. C. (1957) Geology of the Cerrillos Area, Santa Fe County, New Mexico,
 48, p. 73. State Bureau of Mines and Mineral Resources, New Mexico Institute of Mining &
 Technology.
- 656 Dumanska-Slowik, M., Weselucha-Birczynska, A., Natkaniec-Nowak, L., Gawel, A., Wlodek, A., and
- 657 Kulmaczewska, K. (2020) Blue or green? Turquoise-planerite species from Carico Lake Valley in
- Nevada, the United States: Evidence from Raman spectroscopy. Journal of Raman Spectroscopy,
 51, 346–356.
- 660 Fan, H.R., Zhai, M.G., Xie, Y.H., and Yang, J.H. (2003) Ore-forming fluids associated with granite

- 661 hosted gold mineralization at the Sanshandao deposit, Jiaodong gold province, China. Mineralium
- 662 Deposita, 38, 739–750.
- 663 Foord, E.E., and Taggart, J.E. (1998) A reexamination of the turquoise group: the mineral aheylite,
- planerite (redefined), turquoise and coeruleolactite. Mineralogical Magazine, 62(1), 93–111.
- Fritsch, E., Mcclure, S.F., Ostrooumov, M., Andres, Y., and Kammerling, R.C. (1999) The identification
 of Zachery-treated turquoise. Gems & Gemology, 35(1), 4-16.
- Fu, B., Mernagh, T.P., Fairmaid, A.M., Phillips, D., and Kendrik, M.A. (2014) CH₄-N₂ in the Maldon
 gold deposit, central Victoria, Australia. Ore Geology Reviews, 58, 225-237.
- 669 Fu, M., Changkakoti, A., Krouse, H.R., Gray, J., and Kwak, T.A.P. (1991) An oxygen, hydrogen, sulfur,
- 670 and carbon isotope study of carbonate-replacement (skarn) tin deposits of the Dachang Tin Field,
- 671 China. Economic Geology, 86(8), 1683-1703.
- 672 Goldstein, R.H., and Reynolds, T.J. (1994) Systematics of Fluid Inclusions in Diagenetic Minerals, 31,
- 673 199 p. Society for Sedimentary Geology SEPM Short Course.
- 674 Hedenquist, J.W., and Lowenstern, J.B. (1994) The role of magmas in the formation of hydrothermal ore
- 675 deposits. Nature, 370, 495–510.
- Herzberg, G. (1950) Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules,
 Second edition. Van Nostrand, Princeton, NJ. 658 p.
- Hou, J.F. (2008) Metallogenetic characteristics and regularities of Au-V mineralization in Lower
 Cambrian black rock series, Southern Qinling Mountain, China, 87 p. M.D. thesis, Northwest
 University (in Chinese with English abstract).
- Hu, D.L., Jiang, S.Y., Duan, D.F., and Xiong, S.F. (2021) Fluid origin and evolution of the Ruanjiawan
 W-Cu-(Mo) deposit from the Edong District in the Middle-Lower Yangtze River metallogenic belt
 of China: Constraints from fluid inclusions and H-O-C-S isotopes. Ore Geology Reviews, 139,
- **684** 104428.
- Hu, K., Liu, Y.J., and Jia, R.F. (1993) Experimental study of gold accumulation by organic matter under
 low-temperature hydrothemical conditions. Science in China (Series B), 23(8), 880 (in Chinese).
- 687 Hu, K., Zhai, J.P., Liu, Y.J., Wang, H.N., Zhang, J.R., and Jia, R.F. (2000) Genesis and organic
- 688 geochemical characteristics of the carbonaceous rock stratabound gold deposits, South China.
- 689 Science in China (Series D: Earth Science), 5, 507-520.

