1 REVISION 1

- 2 Word Count: 3275 words
- 3

4 Atomic-scale interlayer friction of gibbsite is lower than brucite due to

5 interactions of hydroxyls

- 6
- 7 Hanaya Okuda,^{1,2,*} Kenji Kawai,¹ Hiroshi Sakuma³
- 8

⁹ ¹ Department of Earth and Planetary Science, School of Science, University of Tokyo,

- 10 Bunkyo, Tokyo 113-0033, Japan
- ² Department of Ocean Floor Geoscience, Atmosphere and Ocean Research Institute,
- 12 University of Tokyo, Kashiwa, Chiba 277-8564, Japan

13 ³ Functional Clay Materials Group, National Institute for Materials Science, Tsukuba,

- 14 Ibaraki 305-0044, Japan
- ^{*} Corresponding Author: Hanaya Okuda, Department of Ocean Floor Geoscience,
- 16 Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5 Kashiwanoha,
- 17 Kashiwa, Chiba 277-8564, Japan. (okuda@aori.u-tokyo.ac.jp)

4	\sim
	x
т	σ

Abstract

19	To investigate the role of atomic-scale structure on frictional properties of gibbsite,
20	a dioctahedral-type aluminum hydroxide, we calculated the atomic-scale interlayer shear
21	properties using the first-principles method based on density functional theory. We found
22	that the presence of vacant sites within the octahedral sheet of gibbsite enables hydroxyls to
23	move to more stable positions and reduce the repulsive force, leading to a lower atomic-
24	scale shear stress of gibbsite compared with brucite, a trioctahedral-type magnesium
25	hydroxide. We also estimated the macroscopic single-crystal friction coefficient of gibbsite
26	with the assumption that only the atomic-scale interlayer friction controls macroscopic
27	friction. The estimated single-crystal friction coefficient for gibbsite is 0.36(6), which is
28	clearly lower than the experimentally obtained friction coefficient of the powdered gouge
29	of gibbsite (0.74) . This difference between the interlayer friction coefficient and gouge
30	friction coefficient suggests the presence of mechanisms that affect the frictional strength,
31	such as microstructures within a fault gouge.
32	

33

Keywords

34 Layered structure minerals, Interlayer friction, Gouge friction, Gibbsite

35

Introduction

36	Frictional strength is a fundamental physical property that controls the localization of
37	deformation within a fault zone. Layered structure minerals have lower friction coefficients
38	than common rock-forming minerals (Byerlee 1978; Morrow et al. 2000; Moore and
39	Lockner 2004). The presence of layered structure minerals can creep the San Andreas fault
40	(Carpenter et al. 2011; Lockner et al. 2011), activate low angle normal faults (Viti and
41	Collettini 2009; Collettini et al. 2019), and reduce frictional strengths of plate boundaries in
42	subduction zones (Ikari et al. 2018; Okuda et al. 2021b). The low friction coefficients of
43	layered structure minerals have been explained by their characteristic crystal structure
44	(Morrow et al. 2000; Moore and Lockner 2004; Behnsen and Faulkner 2012; Kawai et al.
45	2015; Sakuma and Suehara 2015; Niemeijer 2018; Okamoto et al. 2019; den Hartog et al.
46	2020). The frictional strength between the layers of layered structure minerals critically
47	affects the low friction coefficients of these minerals as demonstrated by friction
48	experiments of single-crystal phyllosilicates (Kawai et al. 2015; Niemeijer 2018; Okamoto
49	et al. 2019). Based on the importance of interlayer shear sliding properties, we recently
50	focused on the atomic-scale interlayer interactions and quantitatively evaluated its influence
51	of interlayer sliding on macroscopic frictional properties (Sakuma et al. 2018, 2020, 2022; 3

52	Okuda et al. 2019). These studies are hereinafter referred to as SKKS18, SKK20, SLSD22,
53	and OKS19, respectively. In SKKS18, the estimated macroscopic friction coefficient of
54	muscovite was found to be nearly identical to the experimentally obtained friction
55	coefficient of single-crystal muscovite. OKS19 and SKK20 estimated slightly higher and
56	lower single-crystal friction coefficients for brucite and pyrophyllite, respectively,
57	compared with that for muscovite. SLSD22 found that the friction coefficients for
58	interlayer sliding of montmorillonite positively depend on the ionic radii of interlayer
59	cations. These studies suggested that the difference in frictional properties for the interlayer
60	sliding potentially plays a role in the difference in macroscopic friction coefficients of
61	layered structure minerals.
62	In this study, we simulated the single-crystal friction coefficient of gibbsite using the
63	density functional theory. Gibbsite (Al(OH) ₃) has a similar crystal structure as that of
64	brucite (Mg(OH) ₂), which was studied in OKS19. Experimentally obtained friction
65	coefficients of the gouges of gibbsite and brucite were quite different; the value for gibbsite
66	is 0.74, whereas that for brucite is 0.39 (Moore and Lockner 2004; Okuda et al. 2021a). To
67	evaluate their interlayer frictional properties and their roles in their single-crystal and gouge
68	friction coefficients, herein, we discuss the difference in friction coefficients of gibbsite and 4

