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Abstract 13 

Feiite (Fe3TiO5) is a high-pressure Fe-Ti oxide mineral recently discovered in Martian 14 

meteorite Shergotty. Feiite is isostructural with Fe4O5, a high-pressure iron oxide stable at 15 

pressures greater than 10 GPa. The stability of feiite has yet to be studied, as it has not yet been 16 

synthesized in the laboratory. To determine the minimum pressure at which feiite can be 17 

synthesized, we have conducted multi-anvil experiments at 1200°C and at pressures ranging 18 

from 7 to 12 GPa. Major element compositions and XRD patterns indicate that we successfully 19 

synthesized feiite with an orthorhombic unit cell (Cmcm structure) in experiments conducted at 20 

pressures 8 GPa or greater. Relative to A2B2O5 phases with similar structure, feiite can be 21 

synthesized at lower pressures. Coexistence of feiite and liuite (FeTiO3-perovskite) in Shergotty 22 

indicates that the upper pressure limit of feiite stability is above 15 GPa. To investigate the effect 23 
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of oxygen fugacity on the composition and stability of feiite, we conducted an additional series 24 

of experiments at 1200°C and 10 GPa pressure in which we varied the Fe3+/Fetotal ratio of the 25 

experimental starting materials. In doing so, we identified a minimum Fe3+ content necessary to 26 

stabilize the feiite structure (Fe3+/Fetotal = 0.26 at 10 GPa and 1200°C). The importance of Fe3+ 27 

for feiite stability suggests this phase would not form in lunar or HED meteorites, where iron-28 

titanium oxides contain little to no ferric iron. Though our experimental results can only place a 29 

lower limit on the shock pressures experienced in Shergotty, the determined pressure stability 30 

indicates feiite could also be present in diamond-bearing terrestrial rocks sourced from the upper 31 

mantle or transition zone. Additionally, the presence of feiite would be an indicator of source 32 

Fe3+/ Fetotal. 33 

  34 
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Introduction 35 

Feiite (Fe3TiO5) is a high-pressure Fe-Ti oxide mineral recently discovered in a shock-36 

induced melt pocket within the Martian meteorite Shergotty (Ma and Tschauner 2018; Ma et al. 37 

2021). Feiite is isostructural with Fe4O5, a high-pressure iron oxide stable at pressures greater 38 

than 8 GPa (Lavina et al. 2011), and other “CaFe3O5-type” oxides with Cmcm space group 39 

symmetry. Additional high-pressure oxides with similar stoichiometry exist but have a modified 40 

ludwigite-type structure with Pbam space group symmetry (e.g., Ishii et al. 2017). Together, 41 

these high-pressure oxide phases can be described by the general formula A2+
2 B3+

2 O5 with A = 42 

Fe2+, Mg2+, Mn2+, Ni2+, Co2+, and B = Fe3+, Cr3+, Al3+ (e.g., Enomoto et al. 2009; Woodland et 43 

al. 2013; Ishii et al. 2014; Boffa Ballaran et al. 2015; Ishii et al. 2015, 2017; Hong et al. 2016, 44 

2018, 2022). Similar to magnetite, this oxide structure allows for a mix of iron oxidation states 45 

(Fe2+ and Fe3+), and thus could be important to interpreting the geophysical and magnetic 46 

properties of planetary mantles (Fei et al. 1999). When identified in natural samples, the 47 

Fe3+/Fetotal of A2B2O5-type oxides may be indicative of source oxygen fugacity (Ishii et al. 2018, 48 

Huang et al. 2021). 49 

Natural feiite was found to contain 66% feiite endmember (Fe3TiO5), 20% Fe4O5, 10% 50 

(Fe,Mg,Mn,Ca)2(Al,Cr,V)2O5, and 4% Fe3SiO5 (Ma et al. 2021). The chemistry of the natural 51 

occurrence suggests that a solid solution exists between feiite and the other A2B2O5-type oxides, 52 

notably Fe4O5. Solid solution between (Fe2+)2(Fe2+Ti4+)O5 and (Fe2+)2(Fe3+)2O5 would require 53 

the coupled substitution Fe2+Ti4+ = 2Fe3+ to maintain charge balance. This coupled substitution is 54 

commonly observed in Fe-Ti oxide mineral solid solutions, such as that between ülvospinel 55 