- 690 Hu, J.M., Meng, Q.R., Bai, W.M., and Zhao, G.C. (2002) Mid-Late Palaeozoic extension of the Wudang
- block in the South Qinling tectonic belt, China. Geological Bulletin of China, 21, 471–477 (inChinese).
- Jenkin, G.R.T., Craw, D., and Fallick, A.E. (1994) Stable isotopic and fluid inclusion evidence for
 meteoric fluid penetration into an active mountain belt; Alpine Schist, New Zealand. Journal of
 Metamorphic Geology, 12, 439-444.
- Jia, Y.F., Li, X., and Kerrich, R. (2000) A fluid inclusion study of Au-bearing quartz vein systems in the
- 697 Central and North Deborah deposits of the Bendigo Gold Field, central Victoria. Australia.
- **698** Economic Geology, 95, 467–496.
- Jiang, Z.C., Chen, D.M., Wang, F.Y., Li, W.Y., Cao, X.Q., and Wu, Q.X. (1983) Thermal properties of
- turquoise and its intergrowing minerals in a certain district of China. Acta Mineralogica Sinica,
 3(3), 198-206 (in Chinese).
- Jin, G.S., Liu, H.B., Zhang, J.F., Han, J., Qiu, L.F., Li, J.J., Zhang, J., and Shi, X. (2021) On-line
 continuous flow analysis of CO₂ carbon isotopic composition in fluid inclusions. Chinese Journal
- of Analytical Chemistry, 49(1), 137–143 (in Chinese).
- Jomeh, A.E., Omran, N.R.N., Mansuri, E., Vignola, P., and Hashemzadeh, T. (2020) Electron microprobe
 study of turquoise-group solid solutions in the Neyshabour and Meydook mines, northeast and
- southern Iran. Canadian Mineralogist, 58, 71–83.
- 708 Kesler, S.E., Vennemann, T.W., Frederickson, C., Breithaupt, A., Vazquez, R., and Furman, F.C. (1997)
- 709 Hydrogen and oxygen isotope evidence for origin of MVT-forming brines, southern Appalachians.
- 710 Geochimica et Cosmochimica Acta, 61, 1513–1523.
- Kile, D.E., and Eberl, D.D. (1999) Crystal growth mechanisms in miarolitic cavities in the Lake George
 ring complex and vicinity, Colorado. American Mineralogist, 84(5-6), 718-724.
- 713 King, R.J. (2002). Turquoise. Geology Today, 18(3), 110-114.
- Lawler, J.P., and Crawford, M.L. (1983) Stretching of fluid inclusions resulting from a low-temperature
 microthermometric technique. Economic Geology, 78, 527–52.
- 716 Legros, H., Lecumberri-Sanchez, P., Elongo, V., Laurent, O., Falck, H., Adlakha, E., and
- 717 Chelle-Michou, C. (2020) Fluid evolution of the Cantung tungsten skarn, Northwest Territories,

- 718 Canada: Differentiation and fluid-rock interaction. Ore Geology Reviews, 127, 103866.
- 719 Leventhal, J.S., and Giordano, T.H. (1997) The nature and roles of organic matter associated with ores
- 720 and ore-forming systems: an introduction. In T. H. Giordano, R.M. Kettler and S.A. Wood, Eds.,
- 721 Ore Genesis and Exploration: The Roles of Organic Matter. Reviews in Economic Geology, 9, p.
 722 1-26.
- 723 Li, N., Deng, J., Yang, L.Q., Goldfarb, R.J., Zhang, C., Marsh, E., Lei, S.B., Koenig, A., and Lowers, H.,
- (2014) Paragenesis and geochemistry of ore minerals in the epizonal gold deposits of the Yangshan
 gold belt, West Qinling, China. Mineralium Deposita, 49, 427-449.
- 726 Li, N., Chen, Y.J., Santosh, M., and Pirajno, F. (2015) Compositional polarity of Triassic granitoids in
- the Qinling Orogen, China: implication for termination of the northernmost paleo-Tethys.
 Gondwana Research, 27, 244–257.
- Li, Q., and Zhao, J.H. (2016) Petrogenesis of the Wudang mafic dikes: Implications of changing tectonic
 settings in South China during the Neoproterozoic. Precambrian Research, 272, 101-114.
- Li, Q., Li, J, and Zhu, B.L. (2022) Experimental investigation of the influence of sequential water-rock
 reactions on the mineral alterations and porosity evolution of shale. Construction and Building
 Materials, 317, 125859.
- Lin, C.Q., Hu, M., and He, H.T. (2006) Ore-control conditions and prospecting direction of silver-gold
 polymetallic deposit in Wudang Area, Hubei Province. Contributions to Geology and Mineral
 Resources Research, 21(02), 104-108 (in Chinese).
- Ling, W.L., Chen, J.P., Wang, X.H., and Zhou, H.W. (2002) Geochemical features of the
 Neoproterozoic igneous rocks from the Wudang region and their implications for the reconstruction
 of the Jinning tectonic evolution along the south Qinling orogenic belt. Acta Petrologica Sinica, 18,
 25–36 (in Chinese with English abstract).
- 741 Ling, W.L., Ren, B.F., Duan, R.C., Liu, X.M., Mao, X.W., Peng, L.H., Liu, Z.X., Chen, J.P., and Yang,
- H.M. (2007) Timing of the Wudangshan, Yaolinghe volcanic sequences and mafic sills in South
 Qinling: U–Pb zircon geochronology and tectonic implication. Chinese Science Bulletin, 52, 1445–
- 744 1456 (in Chinese).
- Liu, L., Yang, M., and Li, Y. (2020) Unique raindrop pattern of turquoise from Hubei, China. Gems &
 Gemology, 56(3), 380-400.