69	brucite and other layered structure minerals based on theoretical consideration of the
70	atomic-scale shear deformation.
71	
72	Materials
73	Al(OH) ₃ gibbsite is a dioctahedral-type layered structure mineral (Figure 1a). The space
74	group is $P2_1/n$ with lattice constants of $a = 8.684(1)$ Å, $b = 5.078(1)$ Å, $c = 9.736(2)$ Å, and
75	β = 94.54(1)° under an ambient pressure condition (Saalfeld and Wedde 1974). The
76	primitive unit cell of gibbsite contains two sheets of Al octahedra. Half of the hydroxyls on
77	the dioctahedral sheet lie parallel to the sheet and the rest stand normal to the sheet because
78	one-third of the cation sites within the gibbsite sheet are vacant (Figure 1a). In contrast to
79	gibbsite, Mg(OH) ₂ brucite has no vacant site, and hence, all the hydroxyls stand normal to
80	the sheet (Figure 1b).
81	
82	Methods
83	Potential energy surface and atomic-scale friction
84	The atomic-scale friction can be calculated by the required force to climb the peak of
85	potential energy under a given normal stress condition (Zhong and Tománek 1990; 5

86	Tománek et al.	1991). In this study,	we referred to prev	vious studies of SKKS1	8, OKS19,
----	----------------	-----------------------	---------------------	------------------------	-----------

- 87 SKK20, and SLSD22 for the method to calculate the potential energy. We prepared a
- 88 supercell that includes two Al-dioctahedral sheets and computed the interlayer energy
- 89 $E_{ad}(\mathbf{x}, z)$ at various displacements \mathbf{x} of top sheet in the *ab* plane (~0.3 Å-mesh grid) and
- 90 various interlayer distances z (0.05 Å interval; Figure 2a). This study only focuses on two
- 91 layers adjacent to the shear plane because the difference in the shear stress between two and
- 92 four-layers simulations is less than 1.2% for brucite (Okuda et al. 2019). Here, $E_{ad}(x,z)$ is
- 93 defined as:

$$E_{\rm ad}(\mathbf{x}, \mathbf{z}) = E_{\rm total}(\mathbf{x}, \mathbf{z}) - E_{\rm lower} - E_{\rm upper}, #(1)$$

94 where $E_{\text{total}}(x,z)$, E_{lower} , and E_{upper} are the calculated energies after the relaxation of positions 95 of atoms for the supercell containing two layers, only the lower layer, and the upper layer, 96 respectively. During the structural relaxation, the positions of Al atoms were fixed to define 97 the positions of upper and lower layers. When a normal force f_n is applied, the interlayer 98 distance z indicates the position where f_n balances with the repulsive interlayer force. The 99 interlayer distance z under the normal force f_n is calculated as the distance satisfying the 100 following relation (Figure 2b):

$$f_{\rm n} = -\frac{\partial}{\partial z} E_{\rm ad}(\boldsymbol{x}, z). \, \#(2)$$

101 The normal stress
$$\sigma_n$$
 is defined as $\sigma_n = f_n / S$ where *S* is the basal area of the supercell
102 (Figure 2a). The potential energy $V(\mathbf{x}, f_n)$ was then calculated by summing the interlayer
103 energy and the required work to move layers vertically against the applied normal force, as
104 follows:
105 $V(\mathbf{x}, f_n) = E_{ad}(\mathbf{x}, \mathbf{z}) + f_n \mathbf{z}. \#(3)$
106 The potential energy as a function of the displacement of top layer \mathbf{x} in the *ab* plane
107 (equation 3) is referred to as the potential energy surface (PES, Figure 3a). The shear force
108 $f_s(\mathbf{x}, f_n)$ at the displacement \mathbf{x} of upper layer along a given sliding path and under the
109 applied normal force f_n is obtained from the derivative of the potential energy along the
110 sliding path (Figure 3b):
 $f_s(\mathbf{x}, f_n) = \frac{\partial}{\partial \mathbf{x}} V(\mathbf{x}, f_n). \#(4)$

111 Note that we interpolated $V(\mathbf{x}, f_n)$ on grid points by the radial basis function with

112 multiquadric function $(\phi(r)=(1+(\varepsilon r)^2)^{1/2}$ where r is the norm from the coordinate of a grid

113 point, and ε is the adjustable constant) to obtain a smooth PES. The shear force along a

114 sliding path can be categorized to two parts, namely the energy conservative part where

115 $f_s(x, f_n) > 0$ and the energy nonconservative part where $f_s(x, f_n) < 0$ (Figure 3b). Because the