(Fe2+
2Ti4+O4) and magnetite (Fe2+Fe3+

2O4), as well as that between ilmenite (Fe2+Ti4+O3) and 56 

hematite (Fe3+
2O3). Importantly, the coupled substitution of Fe2+ and Ti4+ for 2Fe3+ is highly 57 
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sensitive to temperature and oxygen fugacity, and thus, the Ti content of coexisting Fe-Ti oxides 58 

is often used as a geothermometer and oxybarometer (Buddington and Lindsley 1964). In this 59 

way, feiite may be calibrated as an indicator for the oxygen fugacity of martian magmas. This 60 

oxybarometer would be applicable to other planetary bodies should feiite be discovered in 61 

additional meteorite or terrestrial samples.  62 

Feiite likely formed from shock metamorphism of an Fe-Ti oxide precursor during an 63 

impact event on Mars. Though the high-pressure phase transitions in Fe2TiO4 are known (Akaogi 64 

et al. 2019), the stability of Fe3TiO5 has yet to be studied as it has not yet been synthesized in the 65 

laboratory. Recoverable Fe4O5 has been synthesized at pressures greater than 8 GPa, and the 66 

minimum pressure of stability increases with increasing oxygen fugacity (Lavina et al. 2011; 67 

Woodland et al. 2012, 2013; Myhill et al. 2016). Another synthetic A2B2O5-type oxide, 68 

Mg2Fe2O5, has been synthesized at pressures greater than 11 GPa (Uenver-Thiele et al. 2017). 69 

We have conducted the first feiite synthesis experiments and defined the minimum pressure and 70 

composition range required for synthesis of the new mineral. Comparing our synthetic Fe3TiO5 71 

to studies of Fe4O5 and Mg2Fe2O5 elucidates the effects of Ti and oxygen fugacity on the 72 

stability, structure, and chemistry of A2B2O5-type oxides. 73 

 74 

Experimental and Analytical Methods 75 

Multi-anvil experiments 76 

We conducted synthesis experiments using the split-cylinder (Walker 1991) type multi-anvil 77 

presses at Carnegie Earth and Planets Laboratory. Starting materials were made from mixtures of 78 

FeO (Alfa Aesar 99.5%), Fe2O3 (Alfa Aesar 99.995%), and FeTiO3 (Alfa Aesar 99.8+%) 79 

powders that targeted intermediate compositions between Fe3TiO5 and Fe4O5. Mixes were made 80 
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with Fe3TiO5:Fe4O5 molar ratios equal to 50:50, 60:40, and 80:20. Multi-anvil experiments were 81 

conducted at pressures ranging from 7 GPa to 12 GPa (Table 1) using a 14/8 assembly with a Re 82 

heater and ZrO2 insulator (Figure 1). Pressure was calibrated using the CaGeO3 garnet-perovskite 83 

transition at 1140°C and 6 GPa, the coesite-stishovite transition at 1500°C and 10 GPa, and the 84 

olivine-wadsleyite transition at 1627°C and 14.4 GPa (Bertka and Fei 1997; Bennett et al. 2016). 85 

Sample mixes were held within a welded Au capsule approximately 3 mm in height, and the Au 86 

capsule was contained within an Al2O3 sleeve (Figure 1). Each experiment was pressurized to the 87 

target pressure, then heated to 1200°C as monitored with a Type C thermocouple. Run durations 88 

ranged from 12 to 36 hours (Table 1). Experiments were quenched by turning off the power to 89 

the assembly. To investigate two compositions at the same pressure and temperature condition, 90 

experiment PL1504 consisted of two welded Au sample capsules stacked vertically and 91 

contained within a 4-mm length Al2O3 sleeve. The two samples from this assembly are 92 

designated with a “T” and “B”, with sample “T” having been located closer to the thermocouple. 93 

After recovery, sample capsules were cut in half, mounted in epoxy, and polished for analysis. 94 

 95 

Analysis of recovered samples 96 

Quenched samples were analyzed for major element chemistry (Ti, Fe, Mg, and O) using the 97 