- 747 Liu, S.C., Ning, S.Y., and Zheng, D.S. (2021) Petrogenesis and sedimentary environment of black rock
- series of the Lowe Cambrian Shuigoukou Formation in South Qinling. Acta Geologica Sinica,
- 749 95(2), 549-564 (in Chinese).
- T50 Lueders, V., Plessen, B., and di Primio, R. (2012) Stable carbon isotopic ratios of CH₄-CO₂-bearing
- fluid inclusions in fracture-fill mineralization from the Lower Saxony Basin (Germany) A tool for
 tracing gas sources and maturity. Marine and Petroleum Geology, 30, 174-193.
- 753 Ma, Y., Jiang, S.Y., Frimmel, H.E., Zhu, L.Y., Xiong, S.F., Chen, R.S., and Li, X.X. (2021) Genesis of
- the Hebaoshan gold deposit in Fujian Province of Southeast China: constraints from a combined
 fluid inclusion, H-O-C-S-Pb-He-Ar isotope and geochronological study. Mineralium Deposita, 57(1),
- 756 13–34.
- Menzies, C.D., Teagle, D.A.H., Craw, D., Cox, S.C., Boyce, A.J., Barrie, C.D., and Roberts, S. (2014)
 Incursion of meteoric waters into the ductile regime in an active orogen. Earth and Planetary Science
 Letters, 399,1-13.
- Mernagh, T.P., and Wilde, A.R. (1989) The use of the laser Raman microprobe for the determination of
 salinity in fluid inclusions. Geochimica et Cosmochimica Acta, 53, 765–771.
- Nie, H., Wan, X., Zhang, H., He, J.F., Hou, Z.H., Siebel, W., and Chen, F.K. (2016) Ordovician and
 Triassic mafic dykes in the Wudang terrane: Evidence for opening and closure of the South Qinling
 ocean basin, central China. Lithos, 266-267, 1-15.
- Niu, P.P., Jiang, S.Y., Li, W.T., Cui, P.L., Chen, Y.C., and Munoz, M. (2022) Hydrothermal evolution
 and origin of the Suixian molybdenum deposit in the Tongbai orogenic belt, China: Constraints from
- 767 geology, fluid inclusions and multiple isotopes (H-O-C-S-Pb). Ore Geology Reviews, 148, 105036.
- 768 Ohmoto, H. (1972) Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Economic
 769 Geology, 67, 551–578.
- Phillips, G.N., and Powell, R. (2010) Formation of gold deposits: a metamorphic devolatilization model.
 Journal of Metamorphic Geology, 28, 689-718.
- 772 Pirard, C., Hatert, F., and Fransolet, A.M. (2007) Alteration sequences of aluminium phosphates from
- 773 Montebras pegmatite, Massif Central, France. In T. Martins and R. Vieira, Eds., In Proceedings of
- the Granitic Pegmatites: The State of the Art-International Symposium, Porto, Portugal, p. 74-75.
- 775 Qin, Y., and Zhou, Z.J. (2009) Organic geochemistry characteristics of Yangshan super-large gold

- 776 deposit, Gansu province. Acta Petrologica Sinica, 25, 2801-2810 (in Chines with English abstract).
- 777 Qin, Y., Xu, Y.Y., Li, H.M., Li, S.X., and Xi, Q.F. (2015) Turquoise Mine and Artefact Correlation for
- 778 Some Bronze Age Archaeological Sites in Hubei Province, China. Archaeometry, 57(5), 788-802.
- 779 Ramboz, C., Pichavant, M., and Weisbrod, A. (1982) Fluid immiscibility in natural processes: Use and
- 780 misuse of fluid inclusion data. II. Interpretation of fluid inclusion data in terms of immiscibility.
- **781** Chemical Geology, 37, 29–48.
- 782 Ribeiro, R., Capela, D., Ferreira, M., Martins, R., Jorge, P., Guimarães, D., and Lima, A. (2021) X-ray
- 783 fluorescence and laser-induced breakdown spectroscopy analysis of Li-rich minerals in veins from
- 784 Argemela Tin Mine, central Portugal. Minerals, 11(11), 1169.
- 785 Roedder, E. (1984) Fluid inclusions. Reviews in Mineralogy, 12, 1-644.
- 786 Rossi, M., Rizzi, R., Vergara, A., Capitelli, F., Altomare, A., Bellatreccia, F., Saviano, M., and Ghiara,
- 787 R.M. (2017) Compositional variation of turquoise-group minerals from the historical collection of
- the Real Museo Mineralogico of the University of Naples. Mineralogical Magazine, 81(6),
 1405-1429.
- Schoell, M. (1980) The hydrogen and carbon isotopic composition of methane from natural gases of
 various origins. Geochimica et Cosmichimica Acta, 44, 649-661.
- 792 Shepherd, T.J., Bottrell, S.H., and Miller, M.F. (1991) Fluid inclusion volatiles as an exploration guide
- to black shale-hosted gold deposits, Dolgellau gold belt, North Wales UK. Journal of Geochemical
- **794** Exploration, 42, 5–24.
- Sheppard, S.M.F. (1986) Characterization and isotope variations in natural waters. Reviews in
 Mineralogy and Geochemistry, 16(1), 165-183.
- Shi, Z.R., and Cai, K.Q. (2011) A study of the origin of turquoise deposit in Zhushan County, Hubei
 Province. Acta Petrologica et Mineralogica, 30, 187-194 (in Chinese with English abstract).
- Skora, S., Baumgartner, L.P., Mahlen, N.J., Johnson, C.M., Pilet, S., and Hellebrand, E. (2006)
 Diffusion-limited REE uptake by eclogite garnets and its consequences for Lu-Hf and Sm-Nd
- geochronology. Contributions to Mineralogy and Petrology, 152, 703-720.
- 802 Stepanov, A.S. (2021) A review of the geochemical changes occurring during metamorphic
 803 devolatilization of metasedimentary rocks. Chemical Geology, 568, 120080.
- 804 Szakáll, S., Kristály, F., and Zajzon, N. (2012) Minerals of turquoise group from Sândominic, Gurghiu