- 116 energy nonconservative part of sliding is assumed not to contribute to friction (Zhong and
- 117 Tománek 1990; Tománek et al. 1991), the averaged friction force f_{ave} on a given sliding
- 118 path is defined as:

$$f_{\text{ave}} = \frac{1}{L} \int_0^L f_f(x, f_n) dx = \frac{1}{L} \sum_{j=1}^N \Delta P E_j , \#(5)$$

119 where N is the total number of conservative parts within a given sliding path, ΔPE_j is the

accumulated potential energy at the *j*-th conservative part of sliding (see Figure 3a), *L* is the

- 121 total shear displacement on the given sliding path, and the friction force contributed only by
- 122 the energy conservative part $f_f(\mathbf{x}, f_n)$ in equation 5 is defined as:

$$f_{\rm f}(\boldsymbol{x}, f_{\rm n}) = \begin{cases} f_{\rm s}(\boldsymbol{x}, f_{\rm n}) \ (f_{\rm s} \ge 0) \\ 0 \ (f_{\rm s} < 0) \end{cases} . \#(6)$$

123 We examined the shear direction dependence by computing 360 linear sliding paths by

124 changing the direction by 1° from the [1 0 0] direction.

125

126 **Density functional theory calculations**

- 127 The potential energies were computed using the first-principles method based on density
- 128 functional theory (DFT). Quantum ESPRESSO (Giannozzi et al. 2009), was used for all the
- 129 computations. The exchange-correlation energy was expressed using the generalized

130	gradient approximation with Perdew-Burke-Ernzerhof correlation functional (Perdew et al.
131	1996). The van der Waals interaction was corrected by using the DFT-D2 method (Grimme
132	2006). Only valence electrons were considered using the GBRV pseudopotential method
133	(Garrity et al. 2014). Cutoff energies of 40.0 Ry and 320.0 Ry were applied for wave
134	functions and for electron density, respectively. K-points of 6×6×4 were selected
135	(Monkhorst and Pack 1976), and convergence thresholds of 0.01 mRy and 0.1 mRy/Bohr
136	were applied for the total energy changes and the all components of all forces, respectively.
137	We set the initial lattice parameters to $a = 8.684$ Å, $b = 5.078$ Å, $c = 9.736$ Å, and $\beta =$
138	94.54° (Saalfeld and Wedde 1974) for the most stable lattice constants (bulk structure) of
139	gibbsite. The supercell for the calculations of the PES is $a = 8.673$ Å, $b = 5.054$ Å, $c =$
140	28.547 Å (including vacuum space), and $\beta = 93.34^{\circ}$ based on the obtained bulk structure.
141	
142	Results and Discussion
143	Bulk structure of gibbsite
144	The calculated lattice parameters of gibbsite are $a = 8.673$ Å, $b = 5.054$ Å, $c = 9.516$ Å, and
145	β = 93.34°, which are consistent with previously reported lattice parameters of gibbsite at

146 ambient pressure condition (Table S1). We also calculated the lattice parameters under

147	hydrostatic compression of up to 3 GPa and the compression curve is consistent with the
148	results reported in previous studies (Table S2, Figure S1). Therefore, the applied
149	computational conditions would appropriately simulate the atomic-scale deformation of
150	gibbsite because the calculation reproduces the interatomic interactions from ambient
151	pressure to high pressure.
152	
153	Potential energy change by interlayer sliding (Potential energy surface, PES)
154	The calculated PESs for gibbsite and brucite are shown in Figure 4. The potential energies
155	for brucite were calculated in our previous study (Okuda et al. 2019).
156	For gibbsite, the lowest and highest potential energies were observed at the position of top
157	layer at (e) and (f) in Figure 4c, respectively. The variations in the potential energy are
158	explained by the repulsion among the hydroxyls of the upper and lower layers. At the
159	position (f) in Figure 4c, the hydroxyls of the upper layer are located just above those of the
160	lower layer (Figure 4f), resulting in high repulsion and unstable high potential energy. At
161	the position (e) in Figure 4c, the distance among hydroxyls on both layers is large (Figure
162	4e), and hence, the lowest potential energy was achieved. Other high potential energies on
163	the PES for gibbsite are also explained by short distance among the hydroxyls of the upper 10

164 and lower layers.

165	For brucite, the lowest and highest potential energies were observed at the positions of top
166	layer at (g) and (h) in Figure 4d, respectively. The reason for the variations is the same as
167	that for gibbsite: the hydroxyls on both the upper and lower layers face each other in the
168	unstable stacking at (h) in Figure 4d (Figure 4h for its crystal structure), whereas the
169	hydroxyls do not face each other in the stable stacking at (g) in Figure 4d (Figure 4g for its
170	crystal structure).
171	Based on relations between potential energy and stacking structures observed in both
172	gibbsite and brucite, we conclude that energy instability during deformation is primarily
173	controlled by configuration of hydroxyls on both layers. At some locations (e.g., sliding
174	from (i) to (j) in Figure 4c with a sliding distance of ~0.3 Å, Figures 4i and 4j for their
175	crystal structures), the angles of the hydroxyls on gibbsite layers changed from normal to
176	parallel to the surface or vice versa to achieve a more stable crystal structure during
177	deformation. This change in the angle of hydroxyls can occur because of the presence of
178	vacant sites in the dioctahedral sheet. In contrast, brucite does not have any vacant site in
179	the trioctahedral sheet and the angle of hydroxyls is almost fixed during the deformation.
180	