JEOL JXA-8530F electron microprobe at Carnegie Earth and Planets Laboratory. Analyses were 98 

acquired with a 15 kV accelerating voltage, 25 nA current, and 1 µm beam diameter. A 99 

conventional, linear peak-to-background correction was applied, and the chosen analytical 100 

standards were Zagi Mountain ilmenite (Ti), ZCA Mine magnetite (Fe), San Carlos olivine (Mg), 101 

and Alfa Aesar synthetic spinel (O). Data were processed using Probe for EPMA software 102 
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(http://www.probesoftware.com/). Figure 2 presents representative back-scattered electron 103 

images of run products that were used to identify phases and evaluate texture.  104 

For each sample, phase identification was confirmed by powder XRD patterns acquired 105 

using the Bruker D8 X-ray diffractometer equipped with an Incoatec CuK⍺ microfocus source 106 

and Lynxeye detector at Carnegie Earth and Planets Laboratory. For LO1723, we extracted the 107 

sample from the Au capsule and crushed the material to a powder in order to improve powder 108 

averaging statistics, though some preferred orientation of grains was still observed. All other 109 

samples were analyzed in the sample capsule, and thus some XRD patterns exhibit preferred 110 

orientation of grains and/or diffraction associated with the Au sample capsule. 111 

 112 

Results and Discussion 113 

Pressure dependence of Fe3TiO5 stability  114 

We have determined that the lower-pressure stability limit of feiite lies between 7 and 8 GPa at 115 

1200°C. The experimental series we used to define the minimum pressure for feiite synthesis 116 

was performed on the starting composition with 50 mol% Fe3TiO5 50 mol% Fe4O5. Major 117 

element compositions and XRD patterns indicate that we successfully synthesized feiite with an 118 

orthorhombic unit cell (Cmcm structure) in experiments conducted from 8 to 12 GPa (Table 2, 119 

Figure 3). For the 50 mol% Fe3TiO5 50 mol% Fe4O5 starting material, the compositions of feiite 120 

synthesized at 12 GPa (LO1724), 10 GPa (PL1498), and 9 GPa (PL1503) are the same within the 121 

measured analytical uncertainty. Further, the similarity in feiite compositions between the 12-122 

hour syntheses and the 36-hour run duration experiment (LO1724) indicate that a 12-hour run 123 

time was sufficient for equilibration at the experimental temperature of 1200°C. For each 124 













 12

feiite stability requires Fe3+, this phase would not form in more reducing environments, such as 238 

those in lunar or HED meteorites (Sato et al. 1973, Stolper 1977). 239 

 240 

Implications 241 

 242 

Here we have presented the first experimental synthesis of feiite and identified compositional 243 

and pressure limitations on its stability. Though our experimental results can only place a lower 244 

limit on the shock pressures experienced in Shergotty, the determined pressure stability and 245 

oxygen fugacity of Earth indicate feiite could also be present in terrestrial diamond-bearing 246 

rocks. For instance, feiite may be found in rocks with diamonds that have majoritic garnet 247 

inclusions from the deep upper mantle or transition zone (Stachel et al. 2005; Collerson et al. 248 

2010). Additionally, the presence of feiite would be an indicator for source Fe3+/Fetotal. 249 

Inclusions of Fe-Ti oxide have been found in “ultradeep” diamonds in kimberlites 250 

sourced from the lower mantle (Walter et al. 2011; Akaogi et al. 2019). It would be interesting to 251 

re-examine some of the Fe-Ti oxide inlcusions in light of our new understanding of high-252 

pressure A2B2O5-type oxides. For example, one Fe-Ti oxide inclusion (Ju5-47) from the Juina-5 253 

kimberlite in Brazil (Walter et al. 2011) identified as ülvospinel by Raman spectroscopy is 254 

particularly intriguing because the major element analysis of the “ülvospinel” has a reported 255 

stochiometry of 4 cations to 5 oxygens, which is consistent with A2B2O5 instead of spinel 256 

(AB2O4). If this phase is indeed an A2B2O5-type oxide, the chemistry is approximately 80% 257 