- 805 Mts., Romania and from Parádfürdő, Mátra Mts., Hungary. In Acta Mineralogica-Petrographica,
- Abstract series, 7, 133.
- 807 Taghipour, B., and Mackizadeh, M.A. (2014) The origin of the tourmaline-turquoise association hosted
- 808 in hydrothermally altered rocks of the Kuh-Zar Cu-Au-turquoise deposit, Damghan, Iran. Neues
 809 Jahrbuch für Geologie und Paläontologie Abhandlungen, 272, 61–77.
- 810 Tarantola, A., Mullis, J., Vennemann, T., Dubessy, J., and de Capitani, C. (2007) Oxidation of methane
- 811 at the CH₄/H₂O-(CO₂) transition zone in the external part of the Central Alps, Switzerland:
- Evidence from stable isotope investigations. Chemical Geology, 237, 329–357.
- 813 Taylor, H.P. (1974) The application of oxygen and hydrogen isotope studies to problems of
- hydrothermal alteration and ore deposition. Economic Geology, 69, 843–883.
- 815 Taylor, B.E. (1986) Magmatic volatiles: isotopic variation of C, H, and S. Reviews in Mineralogy and
- 816 Geochemistry, 16, 185–225.
- Tu, H.K. (1996) Geological characteristics of turquoise ore in the areas adjacent to Shanxi and Hubei
 Province. Geology of Shanxi, 14(2), 59–64 (in Chinese).
- 819 Tu, H.K. (1997) Metallogenic characteristics of turquoise in East Qinling Mountains. Non-Metallic
 820 Geology, 92(3), 24–25 (in Chinese).
- 821 Ubide, T., McKenna, C.A., Chew, D.M., and Kamber, B.S. (2015) High-resolution LA-ICP-MS trace
- 822 element mapping of igneous minerals: in search of magma histories. Chemical Geology, 409,823 157-168.
- Veizer, J., Holser, W.T., and Wilgus, C.K. (1980) Correlation of ¹³C/¹²C and ³⁴S/³²S secular variations.
 Geochimica et Cosmochimica Acta, 44, 579–587.
- Walrafen, G.E. (1964) Raman spectral studies of water structure. Journal of Chemical Physics 40, 3249–
 3256.
- Walrafen, G.E. (1967) Raman spectral studies of effects of temperature on water structure. Journal of
 Chemical Physics, 47, 114–126.
- Wang, D.S., Wang, Z.Q., Wang, G., Wu, Y.D., and Yang, H. (2019) Metamorphism of Rocks in
 Shiyan-Wudang Area of South Qinling Tectonic Belt, China. Journal of Earth Sciences and
 Environment, 41, 379-395 (in Chinese with English abstract).
- 833 Wang, L.S. (2009) Study on the metallogenic regularity and geological-geochemistry for black rock