181 Atomic-scale shear stress: dependence on normal stress

182	We calculated the atomic-scale shear stress $\tau_{atom} = f_{ave} / S$ from the obtained PES as a
183	function of normal stresses (Figure 5a). The shear stress was calculated by averaging the
184	shear stresses of 360 linear sliding paths of different sliding directions (Figure 5b). The
185	error bars represent the standard deviations. The average shear stress of gibbsite is lower
186	than brucite at all normal stresses from 0 to 5 GPa. The difference in the shear stress
187	between gibbsite and brucite can be interpreted by the difference in the repulsion of the
188	hydroxyls. The lying hydroxyls of gibbsite prevent the hydroxyls on both the upper and
189	lower layers from approaching close to each other compared with those of brucite.
190	Therefore, the potential energy during deformation does not increase easily in gibbsite
191	compared with brucite under a given normal stress condition.
192	The gradient of the shear stress to the normal stress of gibbsite is smaller than that of
193	brucite (Figure 5a). This could also be due to the stability of the hydroxyls of gibbsite. As
194	the normal stress increases, the distance between the upper and lower layers decreases
195	(Figure 2b). Hence, the hydroxyls on both layers also approach close to each other,
196	increasing the potential energy and shear stress. For gibbsite, however, the presence of
197	vacant sites enables hydroxyls to move to a more stable position, and hence, the distance

198	between hydroxyls would not easily decrease. Conversely, brucite does not have vacant
199	sites within its layer; therefore, the distance between hydroxyls effectively decreases as the
200	interlayer distance decreases, which increases the potential energy and shear stress.
201	
202	Atomic-scale shear stress: dependence on sliding directions
203	For brucite (Okuda et al. 2019), the atomic-scale shear stress τ_{atom} exhibited little sliding
204	direction dependence (gray line in Figure 5b). For gibbsite, a clear sliding direction
205	dependence was observed. The directions around [0 1 0] (90°) yielded a high τ_{atom} of 0.8
206	GPa, whereas the directions around $[1 \ 0 \ 0] (0^{\circ})$ yielded a low τ_{atom} of 0.5 GPa at a normal
207	stress of 2.5 GPa (black line in Figure 5b). The difference in the shear stress would be due
208	to the presence of high potential energy area around at (f) in Figure 4c. As this high
209	potential area elongates parallel to [1 0 0], the gradient to climb the potential ridge is
210	changed by the sliding direction. For instance, we consider two sliding paths, [2 1 0] and [1
211	3 0], that cross the potential ridge shown as white area with different angles (Figure 6a)
212	having the same L value of 18 Å. Path [2 1 0] crossed the potential ridge with a low angle,
213	whereas path [1 3 0] crossed the potential ridge with a high angle (Figure 6a). Although the
214	maximum heights of the potential are similar (1.4 eV for [2 1 0] and 1.7 eV for [1 3 0] at a 13

215 normal stress of 2.5 GPa, Figure 6b), the cumulative potential energy during the

216	conservative part of sliding along path [1 3 0] is higher than that along path [2 1 0] (Figure
217	6c). This is caused by the higher gradient to climb the potential ridge (i.e., shear stress)
218	along path [1 3 0] than along path [2 1 0] (hatched area in Figure 6d). Consequently, path [1
219	3 0] had a high τ_{atom} of 0.76 GPa and path [2 1 0] had a low τ_{atom} of 0.50 GPa because the
220	high cumulative potential energy contributes directly to high shear stress according to
221	equation 5. As presented above, the direction dependence of gibbsite is influenced by the
222	angle that crosses the potential ridge: when the sliding path is subparallel to $[1 \ 0 \ 0]$ (0°), the
223	angle becomes small, which leads to a low shear stress, whereas when the sliding path is
224	subparallel to [0 1 0] (90°), the angle becomes high leading to a high shear stress. In
225	contrast, the potential ridge at (h) in Figure 4d for brucite is isotropic, which makes little
226	variation in shear stress to climb the potential ridge from any sliding direction. Hence,
227	knowing the PES is critically important to elucidate the atomic-scale frictional properties of
228	layered structure minerals as the difference in atomic-scale frictional characteristics
229	between gibbsite and brucite is originated from the difference in the shape of potential ridge.
230	
231	Implications for Macroscopic Friction Coefficients of Gibbsite and Brucite