Fe3TiO5, 10% Fe4O5, and 10% (Fe,Mg)2Al2O5. Assuming stoichiometric components and 258 

valence states Ti4+, Al3+, and Mg2+, the estimated Fe3+/Fetotal is 0.09 for this grain. This 259 

calculation assumes that the chemical composition reported in Walter et al. (2011) is 260 
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representative of one mineral, however the composition may instead represent a mixture of 261 

ulvöspinel and another oxide phase. Given that feiite was only recently discovered in martian 262 

meteorite Shergotty, future structural characterization of Fe-Ti oxide inclusions in deep 263 

diamonds might lead to discovery of feiite with a terrestrial origin.  264 

Feiite has the potential to be calibrated as an oxybarometer in planetary materials. Solid 265 

solution between feiite and Fe4O5 contains both Fe2+ and Fe3+, and the titanium content of feiite 266 

is a function of oxygen fugacity. Oxygen fugacity can also be estimated from the iron and 267 

magnesium compositions of Fe4O5 solid solutions (Myhill et al. 2016; Huang et al. 2021). With 268 

additional experimental data, the partitioning of iron and titanium between feiite and coexisting 269 

Fe-Ti oxide minerals, such as ilmenite or liuite, could be calibrated as an oxybarometer 270 

analogous to that for magnetite and ilmenite solid solutions (Buddington and Lindsley 1964). In 271 

this case, the relevant reactions for Fe-Ti exchange between ilmenite and feiite and the 272 

dependence of mineral stability on oxygen fugacity would be as follows: 273 

FeTiO3 + Fe4O5  Fe2O3 + Fe3TiO5 274 
Fe4O5 + ½ O2  2 Fe2O3 275 

 276 

Knowledge of the feiite stability field in pressure and compositional space combined with 277 

measurements of the ferric iron content in feiite could provide a tight constraint on its origin 278 

environment. 279 

 280 
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ron microprobe analysis.

stdev Fe Mg (wt%) stdev Mg O (wt%) stdev O Total stdev Total

0.23 0.01 0.00 26.89 0.11 100.55 0.21

0.19 0.01 0.00 31.88 0.17 100.59 0.33

0.21 0.01 0.00 26.71 0.13 100.79 0.25

0.19 0.01 0.00 31.50 0.12 100.48 0.22

0.25 0.02 0.00 26.51 0.17 100.14 0.23

0.24 0.01 0.01 31.23 0.25 99.81 0.47

0.28 0.013 0.002 27.00 0.12 100.49 0.28

0.20 0.012 0.003 31.75 0.14 100.28 0.21

0.22 0.053 0.053 27.08 0.10 100.41 0.23

0.48 0.057 0.057 24.95 0.16 99.68 0.32

0.13 0.038 0.019 31.86 0.09 100.23 0.16

0.21 0.014 0.003 26.49 0.12 100.29 0.20

0.19 0.010 0.010 31.26 0.21 100.11 0.33

0.71 0.01 0.00 26.33 0.228 100.52 0.37

0.21 0.02 0.01 24.86 0.14 100.25 0.24

0.15 0.02 0.01 31.15 0.18 100.01 0.26

0.20 0.07 0.01 24.72 0.13 100.42 0.25

0.12 0.04 0.01 31.22 0.15 100.17 0.29



O formula Ti formula stdev Ti Fe formula stdev Fe

5 0.51 0.01 3.49 0.02

3 0.74 0.01 1.21 0.01

5 0.39 0.01 3.64 0.02

3 0.67 0.00 1.31 0.01

5 0.40 0.01 3.63 0.03

3 0.68 0.01 1.31 0.01

5 0.52 0.01 3.45 0.02

3 0.73 0.00 1.23 0.01

5 0.60 0.00 3.36 0.02

1 0.04 0.00 0.82 0.01

3 0.78 0.00 1.18 0.00

5 0.40 0.01 3.65 0.02

3 0.67 0.00 1.32 0.01

5 0.32 0.04 3.76 0.06

1 0.02 0.00 0.85 0.01

3 0.62 0.00 1.37 0.01

1 0.02 0.00 0.86 0.01

3 0.64 0.00 1.35 0.01
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