- 834 series and related typical deposits in Qinling Mountains, Shanxi, 165 p. Ph.D. thesis, Northwest
- 835 University (in Chinese with English abstract).
- 836 Wang, Y.S. (2016) The study of sequence and mineralization of black shales in Shuigoukou Formation,
- 837 Southwestern Henan, 55 p. M.D. thesis, China University of Geosciences (Beijing) (in Chinese838 with English abstract).
- Xia, R., Deng, J., Qing, M., Wang, C.M., and Li, W.L. (2013) The genesis of the Dachang gold ore field
- 840 in Qinghai Province: Constraints on fluid inclusion geochemistry and H-O isotopes. Acta
 841 Petrologica Sinica, 29, 1358-1376 (in Chinese with English abstract).
- 842 Xu, G.J. (1998) A fluid inclusion study of syntectonic Zn-Pb-Ag mineralization at Dugald River,
- 843 northwest Queensland, Australia. Economic Geology and the Bulletin of the society of economic844 geologists, 93(8). 1165-1179.
- 845 Yardley, B.W.D. (1989) An Introduction to Metamorphic Petrology. Longman Scientific and Technical,
 846 Harlow.
- 847 Yardley, B.W.D., and Graham, J.T. (2002) The origins of salinity in metamorphic fluids. Geofluids, 2(4),
 848 249-256.
- You, J., Cao, H.Y., Zhang, F.J., Cai, W.C., Li, J.C., and She, P.T. (2018) Geochemical characteristics of
 strata of Lower Cambrian Shuigoukou Formation in Southern Qinling and their implications for
 prospecting. Geophysical and Geochemical Exploration, 42(3), 453-460.
- Yue, S.W., Deng, X.H., and Bagas, L. (2014) Geology, isotope geochemistry, and ore genesis of the
 Yindonggou Ag-Au(-Pb-Zn) deposit, Hubei Province, China. Geological Journal, 49, 442-462.
- 854 Zhang, G.W., Zhang, Z.Q., and Dong, Y.P. (1995) Nature of main tectonolithostratigraphic units of the
- Qinling Orogen: implications for the tectonic evolution. Acta Petrologica Sinica, 11, 101–114 (inChinese with English abstract).
- Zhang, G.W., Zhang, B.R., Yuan, J.C., and Xiao, Q.H. (2001) Qinling Orogenic Belt and Continental
 Dynamics. Science Press: Beijing; 1–855 (in Chinese).
- 859 Zhang, J., Yu, X.Z., and Li, Y.C. (2019) Minerogenic prospective prognosis of leaching type turquoise
- on the northwestern margin of Wudang Uplift. Geophysical and Geochemical Exploration, 43(2),
- 861 273-280 (in Chinese).
- 862 Zhang, Z.Q., Zhang, G.W., Tang, S.H., and Wang, J.H. (2002) The age of metamorphic rocks of the

- 863 Wudang Group. Geology in China, 29, 117–125 (in Chinese with English abstract).
- Zhao, X.K., Li, J.L., Liu, Y.L., and R.K. (2017) Resource overview and genesis of Baihe turquoise
- deposit in Ankang City. Geology of Shaanxi, 35, 46-51 (in Chinese).
- 866 Zhou, D.W., Zhang, C.L., Liu, L., Wang, J.L., Liu, Y.Y., and Zhang, Z.Q. (1998) Sm-Nd dating of
- basic dykes from Wudang block and a discussion of related questions. Acta Geoscientia Sinica, 19,
- 868 25–30 (in Chinese with English abstract).
- 269 Zhou, L.L., McKenna, C.A., Long, D.G.F., and Kamber, B.S. (2017) LA-ICP-MS elemental mapping of
- pyrite: An application to the Paleoproterozoic atmosphere. Precambrian Research, 297, 33-55.
- 871 Zhou, J.X., Bai, J.H., Huang, Z.L., Zhu, D., Yan, Z.F., and Lv, Z.C. (2015) Geology, isotope
- 872 geochemistry and geochronology of the Jinshachang carbonate-hosted Pb-Zn deposit, southwest
- 873 China. Journal of Asian Earth Sciences, 98, 272-284.

874 Figure captions

Fig. 1. (a) A tectonic map of China showing the location of the Qinling Orogen (red square); (b)
Tectonic subdivision of the Qinling Orogen comprising the Wudang Block (red square) where occur the
turquoise deposits; (c) Geological map of the turquoise deposits in Zhushan County, western Hubei
Province of China (modified after Yue et al., 2014; Zhang et al., 2019) (*YB:* Yangtze Block, *NCB:* North
China Block).

880

Fig. 2. Photographs representing typical field occurrence of turquoise-bearing veins from Zhushan County. (a) Quartz-barite-turquoise vein as fracture infillings along or cross-cutting the beddings of the black carbonaceous slate; (b) coexisting turquoise and quartz as elongated lenses in the ductile deformed veins; (c, d) massive turquoise aggregates in the black carbonaceous slates show synchronous ductile deformation with wall rocks (*Trq:* turquoise, *Qtz:* quartz, *Brt:* barite, red lines outlining the elongated lens-shaped quartz, barite and turquoise, rock hammer as scale bar is approximately 13 cm in width).

887

Fig. 3. Photographs of turquoise from Zhushan County. (a) Massive bluish green turquoise in black slate;
(b, c, d) Vein specimens consisting of quartz, barite and turquoise in different colors, i.e. bluish-green (b)
and light-green (c, d) (*Trq:* turquoise, *Qtz:* quartz, *Brt:* barite).

891

Fig. 4. Transmitted- (**a**, **d**), reflected-light (**e**) and back scattered electron (BSE) images (**b-c**, **f-h**), showing representative mineralogical and textural features observed in hydrothermal veins and wall rocks: (**a**) oscillatory zoned turquoise (Trq^{II}) replacing homogeneous turquoise (Trq^I) along the margin, all included in quartz (Qtz^I) and cut by irregular barite vein (Brt^{II}); (**b**) quartz (Qtz^I) intergrowth with homogeneous turquoise (Trq^{II}) and euhedral barite (Brt^{II}); (**c**) oscillatory zoned turquoise (Trq^{II}) filled by anhedral barite (Brt^{II}) in quartz vein (Qtz^{II}); (**d**) preferred orientation of fine-grained quartz defining the foliations of the carbonaceous slate, showing typical rotational porphyroclast system; (**e**) intense

foliation defined by alignment of elongated coarse-grained magnetite and fine-grained muscovite in the deformed carbonaceous slate; (f-h) medium to coarse-grained pyrite, magnetite, apatite, monazite, rutile and xenotime surrounded by quartz and muscovite (Trq: turquoise, Qtz: quartz, Brt: barite; Ms: muscovite, Ap: apatite, Mag: magnetite, Py: pyrite, Rt: rutile, Mnz: monazite, Xtm: xenotime).