232 Interlayer macroscopic friction coefficient

- 233 In the previous sections, we discussed the atomic-scale interlayer friction of gibbsite and
- brucite and demonstrated that gibbsite has a lower atomic-scale shear stress than brucite. In
- this section, we discuss the interlayer macroscopic friction coefficients of layered structure
- 236 minerals. The interlayer macroscopic friction coefficient $\mu_{\rm M}$ can be calculated using two
- 237 deformation properties at the asperity contact: the shear stress at the asperity contact τ and
- the yield strength of the material *p*, as follows (Bowden and Tabor 1950):

$$\mu_{\rm M} = \frac{\tau}{p}.\,\#(7)$$

239 Assuming that the theoretically calculated atomic-scale interlayer friction τ_{atom} is τ and the 240 experimental indentation hardness is p, equation 7 results in a nearly identical value to the 241 experimentally measured macroscopic friction coefficient in the case of single crystal 242 muscovite (Sakuma et al. 2018). Based on the yield strength p for gibbsite of 1.8(2) GPa 243 (Wijayaratne et al. 2017) and the calculated atomic-scale shear stress of $\tau_{atom} = 0.65(9)$ GPa 244 at a normal stress of 1.8 GPa, the $\mu_{\rm M}$ value was estimated to be 0.36(6). Both $\tau_{\rm atom}(p)$ and p 245 for gibbsite were lower than those of brucite (Wijayaratne et al. 2017; Okuda et al. 2019), 246 whereas the estimated $\mu_{\rm M}$ for gibbsite of 0.36(6) was higher than that for brucite of 0.31(3) 247 (Table 1).

248

249 Application to gouge friction coefficient

- 250 Since the estimated $\mu_{\rm M}$ for gibbsite was higher than that for brucite, the difference in the
- 251 experimentally obtained gouge friction coefficient μ_g between two minerals (0.74 for
- gibbsite, 0.39 for brucite, Table 1) would be partially contributed by the difference in $\mu_{\rm M}$.
- 253 However, an additional frictional mechanism will be required to fully explain the difference
- 254 in μ_g . Most interlayer macroscopic frictions μ_M are lower than the gouge friction μ_g as

reported for brucite (Okuda et al. 2019, 2021a), pyrophyllite (Moore and Lockner 2004;

256 Sakuma et al. 2020), muscovite (Kawai et al. 2015; Sakuma et al. 2018), and

- 257 montmorillonite (Sakuma et al. 2022). Mohs hardness may be related to μ_g (Moore and
- Lockner 2004), although our data is insufficient to test their relationship. A previous study
- 259 proposed a model with randomly oriented particles to explain the μ_g for pyrophyllite
- 260 (Sakuma et al. 2020). Although this model seems to quantitatively explain the μ_g for brucite,
- 261 the modeled macroscopic friction coefficients were generally lower than reported μ_g
- 262 (Figure 7). In the case of deformed gouges of layered structure minerals, alignment of the
- 263 platy particles has often been observed along localized shear bands such as Riedel shear, P,
- and Y foliations (Moore and Lockner 2004; Haines et al. 2013) and the interactions at the 16

265	edges of aligned particles increases μ_g compared with μ_M (den Hartog et al. 2020). Some
266	studies that used the foliated wafers of intact fault rocks reported clear differences in the
267	friction coefficients from powdered fault rocks, which emphasizes the strong influence of
268	fault fabric on frictional strengths (Collettini et al. 2009; Ikari et al. 2011). In future studies,
269	such detailed microstructural information from experiments should be included in the
270	model to account for the gouge frictional properties. These considerations of the frictional
271	strength of gouge will be beneficial for modelling fault slip behavior and influence on
272	earthquakes based on mineral compositions of the fault.
273	
274	Conclusions
275	In this study, we theoretically calculated the atomic-scale interlayer frictional
275 276	In this study, we theoretically calculated the atomic-scale interlayer frictional characteristics of gibbsite using the first-principles method based on density functional
275 276 277	In this study, we theoretically calculated the atomic-scale interlayer frictional characteristics of gibbsite using the first-principles method based on density functional theory. The atomic-scale frictional characteristics were obtained using variations in the
275 276 277 278	In this study, we theoretically calculated the atomic-scale interlayer frictional characteristics of gibbsite using the first-principles method based on density functional theory. The atomic-scale frictional characteristics were obtained using variations in the potential energy during interlayer deformation (PES), which are primarily controlled by
275 276 277 278 279	In this study, we theoretically calculated the atomic-scale interlayer frictional characteristics of gibbsite using the first-principles method based on density functional theory. The atomic-scale frictional characteristics were obtained using variations in the potential energy during interlayer deformation (PES), which are primarily controlled by stacking of hydroxyls on the octahedral sheets. The atomic-scale shear stress was calculated
275 276 277 278 279 280	In this study, we theoretically calculated the atomic-scale interlayer frictional characteristics of gibbsite using the first-principles method based on density functional theory. The atomic-scale frictional characteristics were obtained using variations in the potential energy during interlayer deformation (PES), which are primarily controlled by stacking of hydroxyls on the octahedral sheets. The atomic-scale shear stress was calculated using the spatial derivative of PES. The high potential energy ridge in PES for gibbsite