903

Fig. 5. BSE image and characteristic chemical compositions collected from homogeneous turquoise (Trq^{I}) and oscillatory zoned turquoise (Trq^{II}) in from the rim to core: (a) BSE image; (b-f) major element compositions of turquoise-group minerals, where blue circles represent the compositions of Trq^{I} , and dark green to light green circles refer to the various compositions of Trq^{II} from the core to rim. EPMA data and corresponding unit formula (apfu) are from Table 1 (*Trq:* turquoise, *Qtz:* quartz).

909

910 Fig. 6. (a) Cu (apfu) versus A site (apfu); (b) Water contents (wt.%) versus A site (apfu) of all EPMA
911 data of turquoise-group minerals from Table 1 (modified after Foord and Taggart, 1998).

912

913 Fig. 7. BSE image coupled with LA-ICP-MS elemental maps of a turquoise grain. (*Trq:* turquoise, *Qtz:*914 quartz).

915

Fig. 8. Photomicrographs of different types of fluid inclusions in quartz and barite: (a) Type I aqueous-carbonic fluid inclusion; (b, c) primary fluid inclusion trail containing Type I and II fluid inclusions with various vapor/liquid ratios along the growth faces of quartz; (d) pseudosecondary fluid inclusion assemblage consisting of Type II and III fluid inclusions in barite; (e, f) pseudosecondary fluid inclusion assemblage consisting of Type II inclusions at +23 °C and -190 °C in quartz. (*Qtz:* quartz, *Brt:* barite, *S*: solid phase in fluid inclusion as daughter mineral or accidently trapped solid).

922

923 Fig. 9. Laser Raman spectra of representative fluid inclusions in quartz and barite: (**a**) Raman spectrum 924 of the aqueous phase in Type I fluid inclusion showing peaks of propane (2886 cm⁻¹), ethane (2943 925 cm⁻¹), and H₂O (3419 cm⁻¹); (**b**) Raman spectrum of vapor phase in Type I inclusion, showing 926 significant contents of N₂ (2327 cm⁻¹) and CH₄ (2917 cm⁻¹); (**c**) Raman spectrum for Type II pure 927 carbonic fluid inclusions, showing typical peaks of N₂ (2327cm⁻¹) and CH₄ (2917 cm⁻¹); (**d**) Raman 928 spectra for vapor and liquid phases of Type III aqueous-salt fluid inclusions, showing the narrower and 929 more symmetrical water peaks.

930

931 Fig. 10. Histograms of (\mathbf{a}, \mathbf{e}) final ice melting temperature $(T_{m, ice})$, (\mathbf{b}, \mathbf{f}) salinity, (\mathbf{c}, \mathbf{g}) total **932** homogenization temperature (T_h) , (\mathbf{d}, \mathbf{h}) total homogenization temperature after pressure correction **933** (Pressure-corrected T_h) of Type I_b, Type II and Type III fluid inclusions in quartz and barite. Average **934** values with standard deviations are sourced from Table 2. (*Qtz:* quartz, *Brt:* barite).

935

Fig. 11. Isochore plots calculated from Type I_b H₂O-CH₄-NaCl and Type III H₂O-NaCl fluid inclusions
identified in the quartz-barite-turquoise vein from Zhushan County, western Hubei Province of China.

Fig. 12. Paragenetic diagram and simplified sketch drawings showing the turquoise-related minerals and their enclosed fluid inclusions: (a) diagram showing relative timing of minerals associated with turquoise;
(b) microthermometric charts showing ranges of pressure-corrected homogenization temperatures (T_h) and salinity, where fluid inclusions of different types are labelled with various colors, the same as Fig. 10;

- 943 (c, d) drawings showing the distributions of fluid inclusions of various types enclosed in the quartz and
 944 barite at room temperature. (*Trq:* turquoise, *Qtz:* quartz, *Brt:* barite, *Fls:* fluid inclusions).
- 945

Fig. 13. (a) Hydrogen *versus* calculated oxygen isotopic compositions diagram indicating ore fluid
compositions from the turquoise deposit in Zhushan County, western Hubei Province of China. Also
shown are fields for metamorphic fluids (Taylor, 1974), magmatic water (Hedenquist and
Lowenstern,1994), and organic water (Sheppard, 1986); (b) comparison of carbon isotopic compositions
of CO₂ in the quartz fluid inclusions with data for various carbon sources (data after Veizer et al., 1980;
Taylor, 1986; Ohmoto, 1972; Hou, 2008).