282	atomic-scale shear stresses observed subparallel to [0 1 0] and [1 0 0], respectively. Some
283	hydroxyls on gibbsite stand parallel to the layer and keep a distance from each other owing
284	to the existence of vacant sites within the octahedral sheet of gibbsite, leading to smaller
285	atomic-scale shear stress for gibbsite compared with brucite. The macroscopic interlayer
286	friction coefficient μ_M was calculated by the adhesion theory of friction using the obtained
287	interlayer atomic-scale frictional characteristics. The estimated μ_M for gibbsite based on the
288	atomic-scale interlayer shear stress $\tau_{\text{atom}}(p)$ of 0.65(9) for the reported yield strength p of
289	1.8(2) GPa is 0.36(6), which is clearly lower than the experimental friction coefficient μ_g of
290	0.74 for the dry powdered sample. This difference between μ_M and μ_g was also reported in
291	previous studies on layered structure minerals, suggesting the presence of additional
292	deformation mechanisms such as microstructures within the fault gouge that would be
293	useful for the practical estimation of fault slip behavior.
294	

295 Acknowledgement

We thank Diane Moore and an anonymous reviewer for helpful comments. We also thankChristopher J. Spiers for the constructive discussion. Computational resources were

298 provided by the "Initiative on Promotion of Supercomputing for Young or Women

299	Researchers" of the Supercomputing Division, Information Technology Center, University
300	of Tokyo and the "Joint Usage/Research Center for Interdisciplinary Large-scale
301	Information Infrastructures" in Japan (Project ID: EX18303). This study was partially
302	supported by KAKENHI JP20J20413. All crystal structures were drawn by VESTA
303	(Momma and Izumi 2011).
304	
305	References
306	Behnsen, J., and Faulkner, D.R. (2012) The effect of mineralogy and effective normal stress on frictional
307	strength of sheet silicates. Journal of Structural Geology, 42, 49-61.
308	Bowden, F.P., and Tabor, D. (1950) The friction and lubrication of solids. Oxford University Press.
309	Byerlee, J.D. (1978) Friction of rocks. Pure and Applied Geophysics PAGEOPH, 116, 615–626.
310	Carpenter, B.M., Marone, C., and Saffer, D.M. (2011) Weakness of the San Andreas Fault revealed by
311	samples from the active fault zone. Nature Geoscience, 4, 251–254.
312	Collettini, C., Niemeijer, A.R., Viti, C., and Marone, C. (2009) Fault zone fabric and fault weakness. Nature,
313	462, 907–910.
314	Collettini, C., Tesei, T., Scuderi, M.M., Carpenter, B.M., and Viti, C. (2019) Beyond Byerlee friction, weak
315	faults and implications for slip behavior. Earth and Planetary Science Letters, 519, 245–263.

- den Hartog, S.A.M., Faulkner, D.R., and Spiers, C.J. (2020) Low Friction Coefficient of Phyllosilicate Fault
- 317 Gouges and the Effect of Humidity: Insights From a New Microphysical Model. Journal of Geophysical
- 318 Research: Solid Earth, 125, e2019JB018683.
- 319 Garrity, K.F., Bennett, J.W., Rabe, K.M., and Vanderbilt, D. (2014) Pseudopotentials for high-throughput
- 320 DFT calculations. Computational Materials Science, 81, 446–452.
- 321 Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L.,
- 322 Cococcioni, M., Dabo, I., and others (2009) QUANTUM ESPRESSO: a modular and open-source
- 323 software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 21,
- 324 395502.
- 325 Grimme, S. (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion
- 326 correction. Journal of Computational Chemistry, 27, 1787–1799.
- 327 Haines, S.H., Kaproth, B., Marone, C., Saffer, D.M., and van der Pluijm, B.A. (2013) Shear zones in clay-rich
- fault gouge: A laboratory study of fabric development and evolution. Journal of Structural Geology, 51,
- 329 206–225.
- 330 Ikari, M.J., Niemeijer, A.R., and Marone, C. (2011) The role of fault zone fabric and lithification state on
- 331 frictional strength, constitutive behavior, and deformation microstructure. Journal of Geophysical
- 332 Research: Solid Earth, 116, 1–25.