952 Table captions

- **Table 1.** EPMA data (wt%) and calculated unit formula (apfu), based on 11 cations, for turquoise-group
- 954 minerals from Zhushan County.
- **Table 2.** Summary of microthermometic data of fluid inclusions from the quartz-barite-turquoise vein inZhushan County.
- **Table 3.** Raman spectra and band assignment of the individual fluid inclusion.
- **Table 4.** Hydrogen, oxygen and carbon isotope analyses of quartz and fluid inclusions from thequartz-barite-turquoise vein in Zhushan County.
- 960

961 CRediT authorship contribution statement

- 962 WTL: Methodology, Formal analysis, Investigation, Writing Original Draft; SYJ: Conceptualization,
- 963 Resources, Supervision, Funding acquisition, Writing Review & Editing; HZ and PLC: Methodology,
- 964 Resources.

965

966 Declaration of competing interest

- 967 The authors declare that they have no known competing financial interests or personal relationships
- 968 that could have appeared to influence the work reported in this paper.

969

970 Data and materials availability

- 971 All the data used in this paper are listed as Tables 1-4 within this paper, and are also available from the
- 972 corresponding author on reasonable request.

Table 1EPMA data (wt%) and unit formula (apfu), based on 11 cations, for turquoise-group minerals from Zhushan country.

	1	2	3	4	5	6	7	8	9	10	11	12	13
Trq ^I in quartz-barite vein					$\mathrm{Tr}q^{\mathrm{II}}$ in	quartz-bar	rite vein			Trq ^I in v	vall rock		
Al_2O_3	37.52	37.01	37.98	37.85	38.14	37.55	37.58	38.49	38.98	39.76	40.34	37.66	38.12
P_2O_5	36.48	37.84	36.05	36.42	37.19	36.53	36.29	37.29	36.31	37.84	37.20	34.81	35.19
SiO_2	0.00	0.00	0.00	0.01	0.00	0.04	0.02	0.03	0.03	0.00	0.04	0.00	0.00
CuO	8.35	8.04	8.14	7.69	7.83	7.95	8.13	6.35	5.79	3.62	3.08	7.98	8.03
FeO^T	0.74	0.64	0.62	0.57	0.53	0.55	0.60	0.52	0.55	0.33	0.23	0.70	0.56
SO_3	0.14	0.14	0.11	0.18	0.04	0.16	0.18	0.23	0.20	0.00	0.11	0.27	0.29
ZnO	0.07	0.10	0.09	0.07	0.16	0.14	0.06	0.20	0.34	0.21	0.19	0.14	0.12
UO_2	0.02	0.04	0.10	0.04	0.00	0.00	0.00	0.00	0.00	0.04	0.06	0.01	0.02
Cr_2O_3	0.19	0.11	0.14	0.14	0.13	0.09	0.15	0.06	0.05	0.00	0.02	0.10	0.09
K ₂ O	0.04	0.06	0.04	0.05	0.05	0.08	0.01	0.10	0.06	0.05	0.03	0.07	0.07
V_2O_3	0.05	0.05	0.08	0.06	0.06	0.03	0.08	0.02	0.04	0.09	0.05	0.08	0.08
CaO	0.00	0.05	0.01	0.02	0.01	0.02	0.03	0.07	0.10	0.03	0.00	0.03	0.04
BaO	0.17	0.23	0.26	0.23	0.19	0.13	0.24	0.25	0.35	0.15	0.13	0.10	0.10
TiO ₂	0.06	0.06	0.00	0.00	0.01	0.02	0.00	0.00	0.00	0.00	0.03	0.73	0.50
$\mathrm{H}_{2}\mathrm{O}^{\mathrm{a}}$	16.10	15.61	16.39	16.68	15.64	16.68	16.65	16.38	17.17	17.84	18.50	17.32	16.82
Total ^b	83.83	84.37	83.62	83.33	84.34	83.29	83.37	83.61	82.80	82.12	81.51	82.68	83.21
Total	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
Al	5.89	5.79	5.96	5.96	5.93	5.92	5.92	6.02	6.13	6.26	6.37	6.04	6.05
Р	4.11	4.25	4.06	4.12	4.16	4.14	4.11	4.19	4.10	4.28	4.22	4.01	4.01
Cu	0.84	0.81	0.82	0.78	0.78	0.80	0.82	0.64	0.58	0.37	0.31	0.82	0.82
Fe	0.08	0.07	0.07	0.06	0.06	0.06	0.07	0.06	0.06	0.04	0.03	0.08	0.06
S	0.01	0.01	0.01	0.02	0.00	0.01	0.02	0.02	0.02	0.00	0.01	0.01	0.01
Zn	0.01	0.01	0.01	0.01	0.02	-	0.01	0.02	0.03	0.02	0.02	0.01	0.01
Cr	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01
Κ	0.03	0.02	0.02	0.02	0.02	0.02	0.03	0.01	0.01	0.00	0.00	0.01	0.01
V	0.00	0.01	0.00	0.00	0.00	0.01	0.00	0.01	0.01	0.00	0.00	0.01	0.01
Ca	0.01	0.01	0.01	0.01	0.01	0.00	0.01	0.00	0.01	0.01	0.01	0.00	0.01
Ba	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01
Ti	0.02	0.02	0.03	0.02	0.02	0.01	0.02	0.02	0.03	0.01	0.01	0.07	0.05
OH	7.24	6.44	7.57	7.25	7.11	7.08	7.24	6.90	7.43	6.84	7.16	7.91	7.93
A site	0.97	0.92	0.93	0.88	0.88	0.89	0.93	0.73	0.70	0.44	0.37	0.93	0.91
B site	5.89	5.80	5.97	5.96	5.94	5.93	5.92	6.03	6.14	6.27	6.38	6.05	6.06
T site	4.12	4.26	4.07	4.13	4.16	4.16	4.13	4.22	4.13	4.28	4.24	4.02	4.02