- 333 Ikari, M.J., Kopf, A.J., Hüpers, A., and Vogt, C. (2018) Lithologic control of frictional strength variations in
- 334 subduction zone sediment inputs. Geosphere, 14, 604–625.
- 335 Kawai, K., Sakuma, H., Katayama, I., and Tamura, K. (2015) Frictional characteristics of single and
- 336 polycrystalline muscovite and influence of fluid chemistry. Journal of Geophysical Research: Solid
- 337 Earth, 120, 6209–6218.
- 338 Lockner, D.A., Morrow, C.A., Moore, D.E., and Hickman, S.H. (2011) Low strength of deep San Andreas
- fault gouge from SAFOD core. Nature, 472, 82–85.
- 340 Momma, K., and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and
- 341 morphology data. Journal of Applied Crystallography, 44, 1272–1276.
- 342 Monkhorst, H.J., and Pack, J.D. (1976) Special points for Brillouin-zone integrations. Physical Review B, 13,
- 343 5188–5192.
- 344 Moore, D.E., and Lockner, D.A. (2004) Crystallographic controls on the frictional behavior of dry and water-
- 345 saturated sheet structure minerals. Journal of Geophysical Research, 109, B03401.
- 346 Morrow, C.A., Moore, D.E., and Lockner, D.A. (2000) The effect of mineral bond strength and adsorbed
- 347 water on fault gouge frictional strength. Geophysical Research Letters, 27, 815–818.
- 348 Niemeijer, A.R. (2018) Velocity-dependent slip weakening by the combined operation of pressure solution
- and foliation development. Scientific Reports, 8, 4724.

- 350 Okamoto, A.S., Verberne, B.A., Niemeijer, A.R., Takahashi, M., Shimizu, I., Ueda, T., and Spiers, C.J.
- 351 (2019) Frictional Properties of Simulated Chlorite Gouge at Hydrothermal Conditions: Implications for
- 352 Subduction Megathrusts. Journal of Geophysical Research: Solid Earth, 124, 4545–4565.
- 353 Okuda, H., Kawai, K., and Sakuma, H. (2019) First-principles Investigation of Frictional Characteristics of
- Brucite: An Application to Its Macroscopic Frictional Characteristics. Journal of Geophysical Research:
- 355 Solid Earth, 124, 10423–10443.
- 356 Okuda, H., Katayama, I., Sakuma, H., and Kawai, K. (2021a) Effect of normal stress on the frictional
- 357 behavior of brucite: application to slow earthquakes at the subduction plate interface in the mantle
- 358 wedge. Solid Earth, 12, 171–186.
- 359 Okuda, H., Ikari, M.J., Roesner, A., Stanislowski, K., Hüpers, A., Yamaguchi, A., and Kopf, A.J. (2021b)
- 360 Spatial Patterns in Frictional Behavior of Sediments Along the Kumano Transect in the Nankai Trough.
- 361 Journal of Geophysical Research: Solid Earth, 126.
- 362 Perdew, J.P., Burke, K., and Ernzerhof, M. (1996) Generalized Gradient Approximation Made Simple.
- 363 Physical Review Letters, 77, 3865–3868.
- 364 Saalfeld, H., and Wedde, M. (1974) Refinement of the crystal structure of gibbsite, Al(OH) 3. Zeitschrift für
- 365 Kristallographie, 139, 129–135.
- 366 Sakuma, H., and Suehara, S. (2015) Interlayer bonding energy of layered minerals: Implication for the

relationship with friction coefficient. Journal of Geophysical Research: Solid Earth, 120, 2212-2219.

368	Sakuma, H., Kawai, K., Katayama, I., and Suehara, S. (2018) What is the origin of macroscopic friction?
369	Science Advances, 4, eaav2268.
370	Sakuma, H., Kawai, K., and Kogure, T. (2020) Interlayer energy of pyrophyllite: Implications for
371	macroscopic friction. American Mineralogist, 105, 1204–1211.
372	Sakuma, H., Lockner, D.A., Solum, J., and Davatzes, N.C. (2022) Friction in clay-bearing faults increases
373	with the ionic radius of interlayer cations. Communications Earth & Environment, 3, 116.
374	Tománek, D., Zhong, W., and Thomas, H. (1991) Calculation of an Atomically Modulated Friction Force in
375	Atomic-Force Microscopy. Europhysics Letters (EPL), 15, 887–892.
376	Viti, C., and Collettini, C. (2009) Growth and deformation mechanisms of talc along a natural fault: a
377	micro/nanostructural investigation. Contributions to Mineralogy and Petrology, 158, 529-542.
378	Wijayaratne, H., McIntosh, G., Hyland, M., Perander, L., and Metson, J. (2017) Relationships Between
379	Smelter Grade Alumina Characteristics and Strength Determined by Nanoindentation and Ultrasound-
380	Mediated Particle Breakage. Metallurgical and Materials Transactions A, 48, 3046–3059.
381	Zhong, W., and Tománek, D. (1990) First-principles theory of atomic-scale friction. Physical Review Letters,
382	64, 3054–3057.

383

367

- **Table 1.** Interlayer friction coefficients for layered structure minerals. $\tau_{ave}(p)$: Theoretically
- 386 calculated atomic-scale interlayer friction τ_{ave} under the normal stress of p (yield strength of
- 387 the material); $\mu_{\rm M}$: Interlayer macroscopic friction coefficient calculated as $\tau_{\rm ave}(p)/p$
- 388 (equation 7); μ_g : Experimentally obtained gouge friction coefficients.

Mineral	$ au_{\mathrm{ave}}(p)$ (GPa)	p (GPa)	$\mu_{ m M}$	$\mu_{ m g}$
Gibbsite	0.65(9) ^a	1.8(2) ^b	0.36(6) ^a	0.74 ^c
Brucite	$1.23(6)^{d}$	$4.03(36)^{d}$	$0.31(3)^{d}$	0.39 ^e
Muscovite	$1.40(31)^{\rm f}$	$6.27(26)^{\rm f}$	$0.22(5)^{\rm f}$	0.50 ^g
Pyrophyllite	$0.44(7)^{h}$	$3.3(4)^{i}$	$0.13(3)^{h}$	0.38 ^c
^a This study. ^b Wijayaratne et al. (2017). ^c Moore and Lockner (2004). The error for brucite				
represents the range of stick-slip behavior. ^d Okuda et al. (2019). ^e Okuda et al. (2021a).				

^fSakuma et al. (2018). ^gKawai et al. (2015). ^hSakuma et al. (2020). ⁱZhang et al. (2013).

389

390

Figure 1.

393	Crystal structures of (a) gibbsite and (b) brucite. The layers in the upper panels are the
394	lowest layer of each material. The areas surrounded by black lines are the primitive unit
395	cells for gibbsite and brucite.
396	
397	Figure 2
398	(a) Configuration of the supercell for gibbsite used in this study. The shaded area represents
399	the basal area S of the supercell. The shear plane is located between two layers of gibbsite.
400	A three-dimensional periodic boundary condition was employed, and sufficient vacuum
401	space (>20 Å normal to the layers) was used to avoid artificial effects due to the periodic
402	boundary condition (b) Relationship between interlayer displacement z from the most
403	stable interlayer distance of 4.750 Å, and potential energy E_{ad} . The inset shows the
404	relationship between z and the normal stress σ_n calculated using equation 3. The lines show
405	the data at the positions of top layer at (e) (solid black line with black circles), (j) (grey line
406	with white circles), and (f) (black dashed line with black triangles) in Figure 4c.
407	

408 **Figure 3.**

409	Schematic illustration of the relation between (a) potential energy and (b) shear force
410	during the relative deformation of the top and bottom layers (illustrated at the top) under a
411	constant normal force. The total of potential increase ΔPE_i during each conservative parts
412	of sliding directly contributes to the atomic-scale shear force (equation 5).
413	
414	Figure 4.
415	PESs for gibbsite (a and c) and brucite (b and d) under normal stresses of 0.0 GPa and 5.0
416	GPa, respectively. The areas surrounded by white lines represent the basal area of the
417	primitive unit cell for each material ($a = 8.673$ Å, $b = 5.054$ Å for gibbsite; $a = 3.1453$ Å for
418	brucite (Okuda et al. 2019)). The most stable and unstable crystal structures are displayed
419	in (e)-(h), corresponding to the displacement of top layer indicated by X marks in (c) and
420	(d). At stable stackings, the hydroxyls on the upper and lower layers do not face each other
421	(e and g), whereas some hydroxyls face each other, as indicated by black circles, at unstable
422	stackings (f and h). Data for the PESs of brucite (b and d) are from Okuda et al. (2019). (i
423	and \mathbf{j}) Crystal structures at the position of top layer at (i) and (j) in (c). Some hydroxyls (in
424	this case, H8, H9, H12, H13, H16, and H17) change their angles during deformation.
425	

426 **Figure 5.**

427	(a) Normal stress dependence of the atomic-scale shear stress τ_{ave} for gibbsite (black line)
428	and brucite (gray line). The error bars represent the standard deviation of 360 linear sliding
429	paths. (b) Shear stresses at a normal stress of 2.5 GPa of 360 linear sliding paths for
430	gibbsite (black) and brucite (gray).
431	
432	Figure 6.
433	(a) PES for gibbsite at a normal stress of 2.5 GPa. Paths [2 1 0] and [1 3 0] are indicated.
434	The circles are the locations corresponding to the area of the highest potential energy. (b)
435	Potential energy profiles at a normal stress of 2.5 GPa along paths [2 1 0] (black) and [1 3
436	0] (gray). Cumulative potential energies during the conservative part of sliding (c) and
437	shear stresses (d) for the two paths at a normal stress of 2.5 GPa. The dotted lines in (d) are
438	the shear stresses during the nonconservative part of sliding. The gray hatched areas show
439	the regions where higher shear stresses are required to climb the highest potential energy
440	indicated by circles in (a).
441	

442 **Figure 7.**

- 443 Relation between the gouge friction coefficient μ_g and the interlayer friction coefficient μ_M .
- 444 Black solid line represents the case when μ_M and μ_g are identical. Gray solid curve
- 445 represents the model assuming a random orientation of the gouge particles (Sakuma et al.
- 446 2020; see Table 1 for references).
- 447
- 448

Figure 4

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Figure 5