Notes: a: Calculated by difference; b: sum of particular components without water contents.

Table 2.

Host minerals ¹	Inclusion	T _m (°C)	$T_{m,ice}(^{\circ}C)$	T _h (°C)	Pressure-corrected	Salinity (wt. % NaCl eq.) ²
	type				T _h (°C)	
Quartz (Qtz ^I)	Type I _a	/	-6.62.5	357-455	/	4.4-11.9
Quartz (Qtz ^I)	Type I _b	/	-5.51.4 (-3.2 ± 1.0)	217-340 (276 ± 37)	347-470 (406 ± 37)	2.5-9.9 (5.8 ± 1.8)
Quartz (Qtz ^I)	Type II	/	/	-145127 (-139 ± 6)	/	/
Barite (Brt ^I)	Type III	-24.2	-2.30.7 (-1.3 ± 0.6)	195-355 (292 ± 43)	325-485 (422 ± 43)	1.2-4.1 (2.2 ± 1.0)
Barite (Brt ^I)	Type II	/	/	-144126 (-139 ± 6)	/	/
Quartz (Qtz ^{II})	Type III	-23.921.9	-5.20.9 (-2.8 ± 0.8)	136-315 (239 ± 40)	186-365 (289 ± 40)	1.6-9.3 (5.0 ± 1.0)
Quartz (Qtz ^{II})	Type II	/	/	-145126 (-139 ± 5)	/	/
Barite (Brt ^{II})	Type III	-21.3	-2.71.1 (-1.9 ± 0.6)	222-341 (238 ± 11)	272-391 (288 ± 11)	1.8-6.6 (4.1 ± 1.6)

Summary of microthermometric data of fluid inclusions from the quartz-barite-turquoise vein in Zhushan country.

Abbreviations: T_m = First ice melting temperature; $T_{m, ice}$ = Final ice-melting temperature; T_h = analyzed temperature of final homogenization; Pressure-corrected T_h = temperature of final homogenization after the pressure correction; Type I_a = vapor-rich aqueous-carbonic fluid inclusion; Type I_b = liquid-rich aqueous-carbonic fluid inclusion; type III = carbonic fluid inclusion; Type III = aqueous-salt fluid inclusion.

¹ Mineral abbreviation is same as Fig. 4

² Salinities of type I and III inclusions calculated from the equation of Davis et al. (1990)

³ In parentheses, bold number denotes the average value with standard deviations

Table 3

Wavenumber/cm ⁻¹	Assignment	Raman shift of peak/cm ⁻¹	Reference
2886	C_3H_8	2890	Burke, 2001
2943	C_2H_6	2954	Burke, 2001
2327	N_2	2331	Herzberg, 1950
2917	CH_4	2917/3020	Brunsgaard-Hansen et al., 2002
3419	H ₂ O liquid	2750-3900	Walrafen, 1964, 1967

Raman spectra and band assignment of the individual fluid inclusion.

Table 4Hydrogen, oxygen and carbon isotope analyses of the turquoise deposit in Zhushan Country.

Min ¹	Average	$\delta^{18}O_{Qtz}(\%)$	$\delta^{18}O_{\text{fluid}}(\%)^2$	δD (‰)	$\delta^{13}C_{CO2}$ (‰)	δ ¹³ C _{CH4} (‰)
	pressure-corrected					
	T _h (∘C)					
Qtz ^I	422	22.4	18.8	-111	-22.5	-30.3
Qtz ^I	422	20.9	17.3	-93	-22.9	-40.8
Qtz ^{II}	282	22.6	15.0	-104	-27.6	-31.3

Abbreviations: Sample no. = sample number; Min = minerals;

¹ For mineral abbreviation see Fig. 4

 $^{2} \delta^{18}$ O values of fluids in equilibrium with quartz were calculated using the equation of Clayton et al. (1972)

